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Abstract. We adapted the nonparametric evidence-theoretic k-Nearest
Neighbor (k-NN) rule,whichwasoriginally designed formultinomial choice
data, to rank-ordered choice data. The contribution of thismodel is its abil-
ity to extract information fromall theobserved rankings to improve thepre-
diction power for each individual’s primary choice. The evidence-theoretic
k-NN rule for heterogeneous rank-ordered datamethod can be consistently
applied to complete and partial rank-ordered choice data. This model was
used to predict an individual’s source of loan given his or her character-
istics and also identify individual characteristics that help the prediction.
The results show that the prediction from the rank-ordered choice model
outperforms that of the traditionalmultinomial choicemodelwith only one
observed choice.

Keywords: Rank-ordered Choice Data, k-Nearest Neighbor, Belief
Functions, Classifier, Household Debt.

1 Introduction

For the purpose of understanding the objective and the contribution of this
study, let us first clarify the distinction between the traditional multinomial
choice data and the rank-ordered choice data that is of the concern here. Suppose
there are M available objects. In traditional multinomial choice data, there is
only one choice for each individual. In contrast, the rank-ordered choice data
contains more information regarding each individual’s preference as they capture
each individual’s ranking of the objects. If the ranks of all M objects can be
observed, the data are said to be completely rank-ordered. If only L < M ranks
are observed, the data are partially rank-ordered. Moreover, if the number Li of
observed ranks for each individual i is different across i, then the data are called
heterogenous rank-ordered. From these definitions, the rank-ordered choice data
is reduced to the multinomial choice data when Li = 1, for all i.

The main purpose of the model is to predict each individual’s most preferred
choice out of M available alternatives using heterogenous rank-ordered data. In
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particular, we modify the Evidence-theoretic k-Nearest Neighbor (k-NN) Rule,
which was originally designed for traditional multinomial choice data [14] to
take advantage of the additional information provided by rank-ordered choice
data. The main idea is that the secondary or other choices also provide valuable
information for the primary choice prediction.

Two main problems can be considered in relation with rank-ordered data. The
first problem is to predict an individual’s choices given information on choice at-
tributes. Suppose we have a new alternative with a set of attributes, this prob-
lem is to predict the chance that this alternative will be chosen. The traditional
methods to tackle this problem in economics are the rank-ordered logit model
and the rank-ordered probit model. These models were later extended into the
rank-ordered mixed logit model [3] [13]. The second problem is to predict an
individual’s choices given information on individual characteristics. Suppose we
have an individual with a set of characteristics, we may wish to predict the al-
ternative that he or she is most likely to choose. There is no logit/probit-based
model designed to solve this problem. The closest methods are those developed
to explain how each individual chooses a bundle of products. As discussed in
Bhat, Srinivasan and Sen (2006) [5], commonly used models are the traditional
multinomial probit/logit models with composite alternatives and the multivari-
ate probit/logit models [2] [4]. Although both models allow each individual to
choose more than one alternative, all the choices are equally weighted. Moreover,
none of these models is appropriate for problems with a large choice set. Since
there is no standard methodology for the second problem, a contribution of this
study is to develop a methodology to fill this gap.

Traditional methods to analyze multiple choice problems in economics are
mostly of the logit/probit types and based on maximum likelihood (ML) method.
In contrast, the k-NN method is intuitively simple and requires fewer assump-
tions. Formally, k-NN is a classification method that can be used to predict
an individual’s choice based on information from the observed choices of the k
neighbors with the closest characteristics. An advantage of the k-NN model being
nonparametric is that it does not require distributional assumptions like the ML
method. Moreover, since the method only uses the k nearest neighbors for predic-
tion, it is robust to outliers. It is also flexible in the sense that it can be applied
consistently for complete, partially and heterogeneous rank-ordered data. With
a set of restrictions, the method boils down to the traditional evidence-theoretic
k-NN rule.

The Application of the evidence-theoretic k-NN rule model relies on the avail-
ability of ranking data. The most obvious applications concern consumer choice
models, in which each customer buys more than one product or one brand. For
the empirical application considered in this study, the model was used to analyze
each individual’s choices of loan sources. The main objective of this exercise is
to predict where each individual borrows from, given his or her characteristics.

