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Abstract. In this article, we address the problem of clustering impre-
cise data using finite mixtures of Gaussians. We propose to estimate the
parameters of the mixture model using the fuzzy EM algorithm. This
extension of the EM algorithm allows us to handle imprecise data repre-
sented by fuzzy numbers. First, we briefly recall the principle of the fuzzy
EM algorithm. Then, we provide the update equations for the param-
eters of a Gaussian mixture model for fuzzy data. Experiments carried
out on synthetic and real data demonstrate the interest of our approach
for clustering data that are only imprecisely known.

1 Introduction

Gaussian mixture modelling is a very powerful tool for estimating a multivariate
distribution [19]. This model assumes the data to arise from a random sample,
whose distribution is a finite mixture of Gaussians. The major difficulty is to
estimate the parameters of the model. Generally, these estimates are computed
using the maximum-likelihood (ML) approach, through an iterative procedure
known as the EM algorithm. Once the parameter values are known, the posterior
probabilities of each data point may be computed. Then, classifying each point
into the class with highest posterior probability gives a partition of the data.
The choice of Gaussian mixtures, rather than geometrical models, is motivated
by several arguments. Additional assumptions, for example regarding the shape
or the volume of the classes, may be easily taken into account, giving birth to
parsimonious variants of the general model. This approach also provides a theo-
retical framework in which solutions to complex problems, such that determining
the number of classes or validating the structure of the partition obtained, may
be proposed.

When estimating the parameters using the EM algorithm, the observed data
are assumed to be precisely known. However, in some applications, the pre-
cise value taken by the variables may be difficult or even impossible to know.
For example, acoustic emission control may be used to detect flaws on pressure
equipments. This technique provides locations of acoustic events associated with
imprecision degrees [8]. The interest of taking into account uncertainty mea-
surements has been demonstrated [16]. Many works advocate the use of fuzzy



sets theory for dealing with imprecise data [12, 13, 15, 23]. Some of them con-
sider that the data at hand are intrinsically fuzzy, a position that has been
known as the physical interpretation of fuzziness. Here, we rather adopt an epis-
temic interpretation, in which fuzzy numbers “imperfectly specify a value that
is existing and precise, but not measurable with exactitude under the given
observation conditions” [12]. In this setting, a data sample is a collection of pos-
sibility distributions. Each one represents the partial knowledge of the precise
value taken by the random variable of interest. The problem of clustering fuzzy
data has been addressed in a number of recent papers [2, 6, 10, 11, 20–22, 27, 28].
These approaches differ from the type of data considered and from the cluster-
ing approach used. However, to our knowledge, clustering imprecise data using
mixtures of distributions has only been addressed in [9], when data are intervals.

In this paper, we propose to fit a Gaussian mixture model to the fuzzy data
at hand. The likelihood of the sample may be computed using Zadeh’s extension
principle [29]; then, an EM-like procedure may be used to estimate the param-
eters maximizing this likelihood. Denœux [4] recently proposed an extension of
the EM algorithm for imprecise data in the framework of belief functions. As
a possibility distribution may be identified with the plausibility function of a
consonant belief mass, this extension is also valid for fuzzy data [5].

The paper is organized as follows. In Section 2, the Gaussian mixture model
for clustering data is briefly recalled, along with the procedure for estimating the
parameters using the EM algorithm. We focus on the particular case where the
covariance matrices are diagonal. In Section 3, we present the fuzzy EM algo-
rithm for estimating the parameters of a Gaussian mixture model with diagonal
covariance matrices, when the data are fuzzy numbers. Section 4 presents the
experiments on synthetic and real data, and we conclude in Section 5.

2 Gaussian mixtures models for crisp data

Here, we recall the main results of Gaussian mixture modeling using the EM
algorithm. More information on Gaussian mixture models may be found in [19,
14]. For a thorough study of the EM algorithm, the reader may refer to [17].

