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UMR 7253 Heudiasyc, France
orakanyaa@gmail.com, ksiwarat@gmail.com, tdenoeux@utc.fr

Abstract. The evidential K nearest neighbor classifier is based on dis-
counting evidence from learning instances in a neighborhood of the pat-
tern to be classified. To adapt the method to partially supervised data,
we propose to replace the classical discounting operation by contextual
discounting, a more complex operation based on as many discount rates
as classes. The parameters of the method are tuned by maximizing the
evidential likelihood, an extended notion of likelihood based on uncertain
data. The resulting classifier is shown to outperform alternative methods
in partially supervised learning tasks.
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chine learning, partially supervised learning, soft labels.

1 Introduction

Since its introduction in [2], the evidential K-nearest neighbor (EKNN) classifier
has been used extensively and several variants have been developed (see, e.g.,
[8], [6], [7], [5] and [14] for some applications and recent developments). The
EKNN classifier is based on the following simple ideas: (1) each neighbor of the
pattern x to be classified is considered as a piece of evidence about the class of
x, represented by a mass function; (2) each mass function is discounted based
on its distance to x; and (3) the discounted mass functions induced by the K
nearest neighbors of x are combined by Dempster’s rule.

In [2], the parameters used to define the discount rate as a function of dis-
tance were fixed heuristically, and the method was shown to outperform other
K-nearest neighbor rules. In [15], the authors showed that the performances
of the method could be further improved by learning the parameters through
minimizing the mean squares error (MSE) between pignistic probabilities and
class indicator variables. In [4], the EKNN rule was extended to the case where
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the class label of training patterns is only partially known, and described by a
possibility distribution. However, the learning procedure defined in [15] cannot
be straightforwardly extended to the partially labeled setting because (1) the
discount rate defined in the procedure depends on the class of the neighboring
pattern, and (2) combining arbitrary mass functions and computing pignistic
probabilities has exponential complexity in the worst case.

In this paper, we revisit the EKNN classifier by exploiting some recent de-
velopments in the theory of belief functions: (1) The discounting operation is
replaced by contextual discounting [9], allowing us to define one discount rate
parameter per class even in the partially labeled case; and (2) instead of the
MSE and pignistic probabilities, we propose to use the conditional evidential
likelihood criterion [3, 11], which allows us to account for partial class labels in
a natural way, and can be computed in linear time as a function of the number
of classes.

The rest of this paper is organized as follows. The EKNN classifier and
classical discounting operation are first recalled in Section 2. The Contextual-
Discounting Evidential K-NN (CD-EKNN) classifier is then introduced in Sec-
tion 3, and experimental results are reported in Section 4. Section 5 concludes
the paper.

2 Background

In this section, we provide a reminder of the main notions needed in the rest
of the paper. The EKNN classifier will first be recalled in Section 2.1, and the
contextual discounting operation will be presented in Section 2.2.

2.1 Evidential K-NN classifier

Consider a classification problem with c classes in Ω = {ω1, . . . , ωc}, and a
learning set L = {(xi, yi)}ni=1 of n examples (xi, yi), where xi is a p-dimensional
feature vector describing example i, and yi ∈ Ω is the class of that example. Let
x be new pattern to be classified, and NK(x) the set of its K nearest neighbors
in L, according to some distance d (usually, the Euclidean distance when the
p features are numerical). In [2] and [15], it was assumed that each neighbor
xj ∈ NK(x) induces a simple mass function m̂j defined as

m̂j({ωk}) = βk(dj)yjk, k = 1, . . . , c (1a)

m̂j(Ωk) = 1− βk(dj), (1b)

where yjk = 1 if yj = ωk and yjk = 0 otherwise, dj = d(x, xj) and βk is a
decreasing function, usually taken as βk = α exp(−γkd2j ), where α is a coefficient
in [0, 1] and the γk’s are strictly positive scale parameters. By pooling mass
functions m̂j induced by the K nearest neighbors of x using Dempster’s rule, we
get the combined mass function m̂, which summarizes the evidence about the
class of x based on its K nearest neighbors.
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In [15], it was proposed to leave parameter α fixed and to learn parameter
vector γ = (γ1, . . . , γc) by minimizing the following error function,

C(γ) =

n∑
i=1

c∑
k=1

(B̂etpi(ωk)− yik)2, (2)

where B̂etpi is the pignistic probability distribution computed from mass func-
tion m̂i obtained from the K nearest neighbors of xi. Because this classifier is
based on c learnable parameters γk, k = 1, . . . , c, it will be later referred to as
the γk-EKNN classifier.

The idea of applying the EKNN procedure to partially labeled data L =
{(xi,mi)}ni=1, where mi is an arbitrary mass function that represents partial
knowledge about the class of example xi was already suggested in [2] and ex-
plored further in [4]. Indeed, mass function m̂j in (1) can be seen as the dis-
counted version of the certain mass function mj({yj}) = 1, with discount rate
1 − βk(dj) if yj = {ωk}. The same discounting notion can be applied whatever
the form of mj , but the discount rate can no longer depend on yj when it is
unknown. Consequently, the extension is not straightforward. Also, the combi-
nation by Dempster’s rule and the calculation of the pignistic probabilities in
(2) have exponential complexities for arbitrary mass functions mi, which makes
the method less attractive unless c is very small. These issues will be addressed
in Section 3, based on the notion of contextual discounting recalled hereafter.

