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Abstract—Object association is a crucial step in target tracking
and data fusion applications. This task can be formalized as the
search for a relation between two sets (e.g., a sets of tracks
and a set of observations), in such a way that each object in
one set is matched with at most one object in the other set. In
this paper, this problem is tackled using the formalism of belief
functions. Evidence about the possible association of each object
pair, usually obtained by comparing the values of some attributes,
is modeled by a Dempster-Shafer mass function defined in the
frame of all possible relations. These mass functions are combined
using Dempster’s rule, and the relation with maximal plausibility
is found by solving an integer linear programming problem. This
problem is shown to be equivalent to a linear assignment problem,
which can be solved in polynomial time using, e.g., the Hungarian
algorithm. This method is demonstrated using simulated and real
data. The three-dimensional extension of this problem (with three
object sets) is also formalized, and is shown to be NP-hard.

Index Terms—Belief functions; Evidence theory; data fusion;
assignment problem.

I. INTRODUCTION

Object association refers to the task of matching two finite
sets of objects E = {e1, . . . , en} and F = {f1, . . . , fp},
with possibly different cardinalities. This problem arises, for
instance, in multiple target tracking applications [1], [2], in
which we need to estimate the status of mobile objects (such
as targets or storm cells [3]) that are detected at different times
by a single sensor. Data association then consists in deciding
which observation should be used to update each track. In
this case, the two sets of objects are a set of tracks and a set
of observations. Another class of problems in which object
association is needed is sensor fusion (see, e.g., [4]). In that
case, objects are typically perceived by two sensors and we
need to perform observation-to-observation or track-to-track
association, depending on the level of sensor outputs. The
study of the multi-dimensional case, in which we have more
than two sets of objects (perceived, e.g., by several sensors),
is deferred until the end of this paper.

Usually, object association is performed under the assump-
tion that each object in one set should be matched with at
most one object in the other set. An object in E may have
no counterpart in F because it has disappeared between two
successive time frames, or because it has not been perceived
by one of the sensors. Mathematically, we are thus searching
for a relation R ⊆ E × F such that, for all i, j and k:

(ei, fj) ∈ R and (ei, fk) ∈ R⇒ j = k (1a)
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and
(ei, fk) ∈ R and (ej , fk) ∈ R⇒ i = j. (1b)

Any such relation may be described by a matrix R of size
(n, p) such that Rij = 1 if (ei, fj) ∈ R and Rij = 0 otherwise
(by abuse of notation but without any risk of confusion, we
use the same notation for the relation and its corresponding
matrix).

In this paper, this problem will be investigated in the
framework of the theory of belief functions, also referred to
as Dempster-Shafer theory or Evidence theory [5]. We assume
that we receive evidence about the possible association of
each object pair (ei, fj). Mathematically, such evidence can be
represented by a mass function mij on the frame Θij = {0, 1},
such that mij({1}) = αij is the probability of knowing that
Rij = 1, mij({0}) = βij is the probability of knowing that
Rij = 0, and mij({0, 1}) = 1 − αij − βij is the probability
of knowing nothing at all about Rij .

Based on such evidence, we would like to choose the “best”
relation R∗, among the set R of all relations verifying (1a)-
(1b). The problem of selecting a relation in R based on
pairwise mass functions mij has been addressed by several
authors (see, e.g., [6]–[11]). However, only heuristic solutions
have been provided until now. The most elaborate solution so
far, proposed by Mercier et al. [10], consists in first combining
the mass functions {mij}pj=1 for each i, and then finding the
relation R with maximum pignistic probability [12]. However,
this algorithm involves enumerating all the elements of R,
which quickly becomes intractable when n and p are not very
small. Additionally, the method lacks a fundamental symmetry
property, as it may give different results if the sets E and F
are interchanged.

In this paper, we show that the above problem, formalized
as the search for the most plausible relation R∗ in R, can
be transformed into an equivalent linear assignment problem
and solved exactly in polynomial time. The method is studied
experimentally using both simulated and real multi-sensor data
from an intelligent vehicle application. Finally, we show that
the three-dimensional extension of this problem, with three
object sets E, F and G, is NP-hard.

The rest of this paper is organized as follows. After recalling
the necessary background on the theory of belief functions
in Section II, the object assignment problem is formalized
and solved in Section III. The sensor fusion application is
then addressed in Section IV, where experimental results
with simulated and real data are also reported. Finally, the
three-dimensional version of the object association problem is
studied in Section V and Section VI concludes the paper.
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II. BACKGROUND ON BELIEF FUNCTIONS

The theory of belief functions has two main components:
equivalent representations of a body of evidence (in the form
of mass, belief and plausibility functions), and a combination
rule for combining independent items of evidence. These
two components are reviewed in Subsection II-A and II-B,
respectively.

A. Representation of evidence

The theory of belief functions is a framework for reasoning
under uncertainty based on the modeling of evidence [5]. More
precisely, let us assume that we are interested in the value of
some variable θ taking values in a finite domain Θ, called
the frame of discernment. Uncertain evidence about θ may be
represented by a (normalized) mass function m on Θ, defined
as a function from the powerset of Θ, denoted as 2Θ, to the
interval [0, 1], such that m(∅) = 0 and∑

A⊆Θ

m(A) = 1. (2)

Each number m(A) is interpreted as a degree of belief attached
to the proposition θ ∈ A and to no more specific proposition.
As argued by Shafer [13], the meaning of such degrees of
belief can be better understood by assuming that we have
compared our evidence to a canonical chance set-up. The set-
up proposed by Shafer consists of an encoded message and
a set of codes Ω = {ω1, . . . , ωn}, exactly one of which is
selected at random. We know the list of codes as well as
the chance pi of each code ωi being selected. Decoding the
encoded message using code ωi produces a message of the
form “θ ∈ Ai” for some Ai ⊆ Θ. Then

m(A) =
∑

{1≤i≤n:Ai=A}

pi (3)

is the chance that the original message was “θ ∈ A”. Stated
differently, it is the probability of knowing that θ ∈ A. In
particular, m(Θ) is, in this setting, the probability that the
original message was vacuous, i.e., the probability of knowing
nothing.