2.1 Model

We suppose that (x1, . . . ,xn) is the realization of a random sample (X1, . . . , Xn).
Each xi is a p-dimensional vector: xi = (xi1, . . . , xip), supposed to be drawn from
a mixture of g Gaussians of probability density function (pdf):

g(x;Ψ) =

g
∑

k=1

πkgk(x;Ψk), (1)

where Ψ ∈ Ω is the vector of parameters of the model, and gk(x;Ψk) denotes the

kth Gaussian component with parameters Ψk = (mk, Σk, πk)
⊤
:

gk(x;Ψk) =
1

(2π)p/2|Σk|1/2
exp

(

−
1

2
(x−mk)

⊤Σ−1
k (x −mk)

)

. (2)



Let the g-dimensional vector zi = (zi1, . . . , zig) indicate the membership of xi:
zik = 1 if xi was generated by the kth component, and 0 otherwise. Now, let us
introduce the notations y = {x1, . . . ,xn} and z = {z1, . . . , zn}, and let (y, z)
be the complete data sample, with pdf gc(y, z;Ψ). The EM algorithm aims at
maximizing the observed data log-likelihood L(Ψ) =

∑

z
g(y|z;Ψ)P(z;Ψ). The

algorithm solves this problem by proceeding iteratively with the complete data
log-likelihood logLc. In the case of Gaussian mixtures, we have:

logLc(Ψ) = log gc(y, z;Ψ) =

n
∑

i=1

g
∑

k=1

zik log πk +

n
∑

i=1

g
∑

k=1

zik log gk(xi;Ψk),

=

g
∑

k=1

log πk

n
∑

i=1

zik −
np

2
log(2π)−

g
∑

k=1

n
∑

i=1

zik
2

log |Σk|

−
1

2

n
∑

i=1

g
∑

k=1

zik(xi −mk)
⊤Σ−1

k (xi −mk). (3)

In this article, we restrict ourselves to the particular case where the variables
are independent conditionally to each class: by definition,

gk(x;Ψ
(q)
k ) =

p
∏

j=1

gk(xj ;Ψ
(q)
k ); (4)

this is equivalent to requiring that the covariance matrices be diagonal: for each
k = 1, . . . , g, we have Σk = diag(σ2

1k, . . . , σ
2
pk), where diag(u) denotes the matrix

whose diagonal is the vector u. The complete log-likelihood thus becomes:

logLc(Ψ) =

g
∑

k=1

log πk

n
∑

i=1

zik −
np

2
log(2π)−

g
∑

k=1

n
∑

i=1

zik

p
∑

j=1

log(σjk)

−
1

2

n
∑

i=1

g
∑

k=1

p
∑

j=1

zik
σ2
jk

(xij −mjk)
2. (5)

2.2 Estimating the parameters using the EM algorithm

The EM algorithm estimates the parameters so as to maximize the likelihood
of the observed data. For this purpose, it proceeds iteratively with the complete
log-likelihood logLc(Ψ), alternating between two steps that we briefly recall here.

E-step of the EM algorithm The E-step consists in computing

Q(Ψ, Ψ (q)) = EΨ (q) [logLc(Ψ)|y, z]; (6)

here, Ψ (q) denotes the current fit of Ψ at iteration q, and EΨ (q) represents the
expectation computed using parameters Ψ (q). Let

tik = EΨ (q) [Zik|xi, Ψk] = PΨ (q) [Zik = 1|xi] =
πk gk(xi;Ψk)

∑g
k=1 πk gk(xi;Ψk)

; (7)



then,

Q(Ψ, Ψ (q)) =

g
∑

k=1

log πk

n
∑

i=1

tik −
np

2
log(2π)−

g
∑

k=1

n
∑

i=1

tik

p
∑

j=1

log(σjk)

−
1

2

n
∑

i=1

g
∑

k=1

p
∑

j=1

tik
σ2
jk

(xij −mjk)
2. (8)

M-step of the EM algorithm The M-step then consists in maximizing the
expectation Q(Ψ, Ψ (q)) with respect to Ψ (q); that is, in computing Ψq+1 such that
Q(Ψq+1, Ψ

(q)) ≥ Q(Ψ, Ψ (q)), for all Ψ ∈ Ω. In practice, the update equations are
given by setting the derivatives of Q(Ψ, Ψ (q)) with respect to each component of
Ψ to zero. Assume that the covariance matrices are diagonal (4); then:

π
(q+1)
k =

1

n

n
∑

i=1

tik,

m
(q+1)
jk =

∑n
i=1 tikxij
∑n

i=1 tik
,

σ
(q+1)
jk =

√

√

√

√

∑n
i=1 tik

(

xij −m
(q+1)
jk

)2

∑n
i=1 tik

.

