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Abstract

This paper extends the theory of belief functions by introducing new
concepts and techniques, allowing to model the situation in which the be-
liefs held by a rational agent may only be expressed (or are only known)
with some imprecision. Central to our approach is the concept of interval-
valued belief structure, defined as a set of belief structures verifying certain
constraints. Starting from this definition, many other concepts of Evidence
Theory (including belief and plausibility functions, pignistic probabilities,
combination rules and uncertainty measures) are generalized to cope with
imprecision in the belief numbers attached to each hypothesis. An appli-
cation of this new framework to the classification of patterns with partially
known feature values is demonstrated.

Keywords: evidence theory, Dempster-Shafer theory, belief functions,
Transferable Belief model, uncertainty modeling, imprecision, pattern clas-
sification.

1 Introduction

The representation of uncertainty is a major issue in many areas of Science and
Engineering. Although Probability Theory has been regarded as a reference
framework for about two centuries, it has become increasingly apparent that
the concept of probability is not general enough to account for all kinds of
uncertainty. More specifically, the requirement that precise numbers be assigned
to every individual hypotheses is often regarded as too restrictive, particularly
when the available information is poor.

The use of completely monotone capacities, also called credibility or belief
functions, as a general tool for representing someone’s degrees of belief was
proposed by Shafer [20] in the seventies (belief functions had already been
introduced by Dempster ten years earlier as lower probabilities generated by
a multivalued mapping [1]). In the last two decades, the so-called Dempster-
Shafer (D-S) theory of evidence has attracted considerable interest, but debates
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concerning the relevance of belief functions for uncertainty representation have
sometimes been obscured by misunderstandings about their meaning [25, 30].

In the Dempster’s model, the possibility space of interest Ω is assumed to be
related through a many to one mapping M to an underlying space Ψ on which
the existence of a precise probability measure P is assumed [1]. The lower
probability P∗(A) of A ⊆ Ω is then defined as the probability of the largest
subset of Ψ whose image under M is included in A, while the upper probability
P ∗(A) of A is the probability of the largest subset of Ψ such that the images
under M of all its elements have a non empty intersection with A. Function
P∗ happens to be a belief function, but, as pointed out by Smets [31], it does
not necessarily quantify an agent’s belief. Rather, the interval [P∗(A), P ∗(A)]
receives in this approach a natural interpretation as an imprecise specification
of some unknown probability P (A). Dempster’s model is thus a particular form
of imprecise probability model [34].

Smets’ Transferable Belief Model (TBM) differs radically from Dempster’s
model (and from other non-standard probabilistic interpretations such as based,
e.g., on random sets) in that it introduces belief functions independently from
any probabilistic model [23, 33]. The main assumptions underlying the TBM
are that (1) degrees of belief are quantified by numbers between 0 and 1; (2)
there exists a two-level structure composed of a credal level where beliefs are
entertained, and a pignistic level where decisions are made; (3) beliefs at the
credal level are quantified by belief functions, while decisions at the pignistic
level are based on probability functions; (4) when a decision has to be made,
beliefs are transformed into probabilities using the so-called pignistic transfor-
mation. A complete axiomatic justification of that model is presented in [32].

The main reason why the multiple interpretations of the D-S theory must
be carefully distinguished is that they have different implications with regard
to the way beliefs should be updated when new evidence becomes available
[31]. In fact, it is only within the TBM that Dempster’s rules of conditioning
and combination seem to be fully justified [23, 25, 27]. In the rest of this
paper, we shall therefore adopt Smets’ view of belief functions as an alternative
to probability functions for pointwise representation of the beliefs held by a
rational agent.

A consequence of the above point of view is that a belief function and the
associated plausibility function cannot be regarded as defining probability inter-
vals. Of course, such intervals mathematically exist, but they are meaningless
since we do not assume the existence of any objective or subjective probabil-
ity function: the TBM is not a model of poorly known probabilities. It may
then be wondered whether the necessity to assign precise numbers to each sub-
set of the possibility space is not too constraining. If beliefs – represented by
belief masses and not by probabilities – are the quantities of interest, then
uncertainty about their values can no longer be neglected as being of second
order. In other words, one may wonder whether one of the main criticisms
raised against Bayesian Probability Theory – its unreasonable requirement for
precision – cannot also be raised against the TBM.

To help clarify this point, it is useful to examine some features of beliefs,
evidence and the assessment process which can lead to imprecision in models
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of uncertainty. Walley [34] makes an interesting distinction between two main
reasons for introducing imprecision in models uncertainty: indeterminacy and
model incompleteness.

Indeterminacy may be defined as an absence of preference, due to limitations
of the available information. The TBM effectively allows to cope with such type
of imprecision, since a belief function may assign a positive mass of belief to a
proposition A without supporting any strict subproposition. It is this feature
of D-S theory that gives it a distinctive advantage over Probability Theory for
representing ignorance.

The second main factor leading