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Abstract    Estimation of extreme sea levels and waves for high return periods is of 

prime importance in hydrological design and flood risk assessment. The common 

practice consists of inferring design levels from the available observations and 

assuming the distribution of extreme values to be stationary. However, in the 

recent decades, more concern has been given to the integration of the effect of 

climate change in environmental analysis. When estimating defense structure 

design parameters, sea level rise projections provided by experts now have to be 

combined with historical observations. Due to limited knowledge about the future 

world and the climate system, and also to the lack of sufficient sea records, 

uncertainty involved in extrapolating beyond available data and projecting in the 

future is considerable and should absolutely be accounted for in the estimation of 

design values.   

   In this paper, we present a methodology based on evidence theory to represent 

statistical and expert evidence in the estimation of future extreme sea return level 

associated to a given return period. We represent the statistical evidence by 

likelihood-based belief functions [7] and the sea level rise projections provided by 

two sets of experts by a trapezoidal possibility distribution. A Monte Carlo 

simulation allows us to combine both belief measures to compute the future return 

level and a measure of the uncertainty of the estimations. 
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1 Introduction 

Comprehensive uncertainty analysis is a key part of design and safety assessment 

procedures for reliable results and optimal decision. In the hydrological field, 

communicating the uncertainty about future flood risk to the decision makers is 

becoming the rule rather than the exception [1, 12]. If there is a general consensus 

about the relevant sources of uncertainty within a flood risk analysis, there is an 

increasing debate among risk analysts about the framework to use for quantifying 

it. The commonly used probabilistic framework has been strongly criticized for 

treating in the same way aleatory uncertainty that characterizes natural variability 

and epistemic uncertainty resulting from limited knowledge [1]. Given that, in 

environmental risk analysis, these uncertainties usually arise from different 

sources (statistical evidence, expert opinion...), the need for alternative 

frameworks to address differently both kinds of uncertainty emerged. Intensive 

works are investigating the appropriateness of approaches such as fuzzy set 

theory, imprecise probability or Dempster-Shafer theory in assessing reliability 

and risk analyses.  

In this paper, we are interested in modeling the uncertainty pertaining to the 

design parameters of flood defense structures in the context of future climate 

change. Evidence for estimating the parameter of interest and its uncertainty 

originates from two sources of different natures. The first one is related to 

statistical evidence commonly expressed by frequentist or Bayesian approach, the 

relevance of which has been increasingly criticized [5, 8]. The second one 

concerns projections of climate change and its impacts in terms of sea level rise, 

which have to be assessed by climate experts. Partial disagreement about the 

future climate change within the climate community leads, as will be showed later, 

to a high level of uncertainty attached to the projections available in the literature. 

We propose to represent and combine the two different sources of evidence 

(data and experts) using the DS framework, given its ability to address in a unified 

mathematical context different sources of evidence and the tools it offers to 

combine them.   

The paper is organized as follows. In the first section, we review the use of 

extreme value statistics in hydrology and the characteristics of hydrologic 

extremes in flood design. We briefly address the issue of climate change impacts 

and present the main projections on the future sea level rise existing in the 

literature. In the second part, we justify and explain the use of likelihood-based 

inference to represent statistical evidence and briefly address its connection with 

the DS framework. Finally, the last part describes the application of the 

methodology and summarizes the main results. 
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2 Key elements on hydrology and climate change 

Flood structures have to withstand exceptional sea events and their design has thus 

to be based on extreme sea level and waves. The main tool for modeling extreme 

events in environmental applications such as floods, droughts or rainfalls is 

Extreme Value Theory (EVT), which has emerged giving the limit of the 

conventional frequency analysis in fitting the tails of probability distributions. The 

block maxima approach is the original and best known method in EVT. It is based 

on the assumption that the maximum of an independent and identically distributed 

(i.i.d.) sample has asymptotically a generalized extreme value (GEV) distribution 

[11]. The cumulative distribution function of the GEV distribution is given by: 
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where         are, respectively, location, scale and shape parameters. 

According to the sign of     the distribution is called Fréchet (    , Weibull 

(     or Gumbel (    . 
In extreme-values studies, the probability of exceedance of a certain value z is 

usually expressed in terms of the return period T, defined as the average number 

of years between two successive exceedances of the corresponding return value z. 

