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Abstract. We consider an inference method for prediction based on
belief functions in quantile regression with an asymmetric Laplace dis-
tribution. Specifically, we apply this method to the capital asset pric-
ing model to estimate the beta coefficient and measure volatility under
various market conditions at given levels of quantile. Likelihood-based
belief functions are calculated from historical data of the securities in
the S&P500 market. The results give us evidence on the systematic risk,
in the form of a consonant belief function specified from the asymmetric
Laplace distribution likelihood function given recorded data. Finally, we
use the method to forecast the return of an individual stock.
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1 Introduction

The Capital Asset Pricing Model (CAPM) is one of the most useful models
in investment. In this model, asset returns are usually assumed to be jointly
normally distributed random variables. However, this is not always the case.
The CAPM assumes that the variance of returns adequately measures risk. This
may be true if returns are normally distributed. In this paper, we propose to
use quantile regression with an asymmetric Laplace distribution (ALD), coupled
with an inference method based on belief functions, to estimate the parameters
of the model and predict stock returns.

Quantile regression can characterize the entire conditional distribution of the
outcome variable and is more robust to outliers and misspecification of the
error distribution. It can also handle heteroscedasticity, as shown by Koenger.
For the application of quantile regression to the CAPM, the reader is referred
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to, e.g., [1]. It was found that the market price of beta risk is significant in both
tails of the conditional distribution of returns.

We present a likelihood-based approach to the estimation of regression quan-
tiles based on the asymmetric Laplace distribution. In [8], this distribution is
used to model the distribution of currency exchange rates and is shown to cap-
ture the peakedness, leptokurticity (Fat tails) and skewness inherent in such
data. Similarly, it is shown in [6] that the Laplace distribution has a geometric
stability to represent the weekly and monthly distributions of stock returns and
also models the high peak, fat tails and skewness of the returns.

Here, we use the Dempster-Shafer theory of belief functions introduced by
Dempster [3] and Shafer [7]. In this approach, a piece of evidence is modeled by
a belief function, which can be viewed as the distribution of a random set. This
method is applied to estimation using the likelihood-based approach introduced
in [7] and recently justified in [4], and to prediction using the method introduced
in [5]. The main contribution of this paper is thus to propose an alternative
method for drawing inferences about conditional quantiles via a likelihood-based
belief function approach.

The remainder of the paper is organized as follows. Section 2 provides the
background on quantile regression with asymmetric Laplace distribution and
Section 3 introduces the prediction machinery using belief functions. Section 4
discusses the empirical solutions to the forecasting problem. The last section
summarizes the paper.

2 Quantile Regression with an Asymmetric Laplace
Distribution

Let Y be a response variable and X a vector of explanatory variables. In linear
quantile regression, the conditional α-quantile qα(Y |X) of Y given X is assumed
to be linearly related to X through the equation qα(Y |X) = X ′βα, where βα

is a vector of unknown parameters and X
′
is the transpose of X . Denoting the

error by εα, we can write the quantile regression model as

Y = X ′βα + εα. (1)

We have

qα(Y |X) = qα[(X
′βα + εα)|X ] = qα(X

′βα + εα|X) = X ′βα + qα(εα|X), (2)

since given X , X ′βα is a constant. Thus, qα(εα|X) = 0, which is the counterpart
of the standard condition E(ε|X) = 0 in the mean linear regression model. If εα

is independent of X, the α-quantile of the noise εα is zero, that is,

∫ 0

−∞
dFεα(u) =

α. For qα(Y |X) = X ′βα, we see that βα minimize E[ρα(Y −X ′β)] over β, where
ρα(·) is the so-called check (or loss) function defined by

ρα(u) = u(α− 1(u<0)), (3)
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with 1(u<0) denoting the usual indicator function. Thus, given i.i.d (Xi, Yi), a
plausible estimator of βα is

β̂α = argmin
1

n
{

n∑
i=1

ρα(Yi −X ′
iβ)}. (4)

This estimator is called the Least Absolute Deviation (LAD) estimator.
Suppose that the error term εα has an ALD with mean 0 and standard devi-

ation σα:

fσα(εα) =
α(1 − α)