Remark 1 (Spherical model). Assume that in each class, the variances of all the
variables are equal: Σk = σ2

kIdp, for k = 1, . . . , g. (Here, Idp is the p× p identity
matrix.) In this case, the level curves of the density are hyper-spheres, and the
classes are said to be spherical. Then, the update equations for the proportions
and the means are unchanged; the standard deviations are updated using:

σ
(q+1)
k =

√

√

√

√

∑n
i=1 tik

∑p
j=1

(

xij −m
(q+1)
jk

)2

p
∑n

i=1 tik
. (9)

Convergence of the EM algorithm The convergence of the EM algorithm
to a local maximum for the observed log-likelihood L has been proved in [3, 24].
Under some conditions on the initial values of the parameters, L is bounded from
above. As the observed log-likelihood increases at each iteration of the algorithm
[3], the convergence is ensured. In practice, the algorithm is stopped when the
difference between two successive values of L(Ψ) is less than a given threshold ǫ:

logL(Ψ (q+1))− logL(Ψ (q)) ≤ ǫ. (10)

As noted in [17, page 85], in many practical applications, the EM algorithm
converges to a local maximizer of the observed log-likelihood. However, it is
underlined that this convergence towards nontrivial solutions relies on the com-
pactness of the parameter space. This assumption may not hold in certain cases.



For example, when computing ML estimators of the parameters in a mixture of
Gaussians, setting the mean of a class to be one of the data points and letting
its variance tend to zero will let L(Ψ) tend to infinity.

To avoid such degenerate solutions, prior knowledge on the actual value of
the parameters may be integrated in the estimation process, using an adequate
distribution p(Ψ). Then, the maximum a posteriori (MAP) estimate of the vector
parameter Ψ may be computed so as to maximize the log (incomplete) posterior
density log p(Ψ |y, z) = logLc(Ψ) + log p(Ψ). The analytic formulation for the
update equations of the parameter estimates is simpler if p(Ψ) is a conjugate
prior for the distribution of the model. In the case of a mixture of Gaussians,
the conjugate prior for a covariance matrix Σ is the inverse-Wishart distribution:

f(Σ) =
|Λ|m/2|Σ|−(m+p+1)/2 exp

(

− trace
(

ΛΣ−1
)

/2
)

2mp/2Γp(m/2)
, (11)

where Γp stands for the (p-dimensional) multivariate Gamma distribution,m ≥ p
is the number of degrees of freedom, and Λ is a positive definite matrix. The
mean and the mode of this pdf are Λ/(m−p−1) and Λ/(m+p+1), respectively.

3 Gaussian mixture models for fuzzy data

3.1 The fuzzy EM algorithm applied to Gaussian mixtures

Here, we briefly present the fuzzy EM (FEM) algorithm [5] that may be derived
from Denœux’s EM algorithm for credal data [4]. Assume that the available data
are imprecise and represented using fuzzy numbers: instead of a crisp value xi,
we have a sample ỹ of fuzzy numbers, of which each element x̃i has a membership
function µ

x̃i
. The value µ

x̃i
(x) may be interpreted as the degree of possibility

that the actual value taken by the random variable Xi is x. Thus, the complete-
data sample is now (ỹ, z). Then, Zadeh’s definition of the probability of a fuzzy
event [30] may be used to compute the observed data log-likelihood:

L(Ψ) =
∑

z

P(z;Ψ)

∫

g(y|z;Ψ)dy. (12)

Thus, the E-step now consists in computing

Q(Ψ, Ψ (q)) = EΨ (q) [logLc(Ψ)|ỹ, z] . (13)

Note that the expectation is now taken with respect to the fuzzy sample ỹ. We
remind here that the conditional density of a continuous random variableX with
pdf gX , with respect to a fuzzy event x̃ with fuzzy membership function µ

x̃
, is:

gX(x|x̃) =
µ
x̃
(x)gX(x)

∫

µ
x̃
(x)gX(x)dx

. (14)

The M-step still consists, at iteration q, in maximizing Q(Ψ, Ψ (q)) with respect
to Ψ . The FEM algorithm iterates alternatedly between steps E and M, until
the difference between two successive values is small. Its convergence has been
proved [4, 5], using similar arguments to those proposed in [3].