Within the annual maxima method, the return period of a given level z is directly 

related to its annual non exceedance probability p by the relation: T =1/(1-p). 

Therefore, we get from (1) the following expression of the return level     

associated to a given return period T: 
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The only available evidence when estimating extreme quantiles is derived from 

the historical observations.   

Commonly, flood defenses in coastal areas are designed to withstand at least 

100-year events. However, due to climate change, they will be subject during their 

life time to higher loads than the design estimations. The main impact is related to 

the increase of the mean sea level which affects the frequency and intensity of 

surges.  For adaptation purposes, the present statistics of extreme sea levels 

derived from the observations should be combined with the projections of the 

future sea level rise (SLR) 
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  Future SLR projections provided by the IPCC's (International Panel of 

Climate Change Experts) last Assessment Report [10] assess the likely range of 

values for sea-level rise over the 1990-2095 period as 0.18 to 0.79 m; it is 

indicated in this report that higher values should not be excluded. This range takes 

into account uncertainties associated to future emissions of greenhouse gases 

(GHGs) corresponding to the SRES (Special Report Emission Scenarios) 

(scenarios that cover a wide range of possible economic, technological and 

energetic states of the world), global circulation models used to estimate future 

temperature projections and impacts models (melting of the Antarctic and 

Greenland, oceans expansion, etc.).  

Since the release of the last IPCC report, other sea level rise assessments based 

on semi-empirical models have been undertaken, proposing more pessimistic sea 

level rise scenarios for 2100. For example, based on a simple statistical model, 

Rahmstorf [15] suggests [0.5m, 1.4 m] as a likely range of values for sea-level rise 

at the end of this century. However, recent studies showed that there is a physical 

limit to the sea level rise in the coming years: the threshold of 2 m could not be 

exceeded by the end of this century [13].  

 

Current methods for integrating future SLR in flood risk or design analysis 

have considered a deterministic particular sea level rise scenario since there is no 

information to quantify the probability of any given sea level magnitude within the 

IPCC range. However, as shown by Purvis [14], who undertook a flood risk 

analysis under climate change, using the most plausible sea level rise scenario 

may significantly underestimate effective consequences and lead to erroneous 

decisions. 

 

For estimating design level under climate change, we proceed in two steps: we 

first infer the current design level from statistical evidence (available sea level 

measurements). In a second step, we integrate expert judgment on future sea level 

rise.  

3 Likelihood-based representation of statistical evidence 

The estimated level is usually obtained from (2) by replacing the probability 

distribution parameters by their best estimates. Commonly, parameters are 

estimated using frequentist methods. However, these methods are based on 

asymptotic properties and their performance turns to be quite poor when we deal 

with small samples. As for the estimations, the confidence intervals supposed to 

inform about the level of uncertainty within the estimations are quite unreliable 

because of the very crude approximations in the calculation of the upper and lower 

bounds of the confidence interval [18]. In fact, confidence intervals are based on 

the repeated sampling hypothesis which consists of hypothetically repeating the 
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particular experiment and derive accordingly the confidence bounds. In cases such 

that the repetition is not possible, this approach can be questioned and alternative 

approaches to effectively represent the available evidence are needed. 

Authors such as Fisher [8], Cox [5], Barnard et al. [3] and Edwards [7] have 

criticized the frequentist approach for its inappropriate use of significance levels, 

confidence intervals and other repeated-sampling criteria to represent evidence 

and have advocated a new, more „evidential‟ approach to statistical inference that 

uses only the likelihood function.  

The likelihood-based inference approach relies on the likelihood principle, 

which states that given an observation  , the relevant information about an 

unknown parameter        (possibly a vector) is all contained in the 

likelihood function for the observed sample  , denoted          Recall that the 

likelihood is a function of the parameters of a statistical model        defined as 

follows: given some observed outcomes, the likelihood of a set of parameters is 

equal to the probability of the observations given those parameters. Thus  

               
 

The representation of statistical evidence in the belief function framework is 

motivated by the fact that belief functions form a richer set of functions than 

probability measures: it is thus expected that inference, when based on belief 

functions, would allow us to model a wider range of uncertainty than probabilities. 