The above setting thus consists of a set Ω, a probability
measure P on Ω and a multi-valued mapping Γ : Ω→ 2Θ\{∅}
such that Ai = Γ(ωi) for each ωi ∈ Ω. This is the framework
initially considered by Dempster in [14]. The triple (Ω,P,Γ)
formally defines a finite random set [15]. Each piece of
evidence can thus be represented by a random set, which
induces a mass function.

To each normalized mass function m, we may associate
belief and plausibility functions from 2Θ to [0, 1] defined as
follows:

Bel(A) = P ({ω ∈ Ω|Γ(ω) ⊆ A}) =
∑
B⊆A

m(B) (4a)

Pl(A) = P ({ω ∈ Ω|Γ(ω) ∩A 6= ∅}) =
∑

B∩A6=∅

m(B),

(4b)

for all A ⊆ Θ. These two functions are linked by the
relation Pl(A) = 1 − Bel(A), for all A ⊆ Θ. Each quantity

Bel(A) may be interpreted as the degree to which the evidence
supports A, while Pl(A) can be interpreted as the degree to
which the evidence is not contradictory to A. The following
inequalities always hold: Bel(A) ≤ Pl(A), for all A ⊆ Θ.
The function pl : Θ → [0, 1] such that pl(θ) = Pl({θ}) for
all θ ∈ Θ is called the contour function associated to m.

B. Combination of evidence

A key idea in Dempster-Shafer theory is that beliefs are
elaborated by aggregating different items of evidence. The
basic mechanism for evidence combination is Dempster’s rule
of combination, which can be naturally derived using the
random code metaphor as follows. Let m1 and m2 be two mass
functions induced by triples (Ω1,P1,Γ1) and (Ω2,P2,Γ2)
interpreted under the random code framework as before. Let
us further assume that the codes are selected independently.
For any two codes ω1 ∈ Ω1 and ω2 ∈ Ω2, the probability
that they both are selected is then P1({ω1})P2({ω2}), in
which case we can conclude that θ ∈ Γ1(ω1) ∩ Γ2(ω2).
If Γ1(ω1) ∩ Γ2(ω2) = ∅, we know that the pair of codes
(ω1, ω2) could not have been selected: consequently, the joint
probability distribution on Ω1 × Ω2 must be conditioned,
eliminating such pairs [13]. This line of reasoning leads to
the following combination rule, referred to as Dempster’s rule
[5]:

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C) (5)

for all A ⊆ Θ, A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C) (6)

is the degree of conflict between m1 and m2. If κ = 1, there
is a logical contradiction between the two pieces of evidence
and they cannot be combined. Dempster’s rule is commutative,
associative, and it admits as neutral element the vacuous mass
function defined as m(Θ) = 1.

Dempster’s rule can be easily expressed in terms of contour
functions: if pl1 and pl2 are the contour functions of two mass
functions m1 and m2, then the contour function of m1 ⊕m2

is, using the same symbol ⊕ as used for mass functions and
contour functions:

(pl1 ⊕ pl2)(θ) =
pl1(θ)pl2(θ)

1− κ
, (7)

for all θ ∈ Θ.

III. OBJECT ASSOCIATION

In this section, we first show that the problem of finding the
most plausible matching between two sets of objects, based
on independent evidence pertaining to each pair of objects,
can be formalized as a binary linear programming problem
(Subsection III-A). We then show in Subsection III-B that this
problem is equivalent to a linear assignment problem and we
give the complexity of this problem.
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A. Problem formalization

As explained in Section I, we assume that the available
evidence about the association between the sets E and F
consists in np mass functions mij , 1 ≤ i ≤ n, 1 ≤ j ≤ p. Each
mij encodes a piece of evidence about a binary variable Rij

that equals 1 if ei and fj correspond to the same entity, and 0
otherwise. We note that the absence of information about the
association between ei and fj may be encoded by the vacuous
mass function such that mij({0, 1}) = 1. Typically, mij is
based on a measure of similarity between some attributes
describing the objects. Concrete examples will be discussed
in Section IV.

The key idea behind our approach is to express all the
available evidence in the frame of discernment R defined as
the set of all possible matchings between E and F verifying
(1a)-(1b). Assuming independence between the np items of
evidence, the np mass functions can then be combined using
Dempster’s rule (5), and the plausibility of any relation R ∈ R
may be simply calculated using (7).

Let Rij denote the set of relations that match objects ei and
fj :

Rij = {R ∈ R|Rij = 1}. (8)

Each mass function mij on Θij = {0, 1} may be expressed
in R by transferring the mass mij({1}) = αij to Rij ,
mij({0}) = βij to Rij and mij({0, 1}) = 1 − αij − βij
to R, where Rij denotes the complement of Rij . Let plij
denote the corresponding contour function. It has the following
expression:

plij(R) =

{
1− βij if R ∈ Rij ,

1− αij otherwise,
(9)

for all R ∈ R, which can be expressed more concisely as
follows:

plij(R) = (1− βij)Rij (1− αij)
1−Rij . (10)

Let m denote the mass function on R obtained by combin-
ing the np mass using Dempster’s rule. From (7), its contour
function pl is proportional to the product of the np mass
functions plij :

pl(R) ∝
∏
i,j

(1− βij)Rij (1− αij)
1−Rij , (11)

and its logarithm is

ln pl(R) =
∑
i,j

[Rij ln(1− βij)+

(1−Rij) ln(1− αij)] + C, (12)

where C is a constant and it is assumed that βij < 1 and
αij < 1 for all i and j. We note that the situation where
βij = 1 or αij = 1 (which corresponds to the case where
we have absolute certainty that objects ei and fj should, or
should not be matched, respectively) can be easily accounted
for by setting βij = 1 − ε or αij = 1 − ε for some arbitrary
small ε > 0.

