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Abstract. Multi-label classification problems arise in many real-world
applications. Classically, in order to construct a multi-label classifier, we
assume the existence of a labeled training set, where each instance is
associated with a set of labels, and the task is to output a label set for
each unseen instance. However, it is not always possible to have perfectly
labeled data. In many problems, there is no ground truth for assigning
unambiguously a label set to each instance, and several experts have to
be consulted. Due to conflicts and lack of knowledge, labels might be
wrongly assigned to some instances. This paper describes an evidence
formalism suitable to study multi-label classification problems where the
training datasets are imperfectly labelled. Several applications demon-
strate the efficiency of our apporach.

1 Introduction

In multi-label classification problems, each object may belong simultaneously to
several classes, contrary to standard single-label problems where objects belong
to only one class. Multi-label classification methods have been increasingly re-
quired by modern applications where the target classes are not exclusive and
an object may belong to an unrestricted set of classes instead of exactly one.
For instance, in natural scene classification, each image may belong to several
semantic classes, such as sea and sunset [1].

Several methods have been proposed for multi-label learning. These methods
can be categorized into two groups. A first group contains the indirect methods
that transform the multi-label classification problem into a set of binary classi-
fication problems (Binary relevance approach (BR): a binary classifier for each
class or pairwise classifiers) [12] [11] [6] or into multi-class classification problem
(Label powerset approach (LP): each subset of classes is considered as a new
class) [9]. A second group consists in extending common learning algorithms
and making them able to manipulate multi-label data directly [10].

Usually, multi-label classification tasks are based on training datasets where
each instance is associated with a perfectly known set of labels. In practice, gath-
ering such high quality information is not always feasible at a reasonable cost. In
many problems, however, there is no ground truth for assigning unambiguously
a label set to each instance, and the opinions of one or several experts have to be
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elicited. Typically, an expert may express lack of confidence for assigning exactly
one label set. If several experts are consulted, some conflicts will inevitably arise.
This again will introduce some uncertainties in the labeling process.

In [10] and [4], an evidential formalism for handling uncertainty on the classi-
fication of multi-labeled data has been presented. This formalism extends all the
notions of Dempster-Shafer (D-S) theory [7] to the multi-label case with only a
moderate increase in complexity as compared to the classical case. Based on this
formalism, an evidence-theoretic k-NN rule for multi-label classification has been
presented. The proposed method, called EML-kNN for Evidential Multi-Label
k-Nearest Neighbor, generalizes the single-label evidence-theoretic k-NN rule [2]
to the multi-label case. Thus, an unseen instance is classified on the basis of its
k nearest neighbors under the D-S framework.

In [10], we applied our method on several benchmark datasets where all in-
stances were perfectly labelled. We also noticed that our evidential formalism for
set-valued variables allows us to express ambiguities and uncertainties when the
available data used to train the multi-label classifier are imprecisely labelled. As
far as our knowledge, such imprecise data are not available from real-world prob-
lems. Thus, in order to show the performance of EML-kNN in such cases and
demonstrate its effectivness, we propose a labeling process to randomly simulate
imprecise multi-labelled data.

The remainder of the paper is organized as follows. Section 2 describes the
evidence formalism for multi-label case. Section 3 recalls the evidence-theoretic
k-NN rule for multi-label classification. Section 4 presents experiments on some
real datasets and shows the effectiveness of our approach to handle imprecise
data. Finally, Section 5 makes concluding remarks.

2 Evidence Formalism

The Dempster-Shafer (D-S) theory is a formal framework for representing and
reasoning with uncertain and imprecise information. Different approaches to
single-label classification in the framework of evidence theory have been pre-
sented in the literature [3] [2]. This theory is usually applied to handle uncer-
tainty in problems where only one single hypothesis is true. However, there exist
problems where more than one hypothesis are true at the same time, e.g., the
multi-label classification task. Let Ω denote the set of all hypotheses in a certain
domain, e.g., in classification, Ω is the set of all possible classes. The frame of
discernment of the evidence formalism for multi-label case is not Ω, as in the
single label classification problem, but its power set Θ = 2Ω. A mass function
m is thus defined as a mapping from the power set of Θ to the interval [0, 1]. As
proposed in [4], instead of considering the whole power set of Θ, we will focus
on the subset C(Ω) of 2Θ defined as:

C(Ω) = {ϕ(A, B)| A ∩ B = ∅} ∪ {∅Θ} (1)
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where ∅Θ represents the conflict in the frame 2Θ, and for all A, B ⊆ Ω with
A ∩ B = ∅, ϕ(A, B) is the set of all subsets of Ω that include A and have no
intersection with B:

ϕ(A, B) = {C ⊆ Ω| C ⊇ A and C ∩ B = ∅}. (2)