2.2 Contextual discounting

Let m be a mass function on Ω = {ω1, . . . , ωc} and β a coefficient in [0, 1].
The discounting operation [12] with discount rate 1 − β transforms m into the
following mass function:

αm = βm+ (1− β)m?, (3)

where m? is the vacuous mass function defined by m?(Ω) = 1. This operation
can be justified as follows [13]. Assume that m is provided by a source that may
be reliable (R) or not (¬R). If the source is reliable, we adopt its opinion as ours,
i.e., we set m(·|R) = m. If it is not reliable, then it leaves us in a state of total
ignorance, i.e., m(·|¬R) = m?. Furthermore, assume that we have the following
mass function on R = {R,¬R}: mR({R}) = β and mR(R) = 1 − β, i.e., our
degree of belief that the source is reliable is equal to β. Then, combining the two
mass functions m(·|R) (after deconditioning) and mR yields precisely αm in (3),
after marginalizing on Ω.

In [9], the authors generalized the discounting operation using the notion of
contextual discounting. In the corresponding refined model, m(·|R) and m(·|¬R)
are defined as before, but our beliefs about the reliability of the source are now
defined given each state in Ω, i.e., we have c conditional mass functions defined
by mR({R}|ωk) = βk and mR(R|ωk) = 1 − βk, for k = 1, . . . , c. Combining
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m(·|R) with mass functions mR(·|ωk) after deconditioning yields the following
discounted mass function,

βm(A) =
∑
B⊆A

m(B)

 ∏
ωk∈A\B

(1− βk)
∏
ωl∈A

βl

 (4)

for all A ⊆ Ω, where β = (β1, . . . , βc), and a product of terms is equal to 1 if
the index set is empty. The associated contour function is

βpl(ωk) = 1− βk + βkpl(ωk), k = 1, . . . , c, (5)

where pl is the contour function corresponding to m.

3 Contextual-discounting Evidential K-NN classifier

An alternative to the γk-EKNN classifier based on contextual discounting will
first be defined in Section 3.1, and learning the parameters in this model will be
addressed in Section 3.2.

3.1 Extending the EKNN classifier to partially labelled data

As the EKNN classifier is based on discounting, it can be readily generalized
using contextual discounting. More precisely, let us assume that we have a
partially labeled learning set L = {(xi,mi)}ni=1. (The fully supervised case is
recovered when all mass functions mi are certain). Let x be a pattern to be
classified, and xj one of its K nearest neighbors. In [4], it was proposed to gen-
eralize (1) by discounting each neighbor mass function mj with discount rate
1 − β(dj) = 1 − α exp(−γd2j ). We then have two learnable parameters: coeffi-
cient α and a single scale parameter γ. This rule will later be referred to as the
(α, γ)-EKNN classifer.

In this paper, we propose to use contextual discounting (4) instead of classical
discounting. The resulting rule, called Contextual Discounting Evidential K-
nearest neighbor (CD-EKNN) is based on c coefficients βk(dj) defined by

βk(dj) = α exp(−γkd2j ), k = 1, . . . , c, (6)

and there are c+ 1 learnable parameters α ∈ [0, 1] and γk ≥ 0, k = 1, . . . , c.
Whereas the discounted mass function m̂j may have a complicated expres-

sion, its contour function can be obtained from (5) as

p̂lj(ωk) = 1− βk(dj) + βk(dj)plj(ωk), k = 1, . . . , c, (7)

and the combined contour function after pooling the evidence of the K nearest
neighbors is

p̂l(ωk) ∝
∏

xj∈NK(x)

[1− βk(dj) + βk(dj)plj(ωk)] , k = 1, . . . , c. (8)
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We note that p̂l can be computed, up to a multiplicative constant, in time
proportional to the number K of neighbors and the number of c of classes. The
contour function is all we need to make decisions and, as we will see in the next
section, to train the classifier by maximizing the evidential likelihood criterion.

3.2 Learning

To learn the parameters θ = (α, γ1, . . . , γc) of the CD-EKNN classifier defined in
Section 3.1, we propose to maximize the evidential likelihood function introduced
in [3]. Before, we introduce the evidential likelihood for this model, let us recall
the expression of the “classical likelihood” in the case of fully supervised data
L = {(xi, yi)}ni=1. Let p̂li the contour function computed for instance i based
on its K nearest neighbors using (8), and let p̂i be the probability distribution

obtained from p̂li by normalization. The conditional likelihood (given feature
vectors x1, . . . , xn) after observing the true class labels y1, . . . , yn is

Lc(θ) =

n∏
i=1

c∏
k=1

p̂i(ωk)yik . (9)

In the partially supervised learning case, the learning set is of the form L =
{(xi,mi)}ni=1, where mi is a mass function that represents our partial knowledge
of the class of xi. An extension of the likelihood function for such uncertain
data was introduced and justified in [3]. Basically, the term

∏c
k=1 p̂i(ωk)yik in

(9) is replaced by the expected plausibility
∑c
k=1 p̂i(ωk)pli(ωk). The evidential

likelihood is then defined as

Le(θ) =

n∏
i=1

c∑
k=1

p̂i(ωk)pli(ωk), (10)

We note that the evidential likelihood (10) boils down to the classical likelihood
(9) when all mass functions mi are certain, i.e., when pli(ωk) = yik for all i and
k. The evidential log-likelihood logLe(θ) can be maximized using an iterative
optimization procedure such as Newton’s method.