3.2 Update equations of the parameters

We describe here how mixtures of Gaussians may be fit to fuzzy data using the
FEM algorithm. In addition to the conditional independence of the variables, we
assume that the membership function of a multidimensional fuzzy number may
be expressed as the product of the membership functions of its components:

µ
x̃i
(x) =

p
∏

j=1

µx̃ij
(xj). (15)

E-step of the FEM algorithm Let us compute Q(Ψ, Ψ (q)) = E[logLc(Ψ)|ỹ, z]:

Q(Ψ, Ψ (q)) =

g
∑

k=1

log πk

n
∑

i=1

EΨ (q) [Zik|x̃i]−
1

2

g
∑

k=1

log |Σk|

n
∑

i=1

EΨ (q) [Zik|x̃i]

−
1

2

n
∑

i=1

g
∑

k=1

EΨ (q)





p
∑

j=1

Zik

σ2
jk

(xij −mjk)
2|x̃i



−
np

2
log(2π). (16)

Let us introduce the following notations:

γ
(q)
ik = PΨ (q)(x̃i|Zik = 1) =

∫

µ
x̃i
(x)gk(x;Ψ

(q)
k )dx, (17)

γ
(q)
ijk = PΨ (q)(x̃ij |Zik = 1) =

∫

µx̃ij
(wj)gk(wj ;Ψ

(q)
k )dwj ; (18)

p
(q)
i = PΨ (q)(x̃i) =

p
∑

k=1

π
(q)
k

∫

µ
x̃i
(x)gk(x;Ψ

(q)
k )dx; (19)

η
(q)
ijk = EΨ (q) [xij |x̃ij , Zik = 1] =

∫

xjµx̃ij
(xj)gjk(xj , Ψ

(q)
k )dxj

γ
(q)
ijk

; (20)

ξ
(q)
ijk = EΨ (q) [x2

ij |x̃i, Zik = 1] =

∫

x2
jµx̃ij

(xj)gjk(xj , Ψ
(q)
k )dxj

γ
(q)
ijk

. (21)

With these notations, using Bayes’ theorem, we have:

t
(q)
ik = EΨ (q) [Zik|x̃i] =

PΨ (q)(x̃i|Zik=1)PΨ (q)(Zik = 1)

PΨ (q)(x̃i)
=

γ
(q)
ik π

(q)
k

p
(q)
i

. (22)

Now, using assumptions (4) and (15), we get:

EΨ (q)





p
∑

j=1

Zik

σ2
jk

(xij −mjk)
2|x̃i



 =

p
∑

j=1

1

σ
(q)
jk

2

(

EΨ (q)

[

Zikx
2
ij |x̃i

]

− 2m
(q)
jk EΨ (q) [Zikxij |x̃i] +m

(q)
jk

2
EΨ (q) [Zik|x̃i]

)

. (23)



Furthermore,

EΨ (q)

[

Zikx
2
ij |x̃i

]

= EΨ (q)

[

x2
ij |x̃ij , Zik = 1

]

P (Zik = 1|x̃i) = ξ
(q)
ijkt

(q)
ik , (24)

EΨ (q) [Zikxij |x̃i] = EΨ (q) [xij |x̃ij , Zik = 1]P (Zik = 1|x̃i) = η
(q)
ijkt

(q)
ik . (25)

Hence, finally, Equation (16) becomes:

Q(Ψ, Ψ (q)) =

g
∑

k=1

log πk

n
∑

i=1

t
(q)
ik −

np

2
log(2 π)−

g
∑

k=1

p
∑

j=1

log σjk

n
∑

i=1

t
(q)
ik

−
1

2

n
∑

i=1

g
∑

k=1

t
(q)
ik





p
∑

j=1

1

σ2
jk

ξ
(q)
ijk − 2

p
∑

j=1

mjk

σ2
jk

η
(q)
ijk +

p
∑

j=1

m2
jk

σ2
jk



 . (26)