Shafer [17] was the first to propose to represent likelihood information as a 

consonant belief function about the parameters. Shafer‟s method was later 

justified axiomatically by Wasserman [19]; additional arguments for its use in 

statistical inference were provided by Aickin [2]. Fisher [8] interprets the 

likelihood function as an expression of the relative plausibility of the parameters 

when no additional information, except the observations, is available. It thus 

seems reasonable to define the plausibility contour function (or credibility 

function), when the likelihood is bounded, as: 

 

                                                 
      

        
                                      (3)  

 

where    is the maximum likelihood estimate (MLE) of  . The associated 

plausibility is easily computed for every subset     as          
 

                                                                                   (4)    
 

The contour function (3) has a simple interpretation:          represents the 

probability of observing x if the true parameter value is  , relative to the 

maximum probability of observing x  for any value of    A parameter value with 

low plausibility, say 0.001, indicates that there are other values of    which ensure 

a 1000 times higher probability to observe     
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   The set                  , called the  -level likelihood region, allows us 

to characterize ranges of implausible values (for example, values ranging outside 

5% likelihood region) and very plausible values. 

4 Application and results 

As a case study, we applied the likelihood-based inference method described 

above to infer the design variable      from the sample of observations X 

corresponding to 15 years of hourly records of sea level (observations from tide 

gauges at le Havre harbor, France). This measure was estimated under the 

assumption that the annual maxima have a Gumbel distribution (2); here,   is the 

structural parameter and     the nuisance one. The latter was eliminated through a 

profile likelihood approach. The corresponding contour function is shown in 

Figure 1.The most plausible value characterized by a plausibility level equal to 1 

corresponds to the maximum likelihood estimate.   

    In a second step, we integrated the uncertain effect of climate change in terms 

of SLR (in meters) to estimate the future return level (at the end of the century) 

associated to the same return period.  As sources of information about the SLR, 

we considered projections by the IPCC and Rahmstorf [15] estimations provided 

above as the current best available evidence. We formalized each of these pieces 

of evidence by a trapezoidal possibility measure that represents our best 

interpretation of the expert‟s estimations (Figure 2). Since both sources are 

reliable, a conjunctive aggregation is applicable. Among the conjunctive rules, the 

minimum is the most appropriate when the opinions of the experts are based on a 

common knowledge: we thus applied this rule to derive the aggregated SLR 

possibility distribution. 

 

 

 
Fig.1 Plausibility measure of the design 

parameter      

 
  Fig.2 SLR Trapezoidal Possibility inferred 

measures (in continuous bold line: 

inference based on Rahmstorf evidence. In 

dashed line: inference based on IPCC 

evidence)  
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   Finally we computed the belief function on the future design level     
 

      
    using a Monte Carlo sampling procedure. This procedure consists in 

randomly drawing plausibility levels   and possibility levels   using independent 

uniform distributions For every random   and  , we associate the   and   

likelihood regions [     
       

         and [                    ; the corresponding design 

level     
 

 is within [     
             

                    . This procedure was repeated 

a thousand times. From these simulated intervals, we can calculate for a fixed 

level     
 

, the cumulative plausibility and belief. The cumulative plausibility 

corresponds to the relative frequency, over the simulations, of the event “the lower 

bound is less than the fixed level”, whereas the cumulative belief corresponds to 

the relative frequency of the event “the upper bound is less than the fixed level”. 

Figure 3 shows the cumulative plausibility and belief functions of the current and 

future return level (respectively in dashed and solid line). The upper curve 

corresponds to the plausibility function and the lower one to the belief measure.  

 

 
 

Fig. 3 Cumulative belief functions for the current (in dashed line) and future (in solid line) return 

level: the lower distribution is the belief; the upper one is the plausibility 

The area between the belief and the plausibility dashed curves can be 

interpreted as a measure of the total uncertainty. When climate change is 

considered in the estimation of the future level, the area becomes very large, 

reflecting the important uncertainty associated with the SLR projections. 

6. Conclusion 

The Dempster-Shafer theory of belief functions places emphasis on the 

representation of evidence for evaluating degrees of belief. The generality and 

flexibility of this framework makes it suitable for representing and combining 

expert judgments and statistical evidence. In this paper, this approach has been 
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applied to the estimation of the centennial sea level at a particular location, taking 

into account historical data and expert assessments of sea level rise by the end of 

the century. This work is part of a larger project that aims at defining engineering 

design processes for the adaptation of coastal infrastructure to climate change. 
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