The size of the subset C(Ω) of 2Θ is equal to 3|Ω| + 1 and is thus much smaller
than the size of 2Θ (|2Θ| = 22|Ω|

). Consequently, this formulation reduces the
complexity of multi-label problems, while being rich enough to express evidence
in many realistic situations. The chosen subset C(Ω) of 2Θ is closed under in-
tersection, i.e., for all ϕ(A, B), ϕ(A′, B′) ∈ C(Ω), ϕ(A, B) ∩ ϕ(A′, B′) ∈ C(Ω).
Based on the definition of ϕ(A, B), we can deduce that:

ϕ(∅, ∅) = Θ, (3)
∀A ⊆ Ω, ϕ(A, Ā) = {A}, (4)

∀A ⊆ Ω, A 	= ∅, ϕ(A, A) = ∅Θ. (5)

By convention, ∅Θ will be represented by ϕ(Ω, Ω).
For any ϕ(A, B), ϕ(A′, B′) ∈ C(Ω), the intersection operator over C(Ω) is

defined as follow:

ϕ(A, B) ∩ ϕ(A′, B′) =
{

ϕ(A ∪ A′, B ∪ B′) if A ∩ B′ = ∅ and A′ ∩ B = ∅
ϕ(Ω, Ω) otherwise,

(6)
and the inclusion operator over C(Ω) is defined as:

ϕ(A, B) ⊆ ϕ(A′, B′) ⇐⇒ A ⊇ A′ and B ⊇ B′. (7)

A mass function m on C(Ω) can be represented with the following two equations:

m : C(Ω) −→ [0, 1] (8)

∑
ϕ(A,B)∈C(Ω)

m(ϕ(A, B)) = 1. (9)

For convenience of notation, m(ϕ(A, B)) will be simplified to m(A, B). For any
ϕ(A, B) ∈ C(Ω), the belief and plausibility functions are now defined as:

bel(A, B) =
∑

ϕ(Ω,Ω) �=ϕ(A′,B′)⊆ϕ(A,B)

m(A′, B′), (10)

and
pl(A, B) =

∑
ϕ(A′,B′)∩ϕ(A,B) �=ϕ(Ω,Ω)

m(A′, B′). (11)

Given two independent bodies of evidence over the same frame of discernment
like C(Ω), the aggregated mass function, denoted by m12, obtained by com-
bining the mass functions m1 and m2 of the two bodies of evidence using the
unnormalized Dempster’s rule is calculated in the following manner:

m12(A, B) =
∑

ϕ(A′,B′)∩ϕ(A′′,B′′)=ϕ(A,B)

m1(A′, B′)m2(A′′, B′′). (12)
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This rule is commutative and associative, and has the vacuous mass function
(m(∅, ∅) = 1) as neutral element.

3 Evidential Multi-Label k-NN

Problem. Let X = RP denote the domain of instances and let Ω = {ω1, . . . , ωQ}
be the finite set of labels. The multi-label classification problem can now be for-
mulated as follows. Given a set S = {(x1, A1, B1), . . . , (xM , AM , BM )} of M
training examples, where xi ∈ X , Ai ⊆ Ω denotes a set of classes that surely
apply to instance i, and Bi ⊆ Ω is a set of classes that surely do not apply to
the same instance. For instance, assume that instances are songs and classes are
emotions generated by these songs. Upon hearing a song, an expert may decide
that this song certainly evokes happiness and certainly does not evoke sadness,
but may be undecided regarding the other emotions (such as quietness, anger,
surprise, etc.). In that case, the song cannot be assigned to a single label set, but
one can associate to it the set of all label sets containing ”happiness” and not
containing ”sadness”. The goal of the learning system is to build a multi-label
classifier H : X → 2Ω that associates a label set to each unseen instance.

To determine the multi-label classifier, the evidential multi-label kNN rule
introduced in [10] can be used. Hereafter, we recall the principle of this method.

EML-kNN. Let x be an unseen instance, Y its unknown label set, and Nx

its k nearest neighbors in S based on a certain distance function d(., .), usually
the Euclidean one. Each element (xi, Ai, Bi) in Nx constitutes a distinct item
of evidence regarding the label set of x.

The mass function mi over C(Ω) induced by the item of evidence (xi, Ai, Bi)
regarding the label set of x is defined as:

mi(Ai, Bi) = α exp(−γdi) (13)
mi(∅, ∅) = 1 − α exp(−γdi) (14)

where di = d(x,xi), 0 < α < 1 and γ > 0. Parameter α is usually fixed at a
value close to 1 such as α = 0.95 [2], whereas γ should depend on the scaling of
distances and can be fixed by cross-validation [10].