M-step of the FEM algorithm In order to maximize Q(Ψ, Ψ (q)) defined by
Equation (26), its partial derivatives with respect to the various parameters have
to be set to zero. The partial derivatives with respect to the proportions πk are:

∂Q(Ψ, Ψ (q))

∂πk
=

1

πk

n
∑

i=1

t
(q)
ik ;

equating these derivatives to zero, under the constraint
∑g

k=1 πk = 1, give similar
results to the EM algorithm for crisp data:

π
(q+1)
k =

1

n

n
∑

i=1

t
(q)
ik . (27)

Computing derivatives with respect to each element mjk of the means gives:

∂Q(Ψ, Ψ (q))

∂mjk
=

1

σ2
jk

n
∑

i=1

t
(q)
ik η

(q)
ijk −mjk

n
∑

i=1

t
(q)
ik ; (28)

setting this partial derivative to zero, we get the following update equations:

m
(q+1)
jk =

∑n
i=1 t

(q)
ik η

(q)
ijk

∑n
i=1 t

(q)
ik

. (29)

Eventually, the first-order derivative of Q(Ψ, Ψ (q)) with respect to σjk is:

∂Q(Ψ, Ψ (q))

∂σjk
= −

1

σjk

n
∑

i=1

t
(q)
ik +

1

σ3
jk

n
∑

i=1

t
(q)
ik

(

ξ
(q)
ijk − 2mjkη

(q)
ijk +m2

jk

)

.

Setting this partial derivative to zero gives:

σ
(q+1)
jk =

√

√

√

√

√

∑n
i=1 t

(q)
ik

(

ξ
(q)
ijk − 2m

(q+1)
jk η

(q)
ijk +m

(q+1)
jk

2
)

∑n
i=1 t

(q)
ik

. (30)



Remark 2 (Spherical model). Assume, as in Remark 1, that the classes are spher-
ical: Σk = σ2

kIdp. Then, the update equations for the proportions and the means
are unchanged, and the update equations for the standard deviations become:

σ
(q+1)
k =

√

√

√

√

√

∑n
i=1 t

(q)
ik

∑p
j=1

(

ξ
(q)
ijk − 2m

(q+1)
jk η

(q)
ijk +m

(q+1)
jk

2
)

p
∑n

i=1 t
(q)
ik

. (31)

Remark 3 (Relationship between the update equations for crisp and fuzzy data).
We may notice the similarity with the update equations obtained for crisp data.
The difference is that the crisp quantities xij and x2

ij are replaced with the condi-

tional expectations ηijk and ξijk of the fuzzy variables x̃ij and x̃ij
2, respectively.

Remark 4 (Prior on the covariance matrices). Suppose that a prior is set on each
covariance matrix Σk using the inverse-Wishart distribution with parametersm0

and Λk 0 = diag (λk1, . . . , λkp). Then, the estimates for the standard deviations
for the conditional independence case becomes:

σ
(q+1)
jk =

√

√

√

√

√

∑n
i=1 t

(q)
ik

(

ξ
(q)
ijk − 2m

(q+1)
jk η

(q)
ijk +m

(q+1)
jk

2
)

+ λjk

∑n
i=1 t

(q)
ik + (m0 + p+ 1)

. (32)

In the spherical case, using Λk 0 = λkIdp, we get:

σ
(q+1)
k =

√

√

√

√

√

∑n
i=1 t

(q)
ik

∑p
j=1

(

ξ
(q)
ijk − 2m

(q+1)
jk η

(q)
ijk +m

(q+1)
jk

2
)

+ λk

p
∑n

i=1 t
(q)
ik + p (m0 + p+ 1)

. (33)

4 Experiments

4.1 Synthetic data

First, we ran experiments over synthetic two-dimensional data. We placed our-
selves in the experimental setting considered in [8]: here, a fuzzy datum repre-
sents the imprecise knowledge of the actual (precise) value of a variable. We gen-
erated data as follows. First, we drew a sample of n = 300 realizations x1, . . . ,xn

of a Gaussian mixture of g = 3 components with the parameters given in Ta-
ble 1. Level curves of the corresponding density are represented in Figure 1. The
curves correspond to levels 0.01, 0.02, 0.03, 0.04 and 0.05 of the density.