This paper is organized as follows. Section 2 recalls the original
evidence-theoretic k-NN rule for multinomial choice data. Section 3 introduces
the evidence-theoretic k-NN rule for heterogeneous rank-ordered data and
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discusses how the method can be applied to completely and partially rank-
ordered data. Section 4 provides an empirical example by applying the method to
predict an individual’s primary source of borrowing. Finally, Section 5 presents
our conclusions and remarks.

2 The Evidence-Theoretic k-NN Rule

The original Evidence-theoretic k-NN Rule is a method to classify each indi-
vidual into M classes based on his attributes [14] [7]. The model can thus be
applied for the multiple choice problem using multinomial choice data. Let the
set of alternatives be Ω = {ω1, ω2, ..., ωM}. For each individual i, we observe
information (x(i), ω(i)), where x(i) is the vector for individual i’s attributes and
ω(i) is the alternative that individual i has chosen. That is, (x(i), ω(i)) constitutes
an evidence for the class membership of x. The mass function for each individual
i is

m(i)(ω(i)) = αφ(d(i))

m(i)(Ω) = 1− αφ(d(i)),
(1)

where d(i) is the distance between x and x(i), φ is the inverse distance-
normalization function that maps the distance d(i) from [0,+∞) to [0, 1] and
α is a parameter in [0, 1].

Information from each individual is considered as evidence. For independent
and identically distributed (iid) data, we can combine all the pieces of evidence
from k nearest neighbors using Dempster’s rule. The combined mass function
for each choice {ωq} is

m({ωq}) =
1

K
(1−

∏

i∈Ik,q

(1− αφ(d(i))))
∏

r �=q

∏

i∈Ik,r

(1− αφ(d(i))

m(Ω) =
1

K

M∏

r=1

∏

i∈Ik,r

(1− αφ(d(i))),

(2)

where Ik,q is the set of the k nearest neighbors that chose alternative q and K
is the normalizing factor.

3 The Evidence-Theoretic k-NN Rule for Heterogeneous
Rank-Ordered Data

Consider a general model for heterogenous rank-ordered choice data with M
available alternatives, Li ≤ M of which are ranked for each individual i. The
objective of this model is to predict the choice of an individual given his or her
T characteristics x. Therefore, we construct a model using the data (ω(i), x(i))
from k individual i whose characteristics x(i) are the closest to x. Each of the
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k individuals ranks Li objects, providing Li pieces of evidence for his or her
preferences through the mass functions. For each individual i, we can observe
the Li most preferred choices ω(i) = {ω(i1), ..., ω(iLi)}, where ω(i1) is the most
preferred choice ω(iLi) is the Lth

i choice. The mass function for individual i can
be defined as

m(i)({ω(i1)}) = α1φ(d
(i))

m(i)({ω(ij)}) =

{
αjφ(d

(i)), if j ≤ Li

0, otherwise

m(i)(Ω) = 1−
Li∑

j=1

αjφ(d
(i)).

(3)

where d(i) = (x − x(i))′Σ(x − x(i)) is the weighted squared Euclidean distance
between x and x(i) with a T × T diagonal matrix Σ = diag(σ1, . . . , σY ) with

and φ(d(i)) = exp(−γd(i)
2

) is the inverse distance-normalization function.
The mass function (3) satisfies the basic probability assignment (BPA) prop-

erties, which are m(∅) = 0 and
∑

A∈2Ω m(A) = 1. That is, the mass m(i)({ωq})
captures the proportion of all relevant and available evidence from individual
i that supports the claim that an individual with characteristics x will choose
alternative q. From Equations (3), each mass depends on two factors, which are
1) the distance between x(i) and x and 2) the rank of the alternative.

The parameters to be estimated are θ = {α1, ..., αM , σ1, ..., σT , γ}. Parameters
0 ≤ αj ≤ 1, j = 1, ...,M capture different weights for the mass functions of
objects with different ranks. Since the higher ranked objects should have higher
weights, α1 ≥ α2 ≥ ... ≥ αL. Parameters 0 ≤ σt ≤ 1, t = 1, ..., T capture different
weights for each characteristic of individual i in the vector x(i). A characteristic
that is more important as a determinant of the choice selection should have
a higher weight. Lastly, the parameter γ is a positive scale parameter for the
inverse distance-normalization function.