The most plausible relation R∗ can thus be found by solving
the following linear optimization problem:

max
R

∑
i,j

wijRij


under the constraints (1a)-(1b), with

wij = ln
1− βij
1− αij

. (13)

Before studying this problem in the next section, we may
observe that prior knowledge about the true object association
can be easily incorporated in this framework. For instance,
assume that relations that match more objects are considered
a priori as more plausible or, on the contrary, less plausible.
Such prior knowledge can be represented by a belief function
with contour function pl0 such that:

pl0(R) ∝ exp

λ∑
i,j

Rij

 , (14)

where λ is a scalar parameter. A positive (respectively, nega-
tive) value of λ favors relations R with higher (respectively,
lower) cardinality. Combining this contour function with the
pairwise contour functions plij using Dempster’s rule and
taking the logarithm, we get

ln pl(R) ∝
∑
i,j

[Rij ln(1− βij)+

(1−Rij) ln(1− αij) + λRij ] + C. (15)

The obtained maximization problem would then have the same
form as above, with wij now defined as

wij = λ+ ln
1− βij
1− αij

. (16)

B. Problem resolution and complexity analysis

The problem previously formalized and denoted as P here-
after, can be stated as the following integer linear program:

max

 n∑
i=1

p∑
j=1

wijRij

 (17)

subject to
p∑

j=1

Rij ≤ 1 ∀i ∈ {1, . . . , n} (18a)

n∑
i=1

Rij ≤ 1 ∀j ∈ {1, . . . , p} (18b)

Rij ∈ {0, 1} ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , p}, (18c)

where constraints (18a) and (18b) are related to Equations (1a)
and (1b), respectively.

Without loss of generality, it is considered that n ≥ p (if it
is not the case, E and F are interchanged). To be solved, P
is reduced to the following problem P ′:

max

n∑
i=1

n∑
j=1

w′ijR
′
ij (19)



IEEE TRANSACTIONS ON CYBERNETICS 4

subject to
n∑

j=1

R′ij = 1 ∀i ∈ {1, . . . , n} (20a)

n∑
i=1

R′ij = 1 ∀j ∈ {1, . . . , n} (20b)

R′ij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}, (20c)

where ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , p}, w′ij = max(0, wij)
and ∀i ∈ {1, . . . , n}, ∀j ∈ {p+ 1, . . . , n}, w′ij = 0.

Proposition 1. Let R be an optimal solution of problem
P and let R′ be an optimal solution of problem P ′, then∑n

i=1

∑n
j=1 w

′
ijR
′
ij =

∑n
i=1

∑p
j=1 wijRij .

Proof: Suppose that
n∑

i=1

n∑
j=1

w′ijR
′
ij <

n∑
i=1

p∑
j=1

wijRij .

A new solution R′′ for problem P ′ is extracted from solution
R in the following way. First, R′′ is initialized with R′′ij =
0,∀(i, j) ∈ {1, . . . , n}2.

For each i ∈ {1, . . . , n} such that
∑p

j=1Rij = 1, R′′ij
is set to Rij for all j ∈ {1, . . . , p}. At this point of the
building of solution R′′, note that

∑n
i=1

∑n
j=1 w

′
ijR
′′
ij =∑n

i=1

∑p
j=1 wijRij . Note also that constraints (20a) and

(20b) do not necessarily hold since an object of E has not
to be necessarily associated with an object of F in R′′.
In this case, there is exactly the same number of indices
i ∈ {1, . . . , n} such that

∑n
j=1R

′′
ij = 0 as the number of

indices j ∈ {1, . . . , n} such that
∑n

i=1R
′′
ij = 0. Then, each

i ∈ {1, . . . , n} such that
∑n

j=1R
′′
ij = 0 is considered itera-

tively. We search for the smallest indice j with
∑n

k=1R
′′
kj = 0

(knowing that this indice necessarily exists) and R′′ij is set to
1. If j > p, then w′ij = 0 by definition of problem P ′. If j ≤ p,
then necessarily w′ij = 0. Indeed, w′ij > 0 ⇒ wij > 0 and
by setting Rij to 1 (noticing that this new matching can be
added to R since

∑p
k=1Rik =

∑n
k=1Rkj = 0), we obtain a

new solution for problem P with a higher cost, contradicting
that R was optimal. Thus, at the end of each iteration∑n

i=1

∑p
j=1 w

′
ijR
′′
ij =

∑n
i=1

∑p
j=1 wijRij still holds. Finally,

R′′ is also a solution of P ′ with
∑n

i=1

∑p
j=1 w

′
ijR
′′
ij =∑n

i=1

∑p
j=1 wijRij >

∑n
i=1

∑p
j=1 w

′
ijR
′
ij contradicting the

fact that R′ is an optimal solution of P ′.
Now, suppose that

∑n
i=1

∑n
j=1 w

′
ijR
′
ij >∑n

i=1

∑p
j=1 wijRij . A new solution R′′ for problem P

is extracted from solution R′ in the following way. For
all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , p} R′′ij is set
to R′ij if wij ≥ 0 and to 0 otherwise. Note that R′′ is a
solution of P since if constraints (20a) and (20b) hold,
then constraints (18a) and (18b) also hold. Since, by
definition, wij < 0 ⇒ w′ij = 0 then

∑n
i=1

∑p
j=1 wijR

′′
ij =∑n

i=1

∑n
j=1 w

′
ijR
′
ij >

∑n
i=1

∑p
j=1 wijRij , contradicting the

fact that R is an optimal solution of P .

Now, it is clear that an optimal solution for problem P can
be obtained by solving problem P ′. Indeed, from any optimal
solution R′ of problem P ′, we can build an optimal solution
R for problem P with the same cost value (and then optimal)

with Rij = R′ij if wij > 0 and Rij = 0 otherwise. Note that
building problem P ′ runs in O(n2) time and that building an
optimal solution R of problem P from an optimal solution of
problem P ′ runs in O(np). It now remains to know how to
efficiently solve problem P ′.

