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Abstract Multi-label classification deals with problems in which each instance can
be associated with a set of labels. An effective multi-label method, named RAKEL,
randomly breaks the initial set of labels into smaller sets and trains a single-label
classifier in each of this subset. To classify an unseen instance, the predictions of all
classifiers are combined using a voting process. In this paper, we adapt the RAKEL
approach under the belief function framework applied to set-valued variables. Using
evidence theory makes us able to handle lack of information by associating a mass
function to each classifier and combining them conjunctively. Experiments on real
datasets demonstrate that our approach improves classification performances.

1 Introduction

Multi-label classification considers problems in which an object may belong simul-
taneously to multiple classes [4, 5, 10]. Several applications may be subscribed un-
der the multi-label classification problem. In semantic scene classification, each im-
age can be separated into semantic classes as beaches, sunsets or parties [1]. In text
categorization, each document may belong to multiple categories such as govern-
ment, arts and health [6]. In music classification, each song can evoke more than
one emotion at the same time, such as amazed, happy, excited, etc. [7].

A lot of algorithms have been proposed for multi-label learning. The existing
methods can be categorized into two groups: the indirect methods and the direct
ones [8]. The former one transforms the multi-label classification problem into one
or more single-label classification problems, while the latter handles directly the
multi-label classification problem.
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This paper focuses on an effective multi-label learning method introduced in [9].
This method, named RAKEL (RAndom-k-labEL sets), aims at solving the multi-
label classification problem while taking into consideration the correlation between
labels. It randomly breaks the set of labels into smaller sets and learns a single-label
classifier for each subset. To make a decision, the different predictions for each label
are aggregated via voting. In this approach, the user has to identify the number of
random label sets, the size of these sets and an adequate threshold in the voting
process.

Our goal in this paper is to alleviate the loss of information inherent in the RAKEL
method (as each base classifier only considers a subset of labels) while accounting
for label correlation in a more efficient way. For this purpose, we propose to re-
tain the basic principle of the RAKEL approach but to combine the different classi-
fiers in the belief function framework. In [3], a formalism for representing uncertain
information has been proposed for manipulating knowledge about set-valued vari-
ables. We use this formalism in order to represent and combine information about
an unseen instance and to predict its set of labels. To show the effectiveness of
this strategy even when using simple classifiers structure, we use Linear Discrimi-
nant Analysis (LDA) as the base-level learning method for each classifier. In LDA,
each classifier provides information about the object to classify on the form of esti-
mated posterior probabilities. Due to the fact that these outputs can be expressed as
set-valued variables, we encode them as mass functions and combine them conjunc-
tively. To make a final decision, we compute the belief function for each label or the
maximum of commonality in order to find the whole set of labels to be assigned.
The proposed method, called Evidential-Rakel-LDA has the advantage of reducing
the number of parameters since the decision making process is automatically per-
formed under the belief function framework.

The rest of this paper is organized as follows. Section 2 recalls the background
on belief functions for set-valued variables. Section 3 introduces the Rakel-LDA
method. Section 4 presents experiments on two real datasets and discusses the re-
sults. Finally, section 5 concludes the paper.

2 Belief functions on set-valued variables

Let X be a variable taking zero, one or several values in a finite set £2. Such a
variable is said set-valued [3].

To express partial knowledge about a set-valued variable X, we may specify a set
A of values that are certainly taken by X and a set B of values that are certainly not
taken by X. The set of subsets of €2 that contain A and have an empty intersection
with B is denoted by ¢(A,B). Let C(£2) be the set of all subsets of @ = 2 of the
form @(A,B), completed by the empty set of ©.

The theory of belief functions can be applied to describe partial knowledge about
set-valued variables by defining a mass function on ® = 2. It is clear that the
cardinality of C(Q) is equal to 35 + 1.
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The belief and commonality functions are defined, respectively, as follows:

bel(A,B) = Y m(C,D) —0g, (D)
¢(C,D)C¢(A,B)

q(A,B) = Y m(C,D), )
¢(C,D)2¢(A,B)
where m(A, B) is a notation for m(@(A,B)).
As shown in [3], Dempster’s rule can be expressed as follows:
Yo(c.0)np(E,F)=p(4,8 M1 (C,D)ma(E, F)
Y o(C.0)ne(E,F)£0o M1 (C, D)ma(E, F)

(m1 @my) (A, B) = 3)

Even if the evidential approach reduces the number of focal elements to 3% + 1,
this method still has high complexity for large numbers of labels. As an example, if
we have 20 labels in the multi-label problem, we may have to handle up to 3.4868¢ +
009 focal elements. The method proposed in the next section aims to overcome this
problem by applying the Evidential formalism to several partitions of the label set
and to combine the results under the belief functions framework.