Each data point was classified according to the Bayes’ rule. Then, each xi

was transformed into a fuzzy number. Let a (monovariate) trapezoidal fuzzy
number w̃ be defined by four scalars a, b, c and d, such that:

µw̃(w) =















(w − b)/(b− a), if a ≤ w ≤ b,
1, if b ≤ w ≤ c,
(d− w)/(d− c), if c ≤ w ≤ d,
0 otherwise.

(34)



Table 1. Parameters of the components of the Gaussian mixture.

comp. 1 comp. 2 comp. 3

πk 0.3 0.4 0.3

mk (−2,−2)⊤ (−1,+1)⊤ (+2,−2)⊤

Σk

(

2.5 0.25
0.25 0.75

) (

2 0
0 1.5

) (

1.25 −0.25
−0.25 1

)

Here, each coordinate xij of a crisp data point xi was transformed into a trape-
zoidal fuzzy number x̃ij as follows. Four iid realizations u1, u2, u3, and u4 were
drawn from an uniform distribution U[0;1]; then, r and s being user-defined:

bij = u1(xij − r), aij = u2(bij − s);
cij = u3(xij + r), dij = u4(xij + s).

(35)

Figure 1 displays the fuzzy numbers thus obtained using r = 0.5 and s = 2: each
rectangle corresponds to the alpha-cut of a membership function, with α = 0.75.
The line style of each rectangle (plain, dashed, or dotted) represents the class
with highest probability, determined using the true distribution of the data.

Table 2. Parameter estimates, number q of iterations, log-likelihood, and PRI obtained
with r = 0.5 and s = 2.

πk mk Σk q logL PRI

comp. 1 0.41 (−2,−1.58)⊤ diag (1.37, 1.37)

spherical comp. 2 0.28 (−0.75, 1.49)⊤ diag (1.06, 1.06) 18 -969.1 0.7984

comp. 3 0.31 (1.74,−2.04)⊤ diag (0.75, 0.75)

comp. 1 0.31 (−1.94,−2.15)⊤ diag (1.78, 0.39)

diagonal comp. 2 0.41 (−1, 0.94)⊤ diag (1.59, 1.53) 68 -963.8 0.9136

comp. 3 0.28 (1.82,−2.11)⊤ diag (0.79, 0.60)

Parameters were estimated using the FEM algorithm, for the two models
studied in Section 3.2. From now on, the model with diagonal covariance matrices
will be referred to as diagonal model. The means were initialized at random,
according to a centered and scaled normal distribution; the initial covariance
matrices were set to the identity. The quality of each partition was evaluated
using the pairwise Rand index (PRI). For each model, we performedN = 20 runs
of the algorithm; we retained the best result (for which the log-likelihood was
maximal). Parameter estimates are given in Table 2, as well as the corresponding
value of the fuzzy log-likelihood, the number q of iterations, and the PRI. Figure 2
displays the densities estimated by both models, at the same levels as previously.
The fuzzy numbers are also represented; now, the line style of each rectangle
indicates the class into which the corresponding data point was classified.



Then, we modified the synthetic dataset as follows. We fuzzified the same
crisp data using values r = 2 and s = 2. Figure 3 represents the alpha-cuts (with
α = 0.75) of the fuzzy numbers thus obtained. As previously, the algorithms
were run N = 20 times using the same initialization procedure, and the best re-
sult was retained for each model. The results are given in Table 3. Figure 3 also
displays the density estimated using the diagonal model. The estimates of the
means are very similar to the previous; those of the variances, however, are much
lower. Indeed, the imprecision on the actual realizations of the random variables
is higher. In other terms, the intervals in which these realizations may fall with
the same degree of possibility as previously are larger. Then, the algorithm obvi-
ously favours a solution with as small variances as possible, as it maximizes the
likelihood. Finally, we set an inverse-Wishart prior on the covariance matrices.
Table 4 presents the results obtained with m0 = 2, and Λ0 = diag (2 2) for both
models.