σα
exp

{
−ρα

(
εα
σα

)}
. (5)

Then, minimizing the absolute deviation is equivalent to maximizing the likeli-
hood and the LAD estimator of βα is a maximum likelihood estimator (MLE).
The likelihood function for βα, σα after observing the data
D = (X1, Y1), . . . , (Xn, Yn) is

LD(βα, σα) =
αn(1− α)n

σn
α

exp

{
−

n∑
i=1

ρα

(
Yi −X ′

iβα

σ

)}
. (6)

3 Statistical Inference and Prediction Using Belief
Functions

3.1 Likelihood-Based Belief Functions

Suppose we observe a realization x of the random vector X with probability
density function (pdf) pθ(x), where θ ∈ Θ is an unknown parameter. In this
paper, we use the method proposed by Shafer [7], which can be derived from
the Likelihood Principle (LP) and the Least Commitment Principle (LCP) [4].
According to the LP, all the information about Θ is represented by the likelihood
function defined by Lx(θ) = pθ(x) for all θ ∈ Θ. In statistics, the likelihood ratio
has the meaning of a “relative plausibility”, which can be written as:

plx(θ1)

plx(θ2)
=

Lx(θ1)

Lx(θ2)
, (7)

for all (θ1, θ2) ∈ Θ2 or, equivalently, plx(θ) = cLx(θ), for all θ ∈ Θ and some
positive constant c. The LCP then implies that the highest possible value should
be given to constant c [4], which leads us to equating the contour function plx
with the relative likelihood:

plx(θ) =
Lx(θ)

supθ∈ΘLx(θ)
. (8)

The information about θ is represented by the consonant belief function BelΘx
with contour function plx, i.e., with corresponding plausibility function
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PlΘx (A) = supθ∈A plx(θ), for all A ⊆ Θ. The focal sets of BelΘx are the lev-
els sets of plx defined as follows:

Γx(ω) = {θ ∈ Θ|plx(θ) ≥ ω}, (9)

for θ ∈ [0, 1]. These sets are also called plausibility regions. The consonant belief
function BelΘx is equivalent to the random set induced by the Lebesgue measure
λ on [0,1] and the multi-valued mapping Γx from [0, 1] → 2Θ (see, [5]). We
remark that the MLE of θ is the value of θ with highest plausibility.

3.2 Prediction Using Belief Functions

Let X be a random variable with parametric density function fθ(x) for θ ∈ Θ
and assume that we have observed X = x. Given the belief function BelΘx about
θ, we can predict the future value of a random variable Y whose pdf gθ(y) also
depends on θ. In the approach introduced in [5], Y is written as a function of the
parameter θ and an unobserved auxiliary variable u ∈ U with known probability
measure μ not depending on θ:

Y = ϕ(θ, u). (10)

Using Equations (9) and (10), we can compose the multi-valued mapping Γx

from [0, 1] → 2Θ with ϕ to get a new multi-valued mapping Γ ′
x from [0, 1] × U

to 2Y defined as

Γ ′
x : [0, 1]× U → 2Y

(ω, u) → ϕ(Γx(ω), u).

We can then define the predictive belief (BelYx ) and plausibility (PlYx ) functions
on Y as

BelYx (A) = (λ⊗ μ)({(ω, u) ∈ [0, 1]|ϕ(Γx(ω, u) ⊆ A}). (11a)

PlYx (A) = (λ⊗ μ)({(ω, u) ∈ [0, 1]|ϕ(Γx(ω, u) ∩ A �= ∅}), (11b)

for all A ⊆ Y.

4 Application to Stock Market Prediction

4.1 Model

The CAPM measures the sensitivity of the expected excess return on security
to expected market risk premium. The equation of CAPM is a linear function
of the security market line:

E(RA)−RF = β0 + β1E(RM −RF ), (12)

where E(RA) is the expected return of the asset, RM is the expected market
portfolio return, RF is the risk free rate, β0 is the intercept and β1 is the equity
beta, representing market risk. Suppose we have observed the historical returns
of stock RA = (ra1, · · · , ran) and returns from market RM = (rm1, · · · , rmn).
The errors will be assumed to be iid with density function (5). The likelihood
function is given by (6).
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4.2 Experimental Results

The data contain the weekly log returns of the integrated oil and gas company,
Chesapeake Energy (CHK), during 2010-2013. The ML estimates of the param-
eters are shown in Table 1 for different values of α.