Fortunately, in the operations research literature, problem
P ′ is known as the assignment problem and can be solved
in O(n3) times with the Hungarian Method [16] or in
O(n5/2 log(nmaxi,j wij)) with the algorithm of Orlin and
Ahuja [17]. Note that, most of the time, algorithms to solve
the assignment problem are described as minimum cost as-
signment with integer costs. However, the maximization cost
problem P ′ can be transformed into a minimization cost
problem by taking maxk,` wk` − wij instead of the wij and
costs can be transformed into integers by multiplying them
by a suitably large number. In practice, since the obtained
problem is a special case of the minimum cost flow problem
[18], it is possible to use any of the algorithms solving it. In
particular, it belongs to a class of integer linear problems for
which the constraint matrices are unimodular and can be then
solved by a linear programming solver (relaxing Constraints 8
from R′ij ∈ {0, 1} to R′ij ∈ [0, 1]) knowing that it always has
integer solutions.

Example 1. To illustrate the way the object association
problem can be transformed into a linear assignment problem,
let us consider the following example. Assume that n = 3,
p = 4, and the αijs and βijs have the following values:

(αij) =

 0.21 0.19 0.12 0.02
0.07 0.18 0.35 0.53
0.52 0.27 0.49 0.40



(βij) =

 0.45 0.28 0.74 0.47
0.34 0.42 0.31 0.39
0.42 0.30 0.30 0.21

 ,

where the rows and the columns correspond to objects ei and
fj , respectively. The corresponding weight matrix W = (wij)
is:

W =

 −0.3621 −0.1178 −1.2192 −0.6147
−0.3429 −0.3463 0.0597 0.2607

0.1892 −0.0420 0.3167 0.2751

 .

Setting the negative weights to 0 and transforming W into a
square matrix, we get

W ′ =


0 0 0 0
0 0 0.0597 0.2607

0.1892 0 0.3167 0.2751
0 0 0 0

 .

Transforming W ′ to maxk,` w
′
k` − W ′ in order to define a

minimization problem, we have:

W ′′ =


0.3167 0.3167 0.3167 0.3167
0.3167 0.3167 0.2570 0.0559
0.1274 0.3167 0 0.0416
0.3167 0.3167 0.3167 0.3167

 .
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The linear assignment problem with cost matrix W ′′ admits
the following solution:

R′ =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

Deleting the last line and setting Rij = R′ij if wij ≥ 0 and
Rij = 0 otherwise, we get the following final solution:

R =

 0 0 0 0
0 0 0 1
0 0 1 0

 ,

meaning that objet e1 is not associated, e2 is associated with
f4 and e3 is associated with f3.

Finally, we can remark that, while the Hungarian algorithm
is historically the most popular method to solve the assignment
problem, some refinements and generalizations can be found
in the literature (see, for example, [2] and [19]), in particular to
avoid the transformation to square matrices. These algorithms
can be used instead of the proposed method.

IV. SENSOR FUSION APPLICATION

In this section, we first show how pairwise mass functions
can be computed from object attributes in object recognition
applications (Subsection IV-A). We then present experimental
results with simulated and real data in Subsections IV-B and
IV-C, respectively.

A. Computation of mass functions

Typically, objects are described by a set of attributes. The
values of these attributes for each object pair (ei, fj) can be
considered as pieces of evidence regarding the association
variable Rij . This evidence may be represented as a mass
function mij in different ways, depending on the nature of the
attributes. As an illustration, we will consider three attributes
commonly used in object recognition applications: position,
velocity and class.

Position: Assume that E and F are sets of objects perceived
by two sensors, and each sensor also provides an estimated
position for each object. Let dij denote the distance between
the estimated positions of ei and fj , computed using some dis-
tance measure (like the Euclidean distance or the Mahalanobis
distance if each sensor also returns a covariance matrix). How
can a mass function mij be deduced from dij?

Here, it is clear that a single object cannot have two distinct
positions and, conversely, two objects cannot occupy exactly
the same position. Consequently, a small value of dij supports
the hypothesis Rij = 1, while a large value of dij supports the
hypothesis Rij = 0. Depending on sensor reliability, a fraction
of the unit mass should also be assigned to Θij = {0, 1}. This
line of reasoning justifies a mass function mp

ij of the form:

mp
ij({1}) = ρϕ(dij) (21a)

mp
ij({0}) = ρ (1− ϕ(dij)) (21b)

mp
ij(Θij) = 1− ρ, (21c)

where ρ ∈ [0, 1] is a degree of confidence in the sensor
information and ϕ is a decreasing function taking values in
[0, 1]. For instance, the following form may be chosen for ϕ:

ϕ(d) = exp(−γd), (22)

where γ is a positive coefficient.
Velocity: Let us now assume that each sensor returns a

velocity vector for each object. Let d′ij denote the Euclidean
distance between the velocity vectors of objects ei and fj .
Again, d′ij is a piece of evidence about Rij . However, this
piece of evidence does not have the same interpretation as the
previous one: here, a large value of d′ij supports the hypothesis
Rij = 0, whereas a small value of d′ij does not support
specifically Rij = 1 or Rij = 0, as two distinct objects may
have similar velocities. Consequently, the following form of
the mass function mv

ij induce by d′ij seems appropriate:

mv
ij({0}) = ρ′

(
1− ψ(d′ij)

)
(23a)

mv
ij(Θij) = 1− ρ′

(
1− ψ(d′ij)

)
, (23b)

where, as before, ρ′ ∈ [0, 1] is a degree of confidence in
the sensor information and ψ is a decreasing function taking
values in [0, 1]. This function can be chosen to have the same
form as (22), possibly with a different coefficient γ′.