After considering each item of evidence in Nx, we obtain k mass functions
mi, i = 1, . . . , k that can be combined using the multi-label extension of the
unnormalized Dempster’s rule of combination (12) to form the resulting mass
function m.

For decision making, different procedures can be used. The following simple
and computationally efficient rule was implemented. Let Ŷ be the predicted label
set for instance x to differentiate it from the ground truth label set Y of x. To
decide whether to include each class ωq ∈ Ω or not, we compute the degree of
belief bel({ωq}, ∅) that the true label set Y contains ωq, and the degree of belief
bel(∅, {ωq}) that it does not contain ωq. We then define Ŷ as

Ŷ = {ωq ∈ Ω | bel({ωq}, ∅) ≥ bel(∅, {ωq})}. (15)
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4 Experiments

4.1 Datasets

Three datasets were used in our experiments: the emotion, scene and yeast
datasets1. Each one was split into a training set and a test set. Table 1 sum-
marizes the characteristics of the datasets used in the experiments. The label
cardinality of a dataset is the average number of labels of the instances, while
the label density is the average number of labels of the instances divided by the
total number of labels [8].

Table 1. Characteristics of datasets

Number of Feature vector Number of Training Test Label Label maximum size
Dataset instances dimension labels instances instances cardinality density of a label set

emotion 593 72 6 391 202 1.869 0.311 3

scene 2407 294 6 1211 1196 1.074 0.179 3

yeast 2417 103 14 1500 917 4.237 0.303 11
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Fig. 1. Accuracy and HammLoss for EML-kNN on the emotion dataset for different
values of the confidence threshold t

4.2 Imprecise Labeling Process

To simulate imprecise labeling by an expert, the following procedure was used.
Let Yi be the true label set for instance i, and let yi = (yi1, . . . , yiQ) be the
vector of {−1, 1}Q such that yiq = 1 if ωq ∈ Yi and yiq = −1 otherwise. For each
instance i and each class ωq, we generated a probability of error piq = p′iq/2,
where p′iq was taken from a beta distribution with parameters a = b = 0.5 (this
consists on a bimodal distribution with modes at 0 and 1), and we changed yiq

1 http://mlkd.csd.auth.gr/multilabel.html

http://mlkd.csd.auth.gr/multilabel.html
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Fig. 2. Comparison between direct and BR versions of EML-kNN over 10 trials on
imprecise and noisy labels generated from the emotion dataset

to −yiq with probability piq, resulting in a noisy label vector y′
i. Each number

piq represents the probability that the membership of instance i to class ωq will
be wrongly assessed by the experts. This number may be turned into a degree
of confidence ciq by the transformation:

ciq = 1 − 2piq, (16)

where ciq = 1 means that the expert is totally sure about the membership
(yiq = 1) or not (yiq = −1) of instance i to class ωq, while ciq = 0 means that
he is totally undecided about this membership. In practice, these numbers can
be provided by the experts.

By fixing a threshold t for confidence values (intuitively, t > 0.5), we then
define the imprecise label vector as y′′

i = (y′′
i1, . . . , y

′′
iQ) with

y′′
iq =

{
y′

iq if ciq ≥ t,

0 otherwise.
(17)

As shown in Section 2, such a vector of {−1, 0, 1}Q can be represented by
ϕ(Ai, Bi), the set of subsets of Ω, such that:

{
Ai = {ωq ∈ Ω | y′′

iq = 1},
Bi = {ωq ∈ Ω | y′′

iq = −1}. (18)

The set Ai then contains the classes ωq that can be definitely assigned to instance
i with a high degree of confidence (ciq ≥ t), while Bi is the set of classes which are
definitely not assigned to instance i. The remaining set Ω \ (Ai ∪ Bi) contains
those classes about which the expert is undecided (ciq < t). We recall that
ϕ(Ai, Bi) contains all the label sets including Ai and non intersecting Bi.



EML Classification Approach to Learning from Data with Imprecise Labels 125

EMLkNN MLkNN MLRBF RankSVM

0.25

0.3

0.35

0.4

0.45

Ac
cu

ra
cy

EMLkNN MLkNN MLRBF RankSVM

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Ha
m

m
Lo

ss
Fig. 3. Accuracy and HammLoss box plots over 10 trials for the emotion dataset
with the following methods: EML-kNN with imprecise labels, ML-kNN, ML-RBF and
Rank-SVM with noisy labels

4.3 Evaluation Metrics

Let D = {(x1, Y1), . . . , (xN , YN )} be a multi-label evaluation dataset containing
N labeled examples. Let Ŷi = H(xi) be the predicted label set for the pattern
xi, while Yi is the ground truth label set for xi.