Table 3. Parameter estimates, number q of iterations, log-likelihood, and PRI obtained
with r = 2 and s = 2.

πk mk Σk q logL PRI

comp. 1 0.49 (−1.71,−1.26)⊤ diag (1.29, 1.29)

spherical comp. 2 0.21 (−0.63, 1.73)⊤ diag (0.59, 0.59) 165 -587.7 0.6937

comp. 3 0.30 (1.70,−1.90)⊤ diag (0.63, 0.63)

comp. 1 0.53 (−1.27,−1.50)⊤ diag (1.99, 0.73)

diagonal comp. 2 0.25 (−0.86, 1.63)⊤ diag (1.05, 0.48) 209 -585 0.6536

comp. 3 0.22 (2.02,−2.06)⊤ diag (0.27, 0.73)

Table 4. Parameter estimates, number q of iterations, log-likelihood, and PRI obtained
with r = 2 and s = 2, with an inverse-Wishart prior on the covariance matrices.

πk mk Σk q logL PRI

comp. 1 0.37 (−2.16,−1.54)⊤ diag (1.14, 1.14)

spherical comp. 2 0.31 (0.78, 1.16)⊤ diag (1.18, 1.18) 95 -622.1 0.7913

comp. 3 0.32 (1.47,−1.97)⊤ diag (0.83, 0.83)

comp. 1 0.34 (−2.19,−1.62)⊤ diag (1.27, 0.95)

diagonal comp. 2 0.33 (−0.82, 1.09)⊤ diag (1.23, 1.19) 331 -620.9 0.8427

comp. 3 0.33 (1.38,−2)⊤ diag (1.11, 0.64)

4.2 Real data

We ran the FEM algorithm on the blood data used in [6]. This dataset presents
statistics on daily measurements of systolic and diastolic pressures on n = 108
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Fig. 1. Pdf of the Gaussian mixture (left); fuzzy numbers obtained with r = 0.5 and
s = 2 (right).
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Fig. 2. Pdf estimated using the spherical model (left) and the diagonal model (right).
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Fig. 3. Fuzzy numbers obtained with r = 2 and s = 2 (left); density estimated using
the diagonal model (right).



patients. Remark that here, each measurement is precise; however, for each pa-
tient, center and spread values only were stored. Thus, the fuzziness of a datum
stems from the variability of the measurements performed on each patient and
the choice to summarize these measurements using their center and their spread
only. Although this interpretation differs from the point of view adopted in this
paper, we used these data to compare our results with those presented in [6].

We interpreted these data as triangular fuzzy numbers, which are a special
case for trapezoidal fuzzy numbers. In addition, we assumed that each center was
equidistant to the minimal and maximal values. First, the data were centered
and scaled with respect to the mean and standard deviation of the center values.
Then, the density of a two-component mixture of Gaussians was estimated using
the FEM algorithm. The parameters were initialized as previously.

The alpha-cuts of the fuzzy numbers are represented in Figure 4 (again, with
α = 0.75). Table 5 presents the results obtained with both models using an
inverse-Wishart prior on Σ1 and Σ2, with m0 = 2 and Λ01 = Λ02 = diag (2, 2).
Figure 4 displays the density estimated using the diagonal model, at levels 0.02,
0.04, 0.06, 0.08 and 0.1. The results are quite similar to those obtained in [6].
Here, 55 patients were assigned to the first class, and 53 to the second one.
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Fig. 4. Fuzzy numbers obtained from the blood data (left); density estimated using
the diagonal model with an inverse-Wishart prior on the covariance matrices (right).

5 Conclusion

In this paper, we addressed the problem of clustering fuzzy data using mixture
models. Our approach is based on an extention of the EM algorithm for fuzzy
data, proposed by Denœux [4, 5]. The likelihood of a mixture of Gaussians may
be computed, given a sample of fuzzy numbers, using Zadeh’s extention principle.
Then, the estimates maximizing this likelihood may be estimated using an iter-
ative procedure. At each iteration, the expectation Q(Ψ, Ψ (q)) = E[logLc(Ψ)|ỹ]



Table 5. Parameter estimates, number q of iterations, and log-likelihood obtained for
the blood data, with an inverse-Wishart prior on the covariance matrices.