Class: In many applications, objects are categorized in
distinct classes such as pedestrian, car, motorcycle, etc. Let Ω
be the set of possible classes, and let mi and mj denote mass
functions representing evidence about the class membership of
objects ei and fj . Such mass functions may be provided, e.g.,
by evidential pattern classifiers such as described in [20], [21].
Ristic and Smets [22] have considered the object association
problem using such class information. However, they made the
assumption that equality of class implies equality of objects,
a questionable assumption when the number of classes is not
much greater than the number of objects. The computation of
a mass function m′′ij on the frame Θij from the mass functions
mi and mj on Ω can be performed rigorously as follows.

Let Sij denote the event that objects ei and fj belong to
the same class, and let Ωij = {Sij , Sij}, where Sij is the
negation of Sij . As shown in [23], the belief and plausibility
of Sij induced by mi and mj have the following expressions:

Bel({Sij}) =
∑
ω∈Ω

mi({ω})mj({ω}) = ηij , (24a)

Pl({Sij}) = 1−
∑

A∩B=∅

mi(A)mj(B) = 1− κij , (24b)

where κij is the degree of conflict (6) between mi and mj .
The corresponding mass function µij on Ωij is

µij({Sij}) = ηij (25a)
µij({Sij}) = κij (25b)
µij(Ωij) = 1− ηij − κij . (25c)

Now, it is clear that two objects from different classes cannot
be identical, whereas two objects from the same class can be
identical or not, which can be formally expressed as follows:

Sij ⇒ (Rij = 0) (26a)
Sij ⇒ (Rij = 0) or (Rij = 1). (26b)
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Consequently, a mass function mc
ij on Θij can be computed

from µij by transferring the mass κij to {0} and the remaining
mass 1− κij to Θij . We thus get:

mc
ij({0}) = κij (27a)

mc
ij(Θij) = 1− κij . (27b)

For each object pair (ei, fj), a mass function mij on Θij

representing all the available evidence about Rij can finally
be obtained by combining mp

ij , mv
ij and mc

ij using Dempster’s
rule:

mij = mp
ij ⊕m

v
ij ⊕mc

ij . (28)

B. Simulation experiment

The above approach to object association was tested using
simulated data. Each instance of the assignment problem was
randomly generated as follows.

a) Experimental settings: We assumed that each of two
agents perceives n objects, of which 80% are real objects and
20% are spurious. The position xi of each real object i was
generated from a uniform distribution in the square [0, 5]2

while its velocity vi was generated with direction uniformly
distributed in [0, 2π) and with norm uniformly distributed
in [0, 0.5]. Objects were assumed to belong to one of two
equiprobable classes and to be described by a feature yi
normally distributed with standard deviation σ = 2 and means
−1 in class one and +1 in class two.

For each real object i, each of the two agents was assumed
to get noisy versions of xi, vi and yi defined as follows:

x̂i = xi + εi, v̂i = vi + ε′i, ŷi = yi + ε′′i , (29)

where εi and ε′i are Gaussian noises with mean (0, 0) and
variance 0.04I (I being the identity matrix) and ε′′i is a
Gaussian noise with mean 0 and standard deviation 0.2.
Mass functions mp

ij and mv
ij were computed as described in

Subsection IV-A with the Euclidean distance. Each agent was
also assumed to compute a mass function mi about the class of
object i from its noisy feature ŷi using the following formula:

mi({1}) =
f1(ŷi)

f1(ŷi) + f2(ŷi)
, mi({2}) = 1−mi({1}),

(30)
where fk is the density distribution of yi in class k.

The spurious objects were generated as real ones, but
independently for the two agents. An example of such an
association problem with n = 40 objects (including 32 “real”
ones) is represented in Figure 1.

b) Performance assessment: The number n of objects
was varied between 5 and 80. For each value of n, 30 associ-
ation problems were generated and solved using the algorithm
described in Section III, with ρ = ρ′ = 0.7, γ = γ′ = 0.2
and λ = 0. The quality of the association was measured by
two criteria: precision and recall defined, respectively, as the
fraction of matched pairs that are correct, and the fraction of
true object pairs that were matched. Figure 2 shows the mean
precision and recall as functions of n in three cases: using
the position information only, using position and velocity,
and using all three sources of information (position, velocity
and class). As expected, the method makes effective use of
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Fig. 1. Example of an association problem with 40 objects perceived by 2
sensors (a and b). Objects 33 to 40 (marked by a x) are spurious. The size
of the circles is proportional to the mass mi({1}) of class 1.

additional information encoded in the pairwise mass functions,
and the performances degrade gracefully with n. Figure 3
shows the mean computing times as a function of n; the
association algorithm was programmed in Matlab and run on
a Macbook Pro personal computer.

c) Influence of ρ and γ: We studied the influence of
parameters ρ (= ρ′) and γ (= γ′) on the quality of the
association. For each pair (ρ, γ), we computed the F-measure,
defined as the harmonic mean between precision and recall:

F = 2
precision · recall

precision + recall
. (31)

Parameter λ was set to 0. All three sources of information
(position, velocity and class) were used. For each pair (ρ, γ),
the values of the F-measure were averaged over 30 association
problems with n = 20 objects. The results are reported in
Table I. As we can see, the choice of parameters ρ and γ does
influence the results, and the best performances were obtained
for ρ = 0.7 and γ = 0.2. These results show that parameters ρ
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Fig. 3. Mean running time (in seconds) plus or minus one standard deviation,
as a function of n.

and γ do have an influence on the quality of the association. If
a dataset with matched objects is available, the performances
of the system can be significantly enhanced by learning these
parameters from the data.

TABLE I
F-MEASURE FOR DIFFERENT VALUES OF ρ AND γ (AVERAGES OVER 30

ASSOCIATION PROBLEMS WITH n = 20 OBJECTS, TAKING INTO ACCOUNT
POSITION, VELOCITY AND CLASS).