In the belief function framework, the belief on a claim can be represented as
a belief-plausibility interval. The belief function measures the extent to which
the evidence implies the claim and is defined as Bel(A) =

∑
B∈A m(B). The

plausibility function measures to what extent the evidence does not contradict
the claim; it is defined as Pl(A) =

∑
B∩A �=φ m(B). Here, the belief and plausi-

bility of each alternative q from individual i are Bel(i)({ωq}) = m(i)({ωq}) and
Pl(i)({ωq}) = m(i)({ωq}) +m(i)(Ω), respectively.

The plausibility of each alternative q for individual i can thus be written as

Pl(i)({ωq}) = 1−
Li∑

j=1

(αjφ(d
(i)))(1−y

(i)
jq ), ∀q = 1, ...,M, (4)

where y
(i)
jq =

{
1 if jth choice of individual i is ωq

0 otherwise
.
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When all observations are independent and identically distributed (iid), all
pieces of evidence from the k nearest neighbors can be combined using Demp-
ster’s rule. Cobb and Shenoy (2006) proposed the plausibility transformation
method to convert Dempster-Shafer belief function models to Bayesian prob-
ability models that are consistent with Dempster’s rule. The plausibility prob-
ability function is the normalized form of the combined plausibility function
Pl({ωq}) [6]. Furthermore, the plausibility of each singleton after combination
by Dempter’s rule is the product of the plausibilities from each piece of evidence.
Therefore, the plausibility probability function is

Pl Pm({ωq}) = K−1Pl({ωq}) = K−1
k∏

i=1

[
1−

Li∑

j=1

(αjφ(d
(i)))(1−y

(i)
jq )

]
, (5)

where K =
∑M

r=1 Pl({ωr}) is the normalization constant.

Estimation: The vector of parameters θ = {α1, ..., αM , σ1, ..., σT , γ} can be
estimated by minimizing the mean squared error (MSE)1. To compute the MSE,

we estimate Pl P
(i)
M for each observation i given its characteristics x(i). Let t

(i)
q

be a vector representing the observed choice of individual i where the chosen
element q equals to 1 and other elements equal to 0. The MSE is

MSE =
1

NM

N∑

i=1

M∑

q=1

(Pl P (i)
m ({ωq})− t(i)q )2. (6)

The procedure is repeated for all possible k to find the optimal value of k that
minimizes the MSE. For the prediction rule, the predicted choice of individual i

is the choice with the highest plausibility probability Pl P
(i)
M ({ωq}).

Special Cases: The evidence-theoretic k-NN model for heterogenous rank-
ordered data can be consistently applied to partial and complete rank-ordered
data. In particular, when Li = L < M for all i, the partial rank-ordered model
is recovered. When Li = M for all i, we have the complete rank-ordered model.
Moreover, the model is consistent with the original k-NN model for the tradi-
tional multinomial choice data. That is, when L = 1, we get the traditional
multinomial choice model with only one observed choice.

Variations in Model Specification: The k-NN method for the rank-ordered
choice data can be modified to capture several aspects of heterogeneity in the
data. In particular, each parameter in θ = {α1, ..., αM , σ1, ..., σT , γ} can be modi-
fied to be alternative-specific. For instance, the scale parameter γ can be general-
ized to γq in order to capture the different chance of occurring of each alternative.
The σt can also be generalized to σqt to capture the different contribution of each

1 We used the fmincon procedure in Matlab, with the active set algorithm.
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characteristic t in predicting each alternative q. It should be noted that adding
more parameters allows the model to capture more characteristics of the data.
However, it also causes inefficiency especially for studies with a small number of
observations.

4 Predicting an Individual’s Source of Loan

In this section, we report on the application of the above method to predict an
individual’s primary source of loan given his set of characteristics x.

The data used in this study are the 2010 cross-sectional data from the Panel
Household Socio-Economic Survey (SES) conducted by the National Statistical
Office of Thailand. The dependent variable is the source of loan. In the SES, each
individual was provided with eight choices of loan sources and asked whether he
had borrowed any money in the past year. If the individual had borrowed, the
survey asked for his or her two largest sources of loan in order.

In this study, we performed and compared four types of Evidence-theoretic
k-NN rule models including the multinomial model with equal weights (MEW),
the rank-ordered model with equal weights (REW), the multinomial model with
optimized weights (MOW) and the rank-ordered model with optimized weights
(ROW).

