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Abstract. The theory of belief functions has been successfully used in
many classification tasks. It is especially useful when combining multiple
classifiers and when dealing with high uncertainty. Many classification
approaches such as k-nearest neighbors, neural network or decision trees
have been formulated with belief functions. In this paper, we propose
an evidential calibration method that transforms the output of a clas-
sifier into a belief function. The calibration, which is based on logistic
regression, is computed from a likelihood-based belief function. The un-
certainty of the calibration step depends on the number of training sam-
ples and is encoded within a belief function. We apply our method to
the calibration and combination of several SVM classifiers trained with
different amounts of data.

Keywords: Classifier calibration, theory of belief functions, Dempster-
Shafer theory, support vector machines, logistic regression.

1 Introduction

The combination of pattern classifiers is an important issue in machine learning.
In many practical situations, different kinds of classifiers have to be combined. If
the outputs of the classifiers are of the same nature, such as probability measures
or belief functions, they can be combined directly. Evidential versions of several
classification methods such as the k-nearest neighbor rule [2], neural network [3]
or decision trees [11] can be found in the literature. Otherwise, if their outputs
are of different type, they have to be made comparable.

The transformation of the score returned by a classifier into a posterior class
probability is called calibration. Several methods can be found in the litera-
ture [8,13,14]. The quality of the calibration highly depends on the amount of
training data available. The use of belief functions is often more appropriate
when dealing with few training data. It becomes especially critical when the
classifiers to combine are trained with different amounts of training data. In this
paper, we introduce an evidential calibration method that transforms the out-
puts of a binary classifier into belief functions. It is then applied to the calibration
of SVM classifiers.
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The rest of this paper is organized as follows. In Section 2, we present
likelihood-based belief functions for both statistical inference and forecasting.
In particular, the case of a Bernoulli distribution is detailed. Its application to
a logistic regression based calibration method is then introduced in Section 3.
Experimental results on the calibration and combination of SVM classifiers are
then presented in Section 4.

2 Likelihood-Based Belief Function

In this section, we present the formulation of likelihood-based belief functions.
Our presentation follows the work of Denœux [4] for statistical inference and the
work of Kanjanatarakul et al. for its application to forecasting [6].

2.1 Statistical Inference

Let X ∈ X be some observable data and θ ∈ Θ the unknown parameter of
the density function fθ(x) generating the data. Information about θ can be
inferred given the outcome x of a random experiment. Shafer [10] proposed to
build a belief function BelΘx on Θ from the likelihood function. Denœux further
justified this approach in [4]. After observing X = x, the likelihood function
Lx : θ �→ fθ(x) is normalized to yield the following contour function:

plΘx (θ) =
Lx(θ)

supθ′∈Θ Lx(θ′)
, ∀θ ∈ Θ, (1)

where sup denotes the supremum operator. The consonant plausibility function
associated to this contour function is

PlΘx (A) = sup
θ∈A

plΘx (θ), ∀A ⊆ Ω. (2)

The focal sets of BelΘx are defined as

Γx(γ) = {θ ∈ Θ | plΘx (θ) ≥ γ}, ∀γ ∈ [0, 1]. (3)

The random set formalism can be used to represent the belief and plausibility
functions on Θ. Given the Lebesgue measure λ on [0, 1] and the multi-valued
mapping Γx : [0, 1] → 2Θ, we have

BelΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ⊆ A})
PlΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ∩ A 	= ∅}) , ∀A ⊆ Θ. (4)

2.2 Forecasting

Suppose that we now have some knowledge about θ after observing some training
data x. The forecasting problem consists in making some predictions about some
random quantity Y ∈ Y whose conditional distribution gx,θ(y) given X = x
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depends on θ. A belief function on Y can be derived from the sampling model
proposed by Dempster [1]. For some unobserved auxiliary variable Z ∈ Z with
known probability distribution μ independent of θ, we define a function ϕ so
that

Y = ϕ(θ, Z). (5)

A multi-valued mapping Γ ′
x : [0, 1]×Z → 2Y is defined by composing Γx with ϕ

Γ ′
x : [0, 1]× Z → 2Y

(γ, z) �→ ϕ(Γx(γ), z).
(6)

A belief function on Y can then be derived from the product measure λ ⊗ μ on
[0, 1]× Z and the multi-valued mapping Γ ′

x

BelYx(A) = (λ⊗ μ) ({(γ, z) | ϕ (Γx (γ) , z) ⊆ A})
PlYx(A) = (λ⊗ μ) ({(γ, z) | ϕ (Γx (γ) , z) ∩ A 	= ∅}) , ∀A ⊆ Ω. (7)