γ
0.1 0.2 0.3 0.4 0.5

0.5 0.641 0.559 0.490 0.425 0.326
0.6 0.836 0.842 0.744 0.666 0.587

ρ 0.7 0.795 0.858 0.847 0.797 0.722
0.8 0.770 0.829 0.846 0.838 0.798
0.9 0.750 0.804 0.826 0.827 0.821

d) Influence of λ: We also studied the influence of λ
in (14) and (16). We recall that this parameter makes it
possible to introduce prior knowledge about the number of
associations, with positive (respectively, negative) favoring
larger (respectively, smaller) numbers of matched object pairs.
Consequently, increasing λ can be expected to increase recall
(as more true object pairs will be matched) but to decrease
precision (as more incorrect pairs will also be matched). An
experiment was carried out with n = 40 objects generated
as explained above, with λ ranging between −1 and +3. For
each value of λ, 200 association problems were generated.
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Fig. 2. Mean precision (a) and recall (b) as a function of n.
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The results reported in Figure 4 confirm that different values
λ indeed result in different trade-offs between precision and
recall. However, a higher precision can only be obtained at
the cost of a very low recall for that problem. By assigning
different weights to precision and recall, it would be possible
to find an optimal value of λ. In most applications, however, it
might be sufficient to set λ = 0 as a reasonable default value.

e) Comparison with Mercier’s method: Finally, our al-
gorithm was compared to Mercier’s method [10]. However,
the comparison could only be carried for small values of n
(n ≤ 7) because the computational complexity of this method
restricts its applications to very small numbers of objects. On
this problem, both methods yield identical solutions in almost
all cases. However, as shown in Figure 5, the running time
of Mercier’s method grows exponentially with n, whereas the
time complexity of our method is polynomial.

C. Experiment with real data

Our approach was applied as part of an advanced driver
assistance application [24]. A car was equipped with two
sensors: a vision-based Mobileye system and a four-layer
Ibeo Alasca-XT Laser scanner. Each sensor has an associated
information processing system allowing it to track and classify
objects. It is thus a track-to-track association problem [2] but
we do not use the history of the tracks (or their identity) to
match them.

For each sensor, position-based mass functions mp
ij were

computed using (21) and (22) with ρ = 0.9, γ = 0.1 and dij
defined as the Mahalanobis distance:

dij =

√
(xi − xj)′ (Pi + Pj)

−1
(xi − xj), (32)

where xi denotes the estimated position of the center of object
i and Pi is the estimated covariance matrix of the estimate.

Each sensor also predicts the class of objects, expressed in
different frames. The laser classifies the objects as pedestrian
or non pedestrian using the algorithm developed by Fayad et
al. [24]; this algorithm computes a mass function over the two
classes. The Mobileye system has a finer frame of discernment
with five classes: pedestrian, car, truck, motorbike, bicycle. As
the latter sensor provides a predicted class, but no confidence
in the prediction, a mass 0.9 was assigned to the predicted
class, and 0.1 to the whole frame of discernment. For each
pair of mass functions mi and mj , a mass function mc

ij was
computed based on their degree of conflict using (27), and it
was combined with mp

ij using Dempster’s rule. We note that
velocity information was not used in this application.

The considered dataset contains 58 frames (association
problems). The Mobileye sensor detected between 1 and 3
objects (average: 2) while the laser scanner wass less selective
and detected between 2 and 23 objects (average: 8.5). An
example of an association problem is shown in Figures 6a
and 6b, with corresponding result shown in Figure 6c. The
average precision and recall for our algorithm (with λ = 0)
were 0.75 and 0.90, respectively (with standard deviations 0.33
and 0.30). Mercier’s algorithm achieved identical results, with
considerably longer computing time (119 seconds on average,
against 0.23 seconds for our method).

V. THREE-DIMENSIONAL EXTENSION

As an extension of the problem addressed in this paper, we
consider in this section the situation where we have more than
two sets of objects. To keep the notation simple, and without
loss of generality, we will consider the three-dimensional
association problem, in which we have three sets of objects.
The problem will first be formalized in Subsection V-A and
its complexity will then be studied in Subsection V-B.

A. Formalization

Let E = {e1, . . . , en}, F = {f1, . . . , fp} and G =
{g1, . . . , gq} denote the three sets of objects perceived, e.g.,
by three sensors. We are now searching for three relations
R ⊂ E × F , S ⊂ F × G and T ⊂ E × G representing,
respectively, the correspondence between objects in sets E and
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F , F and G, E and G. Each of these three relations has to
verify properties (1a)-(1b). Let R, S and T denote the sets of
relations R, S and T verifying these properties. Additionally,
relations R, S and T cannot be determined independently:
for instance, if (ei, fj) ∈ R and (fj , gk) ∈ S, then we
must have (ei, gk) ∈ T . More generally, for any three objects
(e, f, g) ∈ E×F ×G, if any two pairs of objects are related,
then the third pair has to be related too. Formally, the three
following implications must hold for any triplet (i, j, k):

(ei, fj) ∈ R and (fj , gk) ∈ S ⇒ (ei, gk) ∈ T (33a)
(ei, fj) ∈ R and (ei, gk) ∈ T ⇒ (fj , gk) ∈ S (33b)
(fj , gk) ∈ S and (ei, gk) ∈ T ⇒ (ei, fj) ∈ R. (33c)

The set of solutions to the association problem is thus the set
U of triplets (R,S, T ) ∈ R× S × T verifying (33).

As before, we shall assume that we receive pieces of

evidence regarding the association of any pair of objects in
E × F , F × G and E × G, and these pieces evidence are
encoded as pairwise mass functions mij·, m·jk and mi·k, for
all i, j and k. As before, these mass functions need to be
expressed in the common frame of discernment U before being
combined by Dempster’s rule.