πk mk Σk q logL

spherical comp. 1 0.523 (−0.768, 0.599)⊤ diag (0.558, 0.558) 66 -220.4

comp. 2 0.477 (0.690,−0.757)⊤ diag (0.532, 0.532)

diagonal comp. 1 0.523 (−0.767, 0.598)⊤ diag (0.567, 0.549) 32 -220.4

comp. 2 0.477 (0.691,−0.757)⊤ diag (0.520, 0.543)

of the log-likelihood is first computed. Then, the parameters of the model may
be updated so as to maximize this expectation. In this paper, we detailed the
computation of the update equations under the assumption that the covariance
matrices considered are diagonal, in the case of a finite mixture of Gaussians.

We conducted experiments on synthetic and real data. Experiments show
that our algorithm estimates accurately the distribution of imprecisely known
data. Our approach may be sensitive to the amount of imprecision in the available
information. In particular, the covariance matrices may be under-estimated if
the degree of fuzziness is high. However, the algorithm may be guided towards
a desired solution by setting a prior distribution on these parameters. Thus, our
algorithm constitutes a generic approach for clustering imprecise data.

The extension of the fuzzy EM algorithm to finite mixture of Gaussians with
full covariance matrices is straightforward. However, in such cases, it may be
necessary to rely on Monte Carlo processes in order to perform the E-step of the
EM algorithm. Therefore, this work is left for further research.

References

1. Coppi, R., D’Urso, P.: Fuzzy K-means clustering models for triangular fuzzy time
trajectories. Statistical Methods and Applications 11 (1), pages 21-40 (2002).

2. Coppi, R., D’Urso, P.: Three-way fuzzy clustering models for LR fuzzy time trajec-
tories. Computational Statistics and Data Analysis 43, pages 149-177 (2003).

3. Dempster, A. P., Laird, N. M. , Rubin, D. B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B 39, pages 1-38
(1977).

4. Denœux, T.: Maximum likelihood estimation from evidential data. In Proceedings
of the first workshop on the theory of belief functions and their applications, Brest,
France (2010). Manuscript available online at http://www.ensieta.fr/belief2010/.

5. Denœux, T.: Maximum likelihood estimation from fuzzy data using the Fuzzy EM
algorithm (working paper).

6. D’Urso, P., Giordani, P.: A weighted fuzzy c-means clustering model for fuzzy data.
Computational Statistics and Data Analysis 50, pages 1496-1523 (2006).

7. Auephanwiriyakul, S., Keller, J.M.: Analysis and efficient implementation of a lin-
guistic fuzzy c-means. IEEE Trans. on Fuzzy Systems 10 (5), pages 563-582 (2002).

8. Hamdan, H., Govaert, G.: CEM algorithm for imprecise data. Application to flaw
diagnosis using acoustic emission. In Proc. of the IEEE International conference on
Systems, Man and Cybernetics (5), pages 4774-4779 (The Hague, Netherlands, 2004).



9. Hamdan, H., Govaert, G.: Mixture model clustering of uncertain data. In Proc. of
the IEEE International Conference on Fuzzy Systems, pages 879-884 (Reno, Nevada,
USA, 2005).

10. Hathaway, R.J., Bezdek, J.C., Pedrycz,W.: A parametric model for fusing hetero-
geneous fuzzy data. IEEE Trans. on Fuzzy Systems 4 (3), pages 1277-1282 (1996).

11. Hung, W.-L., Yang, M.-S.: Fuzzy clustering on LR-type fuzzy numbers with an
application in Taiwanese tea evaluation. Fuzzy Sets and Systems 150 (3), pages 561-
577 (2005).

12. Gebhardt, J., Gil, M. A., Kruse, R.: Fuzzy set-theoretic methods in statistics. In R.
Slowinski, editor, Fuzzy sets in decision analysis, operations research and statistics,
pages 311-347. Kluwer Academic Publishers, Boston (1998).
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