Multinomial models use the information only from the primary choice to esti-
mate the vector of parameters θ. Rank-ordered choice models use the information
from both primary and secondary choices. Formally, multinomial choice models
are rank-ordered models with α2 = 0. The equal weight assumption restricts all
the weight σt = 1, for all t. This restriction implies that all characteristics in x
have an equal contribution to the loan choice prediction. Optimizing the weights
allows the weights to vary across characteristics. Therefore, the prediction us-
ing the optimized weight models relies more on the characteristics with higher
weights. That is, equal weight models are optimized weight models with σt = 1,
for all t. It should be noted each characteristic in x was normalized so that the
weights σt can be compared across t. In addition, in this study, we allowed the
scale parameter γ in the inverse distance-normalization function φ(·) to vary
with each individual’s primary choice. Specifically, γq is the scale parameter for
each individual with ω(i1) = q. The estimated parameters for each of the four
models are reported in Table 1.

In Table 1, consider the models REW and ROW. The parameter α2 �= 0
indicates that including the information from the secondary loan choice helps
the model to predict the primary choice more accurately. Consider the models
MOW and ROW. The parameters σt �= 1, for all t show that characteristics in
x are not equally important for the loan source prediction. The characteristics
with highest contribution to the prediction accuracy include total saving, college,
total income and urban.

To ensure that the parameters in Table 1 minimize the MSE, it is necessary
to check that the MSE function is smooth and convex with respect to all pa-
rameters. Fig. 1 shows the MSE contour plot for parameters α1 and α2 for the
ROW model.



64 S. Leurcharusmee et al.

Table 1. Comparison of the four models

MEW REW MOW ROW

Alphas - αj

Primary choice 0.12 0.11 0.12 0.11
Secondary choice 0.00 0.03 0.00 0.04

Gammas - γq
Commercial bank 0.01 0.02 0.00 0.00
BAAC 0.00 0.00 0.00 0.00
GHB 0.00 0.00 0.01 0.01
Village Fund 0.04 0.04 0.35 0.67
Co-ops/Credit Union 0.00 0.00 0.01 0.01
Other financial inst. 0.04 0.04 0.25 0.25
Friend/relative 0.03 0.02 0.50 0.54
Other source 0.81 1.00 1.00 1.00

Weights - σt

Age 1.00 1.00 0.01 0.12
Total income 1.00 1.00 0.52 0.43
Total saving 1.00 1.00 1.00 1.00
Female 1.00 1.00 0.01 0.00
Urban 1.00 1.00 0.32 0.22
College 1.00 1.00 0.97 0.86
Employed 1.00 1.00 0.00 0.00
Agricultural household 1.00 1.00 0.21 0.02
House owner 1.00 1.00 0.00 0.00
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Fig. 1. MSE contour plot for parameter α1 and α2 for the ROW model

The optimal number of neighbour k = 37 for all k-NN models. It should be
noted that k was endogenously determined in the model and the number needs
not to be the same across models. However, changes of the MSE with respect to
k have the same pattern across the four models in this study as shown in Fig. 2.

Table 2 compares the performances of the four k-NN models with the multi-
nomial logit (MLogit) model, which is commonly used for choice prediction. The
performance comparison statistics used in this study are the out-sample MSE
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Fig. 2. MSE of the MEW, REW, MOW and ROW models for different values of k

Table 2. 5-fold cross validation results

MLogit MEW REW MOW ROW

MSE 0.0958 0.0918 0.0918 0.0916 0.0916
(0.0022) (0.0022) (0.0022) (0.0022) (0.0022)

Classification error 0.6263 0.6168 0.6078 0.6134 0.6048
(0.0232) (0.0232) (0.0232) (0.0232) (0.0232)

McNemar’s χ2 stat 10.26 2.57 2.12 1.30 -
(0.0013) (0.1089) (0.1454) (0.2542)

*For MSE and classification error, standard deviations in parentheses.
**For McNemar’s test, p-values in parentheses.

and classification errors estimated using 5-fold cross validation [11]. The rank-
ordered models have smaller MSE than the multinomial models and the opti-
mized weight models have smaller MSE than the equal weight models. Moreover,
the results also show that models with a smaller MSE also yield a lower clas-
sification error. Using the McNemar’s test [1] to compare all models with the
ROW model, we can see that the ROW model has significantly higher predic-
tion power than the multinomial logit model. However, the McNemar’s test did
not give significant results for other cases. In this dataset, only 20.68% of the
data borrowed from the second source, which can explain why the performance
improvement from using the rank-ordered model was rather small. It can be
expected that more information on the non-primary ranks would increase the
performance improvement.