Let Uij· denote the set of triplets (R,S, T ) ∈ U such that
Rij = 1, and let mij·({1}) = αij· and mij·({0}) = βij·. To
express mij· in U , we need to transfer the mass αij· to Uij·,
βij· to Uij· and 1−αij·−βij· to U . The corresponding contour
function in U is then defined as follows:

plij·(R,S, T ) =

{
1− βij· if Rij = 1,

1− αij· otherwise,
(34)

for all (R,S, T ) ∈ U , which can be expressed more concisely

(a)

(b)

(c)

Fig. 6. Example of an association problem: the laser sensor detects three
objects (a) while the Mobileye sensor detects four objects, including a spurious
one (b). The association algorithm correctly matches the three real objects (c).
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as follows:

plij·(R,S, T ) = (1− βij·)Rij (1− αij·)
1−Rij . (35)

Similarly, with obvious notations, mass functions m·jk and
mi·k induce the following contour functions in U :

pl·jk(R,S, T ) = (1− β·jk)Sjk(1− α·jk)1−Sjk (36a)

pli·k(R,S, T ) = (1− βi·k)Tik(1− αi·k)1−Tik . (36b)

Combining the np+pq+nq pieces of evidence by Dempster’s
rule yields the following contour function:

pl(R,S, T ) ∝
∏
i,j,k

[(1− βij·)Rij

(1− αij·)
1−Rij (1− β·jk)Sjk(1− α·jk)1−Sjk

(1− βi·k)Tik(1− αi·k)1−Tik ]. (37)

Taking the logarithm and, as before, assuming the αs and βs
to be strictly smaller than one, we get:

ln pl(R,S, T ) =
∑
i,j

wij·Rij+∑
j,k

w·jkSjk +
∑
i,k

wi·kTik + C, (38)

where C is a constant and

wij· = ln
1− βij·
1− αij·

, w·jk = ln
1− β·jk
1− α·jk

, (39a)

wi·k = ln
1− βi·k
1− αi·k

. (39b)

The most plausible association (R∗, S∗, T ∗) can thus be found
by solving the following binary linear programming problem:

max
R,S,T

∑
i,j

wij·Rij +
∑
j,k

w·jkSjk +
∑
i,k

wi·kTik

 (40)

subject to
p∑

j=1

Rij ≤ 1,

n∑
i=1

Rij ≤ 1 ∀(i, j) (41a)

p∑
j=1

Sjk ≤ 1,

q∑
k=1

Sjk ≤ 1 ∀(j, k) (41b)

q∑
k=1

Tik ≤ 1,

n∑
i=1

Tik ≤ 1 ∀(i, k) (41c)

Rij + Sjk ≤ Tik + 1 ∀(i, j, k) (41d)
Rij + Tik ≤ Sjk + 1 ∀(i, j, k) (41e)
Sjk + Tik ≤ Rij + 1 ∀(i, j, k) (41f)

Rij ∈ {0, 1}, Sjk ∈ {0, 1}, Tik ∈ {0, 1} ∀(i, j, k) (41g)

where constraints (41d)-(41f) ensure property (33).
In the special case where all mass functions in one of the

three sets {mij·}, {m·jk} or {mi·k} are vacuous, the problem
becomes very simple. For instance, assume that all mass
functions mi·k are vacuous. This is the case when, for instance,
E, F and G are sets of objects perceived by a single sensor
at successive time frames, and we only compute the similarity

between objects perceived at two consecutive times. We then
have wi·k = 0 for all i and k and the objective function (40)
becomes a function of R and S only. As constraints (41d)-(41f)
can always be satisfied for some relation T , given R and S,
the objective function can be maximized with respect to R
and S separately. In that special case, the three-dimensional
problem can thus be solved by solving two two-dimensional
problems of the form studied in Section III. In the general
case, however, the three-dimensional problem is much harder
than the two-dimensional one, as will be shown in the next
subsection.

B. Complexity analysis

Just as the search for the most plausible relation R∗ in R is
very close to the linear assignment problem, finding the most
plausible association (R∗, S∗, T ∗) ∈ U is close to a problem
known as the axial 3-dimensional assignment problem (3DAP)
[25], which is NP-Hard in the general case. However, several
special classes of the problem are polynomially solvable [26].
3DAP can be seen as a special case of our three-dimensional
extension with |E| = |F | = |G| = n and where R∗, S∗,T ∗

are all bijective relations. It is equivalent to finding exactly n
triplets (e, f, g) ∈ E×F×G which are pairwise disjoints. The
major difference with our problem is that, when searching for
the most plausible association (R∗, S∗, T ∗) ∈ U , we can have
R∗ij = 1 while there is no k such that S∗jk = 1 and T ∗ik = 1.

Keep in mind that even if we manage to find a transforma-
tion of the most plausible 3-dimensional association problem
to 3DAP, it does not mean that we have direct methods to solve
our problem (since 3DAP is NP-Hard), neither does it mean
that our problem is NP-Hard itself. Unfortunately, it turns out
to be the case, as proved in the following proposition.

Proposition 2. The most plausible 3-dimensional association
problem is NP-Hard.

Proof: To show this result, we use a reduction of the pair-
wise consistent 3-dimensional matching problem [27] denoted
as PC3DM in the following and which is NP-complete:
INSTANCE: Set M ⊆ W × X × Y , where W , X and Y
are disjoint sets having the same number r of elements. M
is pairwise consistent, i.e., for all elements a, b, c, whenever
there exists elements w, x and y such that (a, b, y) ∈ M ,
(a, x, c) ∈M , and (w, b, c) ∈M , then (a, b, c) ∈M .
QUESTION: Does M contain a subset M ′ ⊆ M such that
|M ′| = r and no two elements of M ′ agree in any coordinate
?

With a given instance of PC3DM , we associate an instance
of the 3-dimensional association problem in the following
way. We take E = W , F = X and G = Y and then
n = p = q = r. For all (ei, fj , gk) ∈ M , we set
wij· = wi·k = w·jk = 1, while all other weights are set
to 0. Note that this reduction is polynomial. We consider the
decision version of the 3-dimensional association problem, in
which the question is whether there exists a 3-dimensional
association (R,S, T ) ∈ U such that the value of the objective
function is 3r.