Table 1. Parameter estimation results. Standard errors are given in parentheses.

Stock Name Parameters α = 0.40 α = 0.50 α = 0.60

CHK β0 -0.011 (0.002) -0.004 (0.003) 0.005 (0.000)
β1 1.379 (0.163) 1.442 (0.005) 1.304 (0.017)
σ 0.002 (0.001) 0.016 (0.001) 0.016 (0.010)

We used a nonlinear optimization algorithm to maximize the likelihood (6)
with respect to θ = (β(0,α), β(1,α), σα). The plausibility function on θ is then
defined by the relative likelihood (8) and the marginal contour function on a
specific parameter is obtained by take the supremum with respect to the others
parameters, e.g.,

plRA(β(0,α)) = sup
β(1,α),σ

plRA(β(0,α)). (13)

Figure 1 displays two-dimensional marginal contour functions and Figure 2 shows
the marginal contour functions for parameters β0, β1 and σ. The 0.15 threshold
corresponds to an approximate 95% confidence interval and gives us an interval
of plausible values of each of the three parameters.
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To predict the expected return of the asset ra,n+1 for a new market portfolio
return rm,n+1, we compute the minimum and maximum of ra,n+1 given rm,n+1

at fixed α by
ra,n+1 = β0,α + β1,αrm,n+1 + σαF

−1
εα (u), (14)

under the constraint plRA(βi,α, σα) > ω, where F−1
εα is the inverse cumulative

distribution function (cdf) of the asymmetric Laplace distribution ALD(α, 0, 1)
and u, ω are independent random variables with the same uniform distribution
U([0, 1]). Given (14), we randomize independently N pairs of the random number
(ωi, ui), i = 1, 2, · · · , N resulting in N intervals [rLa (ωi, ui), r

U
a (ωi, ui)]. For any

A ⊆ R, the stock returns Belrai(A) and Plrai(A) can be estimated by equation
(11). The estimated lower and upper expectations of ra,n+1 are then:

R
L

A =

N∑
i=1

rLa (ωi, ui)

N
(15a)

R
U

A =

N∑
i=1

rUa (ωi, ui)

N
. (15b)
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Figures 3 displays the lower and upper cdfs BelRA((−∞, RA]) and
PlRA((−∞, RA]) at given rm = 0.05. This function give us the summary of
the predictive belief function BelRA . Figure 4 shows the upper and lower predic-
tive quantiles of the stock returns (see [5]), defined by the inequalities pl(RA �
qLα′) = α′ and pl(RA � qUα′) = α′. As shown in [5], the following inequalities
hold:

Bel(qLα′ � RA � qU1−α′) � 1− 2α′. (16)
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Lower-upper expectations and quantiles are other representations of prediction
uncertainty, taking into account both parameter estimation uncertainty and ran-
domness. For these data, the very narrow gap between the lower and upper cdfs
shows that estimation uncertainty is small as compared to random uncertainty.
In practice, these results can be used to increase the performance of the invest-
ment portfolio.

5 Conclusions

In this paper, we studied the method of quantile CAPM with ALD for stocks in
S&P500 in the belief function framework. We used the Dempster-Shafer theory
of belief functions to model the uncertainty referring to the statistical prediction
based on historical data and a financial model. This method consists of two
steps. First, a consonant belief function representing the uncertainty on the
parameter vector θ is defined from the normalized likelihood function given the
past data. The return of individual stock RA is then expressed as ϕ(θ, u), where
u is a stochastic variable with known distribution and the beliefs on θ and u
are transferred through ϕ, resulting in a belief function on RA. This approach
has been adapted to the prediction of stock returns. A possible extension of
this work is to consider uncertainty on the independent variable rm, which can
also be expressed as a belief function and combined with other uncertainties to
compute a belief function on RA. This issue will be addressed in future work.
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