4 Numerical Experiments

In this section, we present some results with one simulated and two real datasets,
in which label uncertainty was simulated by corrupting labels with noise and
representing uncertainty using suitable mass functions. The simulated data were
generated from c = 2 Gaussian distributions with densities N (µk, σ

2
kI), where

µ1 = (0, 0)T , µ2 = (1, 0)T , σ2
1 = 0.1I, σ2

2 = 2I, and I is the identity matrix.
Each simulated dataset had 100 vectors from each class. The real data were the
Ionosphere data (n = 351 instances, p = 34 features and c = 2 classes) and the
Sonar data (n = 204, p = 60, c = 2), both from the UCI Machine Learning
Repository4.

4 Available at http://archive.ics.uci.edu/ml.
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Figure 1 shows the leave-one-out error rates as functions of the number K of
neighbors, in two learning situations: with true class labels (Figures 1(a), 1(c)
and 1(e)), and with uncertain (soft) class labels (Figures 1(b), 1(d) and 1(f)).
To generate the uncertain labels mi, we proceeded as in [1] and [11]: for each
instance i, a number pi was generated from a beta distribution with mean µ = 0.5
and variance 0.04. Then, with probability pi, the class label yi of instance i was
replaced by y′i picked randomly from Ω. Otherwise, we set y′i = yi. Contour
function pli was then defined as pli({y′i}) = 1 and pli({ω}) = pi for all ω 6= y′i.
This procedure guarantees that the soft label pli is all the more uncertain that
the label with maximum plausibility has the more chance of being incorrect.

For each dataset and each learning situation, we considered four classifiers:
(1) the (α, γ)-EKNN rule based on classical discounting and criterion (10); (2)
the CD-EKNN rule with c scale parameters γ1, . . . , γc trained with criterion (10);
(3) the original γk-EKNN rule recalled in Section 2.1, trained with criterion (2);
and (4) the voting K-NN rule. As the γk-EKNN and voting K-NN classifiers can
only handle fully supervised data with certain labels, we used the noisy labels
y′i with these classifiers, instead of the soft labels mi.

As can be seen from Figures 1(a), 1(c) and 1(e), the original γk-EKNN and
CD-EKNN rules have similar performances in the fully supervised case, and
they perform better than the (α, γ)-EKNN rule. On the simulated data, the
(α, γ)-EKNN rule does not even outperform the voting K-NN rule (Figure 1(a)),
whereas it performs much better on the Sonar data (Figure 1(e)).

When applied to data with soft labels, the CD-EKNN classifier clearly has
the best performances. In contrast, the γk-EKNN and voting K-NN classifiers,
which use noisy labels, perform poorly. This result confirms similar findings
reported in [1], [3] and [11] for parametric classifiers. The CD-EKNN classifier
also performs better than the (α, γ)-EKNN rule, except on the Sonar data, for
which they achieve similar error rates.

5 Conclusions

The EKNN classifier introduced in [2] and perfected in [15] has proved very effi-
cient for fully supervised classification. Because it applies different discount rates
to neighbors from different classes, the method cannot be readily extended to
the partially supervised learning situation, in which we only have uncertain in-
formation about the class of learning instances. Also, it is not clear how the MSE
criterion used in [15] could be generalized in the case of partially labeled data.
In this paper, we have proposed a solution to this problem by replacing classical
discounting with contextual discounting introduced in [9]. The underlying idea
is that the reliability of the information from different neighbors depends on the
class of the pattern to be classified. We also replaced the MSE by the condi-
tional likelihood, which has already been generalized to uncertain data in [3].
The resulting CD-EKNN classifier was shown to perform very well with partially
supervised data, while performing as well as the original EKNN classifier with
fully supervised data.
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Fig. 1. Leave-one-out error rates vs. number K of neighbors for fully supervised (a, c,
e) and partially supervised (b,d,f) datasets. The methods are: the CD-EKNN classifier
(solid lines), the (α, γ)-EKNN classifier (dashed lines), the original γk-EKNN classifier
(dotted lines) and the voting K-NN rule (dash-dotted lines).
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In contrast with the original EKNN classifier, which assigns masses only to
singletons and the whole frame of discernment, the CD-EKNN classifier gen-
erates more general mass functions, as a result of applying the contextual dis-
counting operation. In future work, it will be interesting to study how masses
assigned to various subsets of classes can be interpreted, and to find out if this
richer information can be exploited for, e.g., classifier combination. Beyond dis-
counting, other contextual mass correction mechanisms such as introduced in
[10] could also be investigated.
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