2.3 Binary Case Example

In the particular case where Y is a random variable with a Bernoulli distribution
B(ω), it can be generated by a function ϕ defined as

Y = ϕ(ω,Z) =

{
1 if Z ≤ ω,
0 otherwise,

(8)

where Z has a uniform distribution on [0, 1]. Assume that the belief function
BelΩx on Ω is induced by a random closed interval Γx(γ) = [U(γ), V (γ)]. In
particular, it is the case if it is the consonant belief function associated to a
unimodal contour function. We get

Γ ′
x(γ, z) = ϕ ([U(γ), V (γ)] , z) =

⎧⎨
⎩

1 if Z ≤ U(γ),
0 if Z > V (γ),
{0, 1} otherwise.

(9)

The predictive belief function BelYx can then be computed as

BelYx({1}) = (λ⊗ μ)({(γ, z) | Z ≤ U(γ)}) (10a)

=

∫ 1

0

μ({z | z ≤ U(γ)})f(γ)dγ (10b)

=

∫ 1

0

U(γ)f(γ)dγ = E(U) (10c)

and

BelYx({0}) = (λ ⊗ μ)({(γ, z) | Z > V (γ)}) (11a)

= 1− (λ ⊗ μ)({(γ, z) | Z ≤ V (γ)}) (11b)

= 1− E(V ). (11c)
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As U and V take only non-negative values, these quantities have the following
expressions:

BelYx({1}) =

∫ +∞

0

(1 − FU (u))du =

∫ ω̂

0

(1− plΩx (u))du (12a)

= ω̂ −
∫ ω̂

0

plΩx (u)du (12b)

and

PlYx({1}) = 1−BelYx ({0}) =

∫ +∞

0

(1− FV (v))dv (13a)

= ω̂ +

∫ 1

ω̂

plΩx (v)dv, (13b)

where ω̂ is the value maximizing plΩx . In many practical situations, the belief
function BelYx cannot be expressed analytically. However, they can be approx-
imated either by Monte Carlo simulation using Equations (10) and (11) or by
numerically estimating the integrals of Equations (12) and (13).

3 Classifier Calibration

Let us consider a binary classification problem. Let x = {(x1, y1), . . . , (xn, yn)}
be some training data, where xi ∈ R is the score returned by a pre-trained
classifier for the i-th training sample which label is yi ∈ {0, 1}. Given a test
sample of score s ∈ R and unknown label y ∈ {0, 1}, the aim of calibration is to
estimate the posterior class probability P (y = 1|s). Several calibration methods
can be found in the literature. Binning [13], isotonic regression [14] and logistic
regression [8] are the most commonly used ones. Niculescu-Mizil and Caruana [7]
showed that logistic regression is well-adapted for calibrating maximum margin
methods like SVM. Moreover, it is less prone to over-fitting as compared to
binning and isotonic regression, especially when relatively few training data are
available. Thus, logistic regression will be considered in this paper.

3.1 Logistic Regression-Based Calibration

Platt [8] proposed to use a logistic regression approach to transform the scores of
an SVM classifier into posterior class probabilities. He proposed to fit a sigmoid
function

P (y = 1|s) ≈ hs(θ) =
1

1 + exp (a+ bs)
. (14)

The parameter θ = (a, b) ∈ R
2 of the sigmoid function is determined by maxi-

mizing the likelihood function on the training data,

Lx(θ) =

n∏
k=1

pyk

k (1− pk)
1−yk with pk =

1

1 + exp(a+ bxk)
. (15)
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To reduce over-fitting and prevent a from becoming infinite when the training
examples are perfectly separable, Platt proposed to use an out-of-sample data
model by replacing yk and 1− yk by t+ and t− defined as

t+ =
n+ + 1

n+ + 2
and t− =

1

n− + 2
, (16)

where n+ and n− are respectively the number of positive and negative training
samples. This ensures Lx to have a unique supremum θ̂ = (â, b̂).

3.2 Evidential Extension

After observing the score s of a test sample, its label y ∈ {0, 1} can be seen a
the realisation of a random variable Y with a Bernoulli distribution B(ω), where
ω = hs(θ) ∈ [0, 1]. A belief function BelYx,s can thus be derived from the contour

function plΩx,s as described in Section 2.3. Function plΩx,s can be computed from

PlΘx as

plΩx,s(ω) =

{
0 if ω ∈ {0, 1}

PlΘx
(
h−1
s (ω)

)
otherwise,

(17)

where

h−1
s (ω) =

{
(a, b) ∈ Θ

∣∣∣∣ 1

1 + exp(a+ bs)
= ω

}
(18)

=
{
(a, b) ∈ Θ

∣∣ a = ln
(
ω−1 − 1

)− bs
}
, (19)

which finally yields

plΩx,s(ω) = sup
b∈R

plΘx
(
ln
(
ω−1 − 1

)− bs, b
)
, ∀ω ∈ (0, 1). (20)

Figure 1 illustrates the computation of the predictive belief function BelYx,s.