Suppose that there exists a subset M ′ ⊆ M such that
|M ′| = r and no two elements of M ′ agree in any coordinate.
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For each (ei, fj , gk) ∈M ′, we set Rij = Sik = Tjk = 1 while
all other values defining the relations R, S and T are set to
0. By construction, such relations respect constraints (33) and
the value of the objective function is 3r since all the 3r weights
associated with the pairs which are kept in the relations have
value 1.

Now, suppose that there exists a 3-dimensional association
(R,S, T ) ∈ U such that the value of the objective function
is 3r. Therefore, each of the r objects ei ∈ E is associated
with exactly one object fj ∈ F (eiRfj) with wij· = 1 and
exactly one objet gk in G (eiTgk) with wi·k = 1 such that
fjSgk holds and w·jk = 1. For each of the r such associations
ei, fj , gk defined by these relations we have (ei, fj , gk) ∈M .
Indeed, wij· = 1 implies that ∃y ∈ Y = G such that
(ei, fj , y) ∈M , wi·j = 1 implies that ∃x ∈ X = F such that
(ei, x, gk) ∈M , w·jk = 1 implies that ∃w ∈W = E such that
(w, ei, gk) ∈ M , and finally it implies that (ei, fj , gk) ∈ M
since M is pairwise consistent. Thus, there exists a subset
M ′ ⊆ M such that |M ′| = r and no two elements of M ′

agree in any coordinate.

Thus, it is unlikely to solve the 3-dimensional association
problem in polynomial time. As future research, we can adapt
some methods of the literature for 3DAP to solve our problem.
We can then consider branch-and-bound approaches (see, for
example, [28]) or heuristic algorithms (such as described in
[29]) if the problem is too hard to solve from an operational
point of view.

VI. CONCLUSION

Object association is an important problem in a wide range
of applications and a key component of many data fusion
systems. Belief functions have often been considered as a con-
venient formalism for representing and combining information
in multi-sensor applications (see, e.g., [10], [11], [22], [30]).
However, previous attempts to solve the assignment problem
within the Dempster-Shafer framework had led until now to ad
hoc and sometimes very time-consuming methods (see, e.g.,
[6], [8]–[11]).

In this paper, evidence about the possible association of
any two pairs of objects has been modeled by Dempster-
Shafer mass functions defined over the frame of all possible
relevant relations between the two object sets. The plausibility
of any single relation after pooling all available mass functions
can then be computed efficiently and maximized to find the
most plausible relation. This problem has been shown to be
equivalent to a linear assignment problem, which can be solved
in polynomial time using, e.g., the Hungarian algorithm. This
solution is thus both optimal and computationally much more
efficient than previous approaches to this problem in the belief
function framework [10].

As an extension of this work, the three-dimensional as-
sociation problem has also been considered. This problem
occurs, e.g., when fusing reports from three sensors. Although
this problem can be formalized in the same way as the
two-dimensional one, it was shown to be NP-hard, which
makes it unlikely that an optimal solution can be found in
polynomial time. The development of heuristic methods to

find approximate solutions to this problem is left for further
research.
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[10] D. Mercier, E. Lefèvre, and D. Jolly, “Object association with belief
functions, an application with vehicles,” Information Sciences, vol. 181,
no. 24, pp. 5485–5500, 2011.

[11] A. Dallil, M. Oussalah, and A. Ouldali, “Sensor fusion and target track-
ing using evidential data association,” IEEE sensors journal, vol. 13,
no. 1, pp. 285–293, 2013.

[12] P. Smets and R. Kennes. The Transferable Belief Model. Artificial
Intelligence, 66(2):191–243, 1994.

[13] G. Shafer, “Constructive probability,” Synthese, vol. 48, no. 1, pp. 1–60,
1981.

[14] A. P. Dempster, “Upper and lower probabilities induced by a multivalued
mapping,” Annals of Mathematical Statistics, vol. 38(2), pp. 325–339,
1967.

[15] H. Nguyen, An Introduction to Random Sets. Boca Raton, Florida:
Chapman and Hall/CRC Press, 2006.

[16] H. Kuhn, “The Hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2(1-2), pp. 83–97, 1955.

[17] J. Orlin and R. Ahuja, “New scaling algorithms for the assignment and
minimim cycle mean problems,” Mathematical programming, vol. 54(1),
pp. 41–56, 1992.

[18] R. Ahuja, T. Magnanti, and J. Orlin, Network flows: theory, algorithms,
and applications. Prentice-Hall, 1993.

[19] F. Bourgeois and J.-C. Lassalle, “An extension of the Munkres algorithm
for the assignment problem to rectangular matrices,” Communication
ACM, vol. 14, no. 12, pp. 802–804, 1971.



IEEE TRANSACTIONS ON CYBERNETICS 12

[20] T. Denœux, “A k-nearest neighbor classification rule based on
Dempster-Shafer theory,” IEEE Trans. on Systems, Man and Cybernet-
ics, vol. 25, no. 05, pp. 804–813, 1995.

[21] ——, “A neural network classifier based on Dempster-Shafer theory,”
IEEE Trans. on Systems, Man and Cybernetics A, vol. 30, no. 2, pp.
131–150, 2000.

[22] B. Ristic and P. Smets, “Global cost of assignment in the TBM
framework for association of uncertain ID reports,” Aerospace Science
and Technology, vol. 11(4), pp. 303–309, 2007.

[23] T. Denœux and M.-H. Masson, “EVCLUS: Evidential clustering of
proximity data,” IEEE Trans. on Systems, Man and Cybernetics B,
vol. 34, no. 1, pp. 95–109, February 2004.

[24] F. Fayad, V. Cherfaoui, and G. Derbhomez, “Updating confidence indi-
cators in a multi-sensor pedestrian tracking system,” in IEEE Intelligent
Vehicles Symposium (IV 2008), Eindhoven, The Netherlands, 2008, pp.
156–161.

[25] E. Schell, “Distribution of a product by several properties, directorate
of management analysis,” in proceedings of the Second Symposium in
Linear Programming. DCS/Comptroller H.Q. U.S.A.F., Washington,
DC., 1955, pp. 615–642.
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