5 Conclusions

The evidence-theoretic k-NN rank-ordered choice model was shown to outper-
form the traditional multinomial choice model, which shows the benefit of in-
cluding the additional information from each individual’s non-primary choices.
The weight matrix contributes significantly to the prediction accuracy, indicating
that all the characteristics are not equally informative.
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Despite the non-parametric nature of the model, a number of assumptions
were made. It is important to discuss a few alternatives for the model specifi-
cation as it may improve the model performance for different studies. The first
assumption of this model is related to the distance function d(·). The second
assumption is on the confidence measure. This study uses the plausibility prob-
ability function Pl Pm(·). Alternatives are the belief, the plausibility and the
pignistic functions [6]. The last assumption is on the optimization rule. The op-
timization rule used in this study is the mean squared error (MSE) minimization.
Alternative criteria are entropy or the modified MSE as suggested in Denoeux
and Zouhal (2001) [9].

The evidence-theoretic k-NN model has been extended in several aspects,
many of which can be applied to this rank-ordered choice model. An advantage
of using the evidence-theoretic method is that it can be modified to cope with
uncertain and imprecise data in which a set of alternatives is observed for each
rank. For example, if we can only observe that individual i dislikes choice ωq,
then we know that all other available choices are preferred to ωq but we do not
know the ranking of those choices. In this case, the first rank would contain more
than one alternative and the model can take advantage of the evidence theoretic
method more fully.

Moreover, the belief function approach makes it possible to combine pieces
of evidence from several different sources. Therefore, the output from the be-
lief function classifier can conveniently be combined with evidence from other
classifiers or with other information such as expert opinions.

References

1. Alpaydin, E.: Introduction to Machine Learning. MIT Press (2004)
2. Baltas, G.: A Model for Multiple Brand Choice. European Journal of Operational

Research 154(1), 144–149 (2004)
3. Beggs, S., Cardell, S., Hausman, J.: Assessing the Potential Demand for Electric

Cars. Journal of Econometrics 17(1), 1–19 (1981)
4. Bhat, C.R., Srinivasan, S.: A Multidimensional Mixed Ordered-response Model

for Analyzing Weekend Activity Participation. Transportation Research Part B:
Methodological 39(3), 255–278 (2005)

5. Bhat, C.R., Srinivasan, S., Sen, S.: A Joint Model for the Perfect and Imperfect
Substitute Goods Case: Application to Activity Time-use Decisions. Transporta-
tion Research Part B: Methodological 40(10), 827–850 (2006)

6. Cobb, B.R., Shenoy, P.P.: On the Plausibility Transformation Method for Trans-
lating Belief Function Models to Probability Models. International Journal of Ap-
proximate Reasoning 41(3), 314–330 (2006)

7. Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Transactions on Systems, Man and Cybernetics 25(5), 804–813 (1995)

8. Denoeux, T.: Analysis of Evidence-Theoretic Decision Rules for Pattern Classifi-
cation. Pattern recognition 30(7), 1095–1107 (1997)

9. Denoeux, T., Zouhal, L.M.: Handling Possibilistic Labels in Pattern Classification
Using Evidential Reasoning. Fuzzy Sets and Systems 122(3), 409–424 (2001)

10. Maddala, G.S.: Limited-dependent and Qualitative Variables in Econometrics.
Cambridge University Press (1986)



The Evidence-Theoretic k-NN Rule for Rank-Ordered Data 67

11. Mosteller, F., Tukey, J.W.: Data Analysis, Including Statistics. The Collected
Works of John W. Tukey: Graphics 123(5), 1965–1985 (1988)

12. The Mathworks, Optimization Toolbox: User’s Guide (R2014b). The MathWorks,
Inc. (2014)

13. Train, K.: Data analysis, Including Statistics Discrete Choice Methods with Sim-
ulation. Cambridge University Press (2009)

14. Zouhal, L.M., Denoeux, T.: An Evidence-theoretic k-NN Rule with Parameter
Optimization. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
28(2), 263-271 (1998)


	The Evidence-Theoretic k-NN Rule
for Rank-Ordered Data: Application to Predict
an Individual’s Source of Loan

	1 Introduction
	2 The Evidence-Theoretic k-NN Rule

	3 The Evidence-Theoretic k-NN Rule for Heterogeneous
Rank-Ordered Data

	4 Predicting an Individual’s Source of Loan
	5 Conclusions
	References