A first metric called ”Accuracy” gives an average degree of similarity between
the predicted and the ground truth label sets of all test examples [8]:

Accuracy(H,D) =
1
N

N∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

. (19)

A second metric is the ”Hamming loss” that counts prediction errors (an in-
correct label is predicted) and missing errors (a true label is not predicted). In
order to be consistent with the above measure, we report 1-Hamming loss [6]:

HamLoss(H,D) = 1 − 1
N

N∑
i=1

1
Q
|Yi � Ŷi|, (20)

where � is an operator to compute the symmetric difference of two sets.
The values of these evaluation criteria are in the interval [0, 1]. Larger values

of these metrics correspond to higher classification quality.

4.4 Results and Discussions

Figure 1 shows the performance of EML-kNN over the two evaluation criteria
Accuracy and HammLoss for different values of confidence threshold t after
10-fold cross validation on imprecise labels generated from the training emotion
dataset. The best results were obtained for t ∈ [0.5, 0.9]. In the following, the
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Fig. 4. Accuracy and HammLoss box plots over 10 trials for the scene dataset with
the following methods: EML-kNN with imprecise labels, ML-kNN, ML-RBF and Rank-
SVM with noisy labels

value of t was fixed to 0.6. Note that, for EML-kNN, γ was fixed to 0.5 and
k to 10. The values of these two parameters can easily be determined by cross
validation, but here, they are fixed manually to moderate values.

EML-kNN was originally developed in order to construct a multi-label learn-
ing system able to handle multi-labeled data directly. However, it can be also
used when transforming the multi-label leaning problem into single-label one,
which is referred to as indirect approach. To get an idea about the performance
of each approach, the original EML-kNN (direct version) and the BR version
(binary learning for each label) were applied to imprecise and noisy labeled data
generated from the emotion dataset. Figure 2 shows the results over 10 trials.
First, we notice the improved performances of our leaning system when applied
to imprecise labels. This result demonstrates the usefulness of our evidence for-
malism. Secondly, we remark that the performances of the direct and BR versions
of our method are very close, with a slight advantage for the direct approach.
Note that, in terms of execution time, the direct approach is much faster. In the
next experiments, the originial version (direct) of EML-kNN was used.

EML-kNN was compared to three existing multi-label classification methods
that were shown to exhibit good performances: ML-kNN [13] that is the closest
to our method as both are based on k-NN rule, ML-RBF [12] derived from
radial basis function neural networks, and Rank-SVM [5] that is based on the
traditional support vector machine. For ML-kNN, k was fixed to 10 as in [13].
As used in [12], the fraction parameter for ML-RBF was set to 0.01 and the
scaling factor to 1. For Rank-SVM, the best parameterization reported in [5],
i.e. polynomial kernels with degree 8, was used.

After performing the labeling process explained in Section 4.2, noisy labels
and imprecise labels were generated for instances from each dataset. EML-kNN
was applied to imprecise labels (y′′

i corresponding to ϕ(Ai, Bi) in the multi-label
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Fig. 5. Accuracy and HammLoss box plots over 10 trials for the yeast dataset with
the following methods: EML-kNN with imprecise labels, ML-kNN, ML-RBF and Rank-
SVM with noisy labels

evidence formalism), while the ML-kNN, ML-RBF and Rank-SVM algorithms
were applied to noisy labels (y′

i), as it is not clear how imprecise labels could be
handled using these methods.

Figures 3, 4 and 5 show the box plots for the Accuracy and HammLoss
measures obtained by the applied methods, over ten generations of imprecise
and noisy labels, for the emotion, scene and yeast datasets respectively.

Based on the two evaluation criteria and over the three datasets, EML-kNN
clearly dominates the remaining methods. These preliminary results demonstrate
the ability of our approach to handle imprecise labels in multi-label classification
tasks. In fact, when the available learning data have not a ground truth and have
been labeled subjectively by a pool of experts, noisy labels will be inevitably
assigned to some instances due to conflicts or lack of knowledge. If an expert gives
a degree of confidence about each assigned label, by using EML-kNN method
based on the evidence formalism explained in Section 2, we are able to reduce
the risk of assigning wrongly some labels to an instance i when the degrees of
confidence are not high. That explains the good performances of our method.

5 Conclusion

In this paper, we have used the evidence formalism for multi-label learning and
the EML-kNN method introduced in [10] to propose a multi-label learning sys-
tem able to handle complex learning tasks in which the data are imprecisely
labeled. In fact, in many real-world problems, there are no ground truth for
assigning unambiguously a label set to each instance, and several experts have
to be consulted. Due to lack of confidence and conflicts between experts, un-
certainties are introduced when labeling instances. To assess the performances
of our approach when learning from data with imprecise labels, we have used
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an algorithm to randomly simulate such data. Experimental results demonstrate
the ability of our approach to handle imprecise labels in multi-label classification
tasks. EML-kNN dominates state-of-the-art methods in such situations.
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