Fig. 1 (a) shows level sets of the contour function plΘx computed from the scores of
an SVM classifier trained on the UCI1 Australian dataset. The value of plΩx,s(ω)

is defined as the maximum value of plΘx along the line a = ln(γ−1 − 1) − bs
represented by the doted lines. It can be approximated by a gradient descent
algorithm. Fig. 1 (b) shows the contour function plΩx,s from which BelYx,s can be
computed using Equations (12) and (13). Fig. 1 (c-d) displays the calibration
results for n = 20 and n = 200, respectively.

4 Experimental Evaluation

Experiments were conducted using three binary classification problems from the
UCI dataset: Adult, Australian and Diabetes. For each dataset, 10 non-linear

1 http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Fig. 1. Calibration results on the Australian dataset. (a) Level sets of the contour
function plΘx . (b) Contour function plΩx,s with s = 0.5. The three coloured areas corre-
spond to the predictive mass function mY

x,s. (c) Calibration results with n = 20. (d)
Calibration results with n = 200.

SVM classifiers with RBF kernel were trained using non-overlapping training
sets of different sizes. Three scenarios were considered, as illustrated in Fig. 2.
In the first scenario (a), all 10 classifiers were trained using the same amount
of training data. In the second one (b), one half of the classifiers were trained
with five times more data than the other half. Finally, in (c), one classifier was
trained with 2/3rd of the data, a second one used 1/5th and the eight other ones
shared the rest uniformly. The total amounts of training and testing data are
detailed in Table 1.

The LibSVM2 library was used to train the classifiers. For each experiment,
5-fold cross validation was conducted on the training data to get both the SVM
parameters and the scores for calibration. As each classifier was trained with
different training data, they were assumed to be independent. After calibration,
the classifier outputs were thus combined with Dempster’s rule. The class with

2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Evidential Logistic Regression for Binary SVM Classifier Calibration 55

1

2

3

4

5

6

7

8

9

10(a) (b) (c)

Fig. 2. Proportions of data used to train each of the 10 classifier. (a) All classifiers
use 10% of the training data. (b) One half the classifiers use 1/6th of the data and the
other half the rest. (c) One classifier uses 2/3rd of the data, a second one uses 1/5th

and the eight other classifiers use the rest.

Table 1. Classification accuracy for several datasets and different scenarios. The best
results are underlined and those that are not significantly different are in bold.

Adult Australian
#train=600, #test=16,281 #train=300, #test=390

Scenario (a) (b) (c) (a) (b) (c)
Probabilistic 83.24% 82.70% 80.90% 85.13% 85.90% 85.90%
Inv. Pign. 83.32% 82.79% 81.02% 85.13% 85.90% 86.41%
Likelihood 83.29% 83.03% 81.65% 85.13% 86.67% 88.46%

Diabetes
#train=300, #test=468

Scenario (a) (b) (c)
Probabilistic 78.42% 77.14% 53.42%
Inv. Pign. 78.63% 77.14% 54.70%
Likelihood 79.06% 77.35% 68.16%

maximum plausibility was selected for decision. The probabilistic calibration
served as baseline. We compared it the likelihood-based evidential approach and
the inverse pignistic transformation. The classification accuracies on the testing
data are shown in Table 1.

To compare the performances of the different calibration approaches, the sig-
nificance of the results was evaluated from a McNemar test [5] at the 5% level.
The best results were always obtained by the likelihood-based approach except
for Adult (a). In particular, expect for the inverse pignistic transformation on the
Australian dataset, the results were always significantly better for scenario (c).
For the Adult dataset, the likelihood-based calibration always gave significantly
better results than the probabilistic approach. We can see that the likelihood-
based approach is more robust when the training sets have highly unbalanced
sizes.
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5 Conclusion

In this paper, we showed how to extend logistic regression-based calibration
methods using belief functions. Belief functions can better represent the uncer-
tainty of the calibration procedure, especially when very few training data are
available. The method was used to calibrate the scores from SVM classifiers but
it may also be used for other classification algorithms. Evidential formulations
of other calibration methods such as binning [13] and isotonic regression [14] will
be considered in future work. Extension to multi-class problem is also possible
through the use of one-vs-one or one-vs-all binary decompositions. Compari-
son of probabilistic approaches [12] and evidential ones [9] will be considered in
future work.
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