3 Evidential-Rakel-LDA

Let 2~ = R? denote the input space, and let Q = {@, @, ..., o} be the finite set
of labels. The multi-label classification problem can be described as follows. Given
a training set 2 = {(x1,Y1),..., (xn,Yy)}, of N instances drawn from .2~ x 2, and
identically distributed, where x; is a feature vector describing instance i, and ¥; C Q
is the set of labels for that instance, the goal of the multi-label learning is to find a
multi-label classifier 7 : 2~ — 2 that can associate a set of labels to each unseen
instance.

As in the standard RAKEL method, we randomly split the initial set of labels
into a number of smaller label sets £;. For each one, the training set of instances,
denoted Z;, is deduced from the original dataset & by replacing the label sets of
training instances by their intersections with £2;. Inside Z;, each combination of
labels is considered as a new class (or group of classes).Using Z;, we train an LDA
classifier, denoted h; (here h; is a single-label classifier). Note that LDA is used
to generate a set of linear functions, one for each group. These functions are built
by maximizing the ratio of the between-class variance to the within-class variance.
In order to make a decision for an unseen instance x, LDA estimates the posterior
probability for each group of the set £2;.

In the frame of discernment €2, the individual classifier outputs are considered as
items of evidence. Each output is represented by a mass function on a focal set, noted
by ¢(Ay,B,) where A, B, C ;. In other words, A, is the set of labels assigned to
one group and B, is its complement in ;.
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After considering all the items of evidence as items on 2, we combine them
using the Dempster’s rule (3) to form the resulting BBA m for an unseen instance.
To determine the set of estimated label ¥ of the unseen instance, we compare the
two degrees of belief bel(®,0) and bel (0, ®) for each label in Q [3]:

Y = {0 € Q/bel({w},0) > bel(0,{®})}. (4)

Note here that the decision making process is automatically performed without
having to define threshold. As shown by Denceux and Masson [2], we can also
calculate the communality function and the maximum of this function can be de-
termined by solving an integer programming problem with non-linear constraints.
In this case, another way to calculate Y is to select the set of labels with the largest
communality.

4 Experiments

4.1 Evaluation metrics

To evaluate the performance of our method, we calculate different metrics used in
the multi-label literature [8].

Hamming Loss: The Hamming Loss metric refers to the percentage of labels that
are misclassified, i.e., incorrect labels that are predicted or true labels that are not
predicted:

|my|

FCLoss = Z (@)

where A denotes the symmetric difference between two sets.
Accuracy: Accuracy measures the degree of closeness between the predicted and
the ground truth label sets:

Y;NY;
o ccuracy = Z Y, UY: (6)

F| measure: The F| measure is defined as the harmonic mean of two other metrics
called precision and recall. Precision is the fraction of predicted labels that are true,
while recall is the fraction of true labels that are predicted.

4
<

1 |Y;NY;]
Precision = — , 7
N):: 7 )
N
Recall = — Z |Y ﬁY| ®)

2
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and

F = Precision.Zecall

=2. . 9
Precision + Xecall ©)

The smaller the value of the Hamming Loss, the better the performance. For the
other metrics, higher values correspond to better classification quality.

4.2 Datasets

Our method was experimented using the emotions and scene datasets '.

The Emotion dataset contains 593 songs described by eight rhythmic features
and 64 timbre features. There are six classes, and each song can belong to more
than one label according to the emotions generated.

The Scene dataset consists of 2407 natural scene images. There are six different
semantic classes. Spatial color moments are used as features. Each image is divided
into 49 blocks using 7 x 7 grid. The mean and variance of each band are computed
corresponding to a low-resolution image and to computationally inexpensive texture
features, respectively. Each image is then described by 49 x 2 x 3 features [1].

4.3 Results and discussions

We compared our method to the classical RAKEL approach based on the LDA
method with different threshold values. The number k of labels in each subset was
fixed to three for all experiments and the number of classifiers was ranging from 2
to 2 % Q. Experiments on Rakel-ADL were done with all meaningful values for the
threshold (0.1, 0.5 and 0.9).

Due to randomization of label space, results are very sensitive to the selected
combination of labels. To deal with this negative aspect, we grouped results in
batches of 10 classifiers calculated for the same value of k, and we computed the
average.

Figures 1 to 3 show the box plots for the different metrics obtained for the emo-
tion and scene datasets. From Figure 1, we can notice that our method performs
better than Rakel-ADL for different values of threshold in term of Accuracy on the
two datasets.

Figure 2 shows the performance of the F; measure metric. As we can see on the
scene dataset, the proposed method yields good performances and it is competitive
with the two versions of decision. On the emotion dataset, Rakel-ADL performs bet-
ter for a threshold value equal to 0.1. This is due to the fact that the emotion dataset
is more labelled than the scene one (the average number of labels per instance is

! http://mulan.sourceforge.net/datasets.html
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1.87 for the former, while it is 1.07 for the latter). Decreasing the threshold value
can result in taking into account all positive true labels and increasing the value of
the recall metric.

Figure 3 shows the box plot of the minimum Hamming Loss for different meth-
ods. On the emotion dataset, our approach shows good performances, while on the
scene dataset and for a threshold equal to 0.9 we get the best result. This is due to
the fact that increasing the threshold is followed by reducing the number of predic-
tion errors (number of incorrect predicted labels), especially with the scene dataset
(80% of instances have a single label).

Tables 1 and 2 show that our approach is suitable to multi-label classification
problems under the Rakel approach where we have missing information due to lack
of knowledge given by each classifier. Note that the intuitive threshold (+ = 0.5)
gives in average better performances on the Rakel-ADL over different values of
threshold.
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Fig. 1 Accuracy box plots with the Rakel-LDA method using a threshold values 0.1, 0.5, 0.9, and
the Evidential-Rakel-LDA method using the belief and the maximum of communality principles.
Left figure: for the emotion dataset; right figure: for the scene dataset
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Table 1 Experimental results (mean=+std) of the compared algorithms on the emotions dataset
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Fig. 2 F box plots with the Rakel-LDA method using a threshold values 0.1, 0.5, 0.9, and the
Evidential-Rakel-LDA method using the belief and the maximum of communality principles. Left
figure: for the emotion dataset; right figure: for the scene dataset
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Fig. 3 Hamming Loss box plots with the Rakel-LDA method using a threshold values 0.1, 0.5,
0.9, and the Evidential-Rakel-LDA method using the belief and the maximum of communality

principles. Left figure: for the emotion dataset; right figure: for the scene dataset
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Table 2 Experimental results (mean=+std) of the compared algorithms on the scene dataset
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5 Conclusion

A variant of the RAKEL method for multi-label classification has been proposed,
based on the theory of belief functions. Our approach uses the formalism developed
in [3] to define belief functions for set-valued variables. This framework allows
us to combine the outputs from base classifiers in a more efficient way than the
voting process used in the reference method. Experimental results demonstrate the
effectiveness of the approach.

References

10.

. MR. Boutell, J. Shen, and C.M. Brown. Learning multi-label scene classification. Pattern

Recognition, 37:(9):1757-1771, 2004.

. T. Denceux and M.-H. Masson. Evidential reasoning in large partially ordered sets. Applica-

tion to multi-label classification, ensemble clustering and preference aggregation. Annals of
Operations Research, Accepted for publication, 2011. doi:10.1007/s10479-011-0887-2.

. T. Denoeux, Z. Younes, and F. Abdallah. Representing uncertainty on set-valued variables

using belief functions. Artificial Intelligence, 174:479-499, 2010.

. N. Ghamrawi and A. McCallum. Collective multi-label classification. In /4th ACM interna-

tional conference on Information and knowledge management, 2005.

. J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classifica-

tion. In Proc. of the 20th European Conference on Machine Learning (ECML 2009), 2009.

. R. Schapire and Y. Singer. Boostexter: a boosting-based system for text categorization. Ma-

chine Learning, 39:135-168, 2000.

. K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multilabel classification of music

into emotions. In Proc. 9th International Conference on Music Information Retrieval (ISMIR
2008), pp. 325-330, 2008.

. G. Tsoumakas and I. Katakis. Multi-label classification: An overview. International Journal

of Data Warehousing and Mining, 3(3):1-13, 2007.

. G. Tsoumakas and I. Vlahavas. Random k-labelsets: An ensemble method for multilabel

classification. In Proc. 18th European Conference on Machine Learning, 17-21 September
2007.

Z. Younes, F. Abdallah, T. Denoeux, and H. Snoussi. A dependent multilabel classification
method derived from the k-nearest neighbor rule. EURASIP Journal on Advances in Signal
Processing, 2011. Article ID 645964, 14 pages, doi:10.1155/2011/645964.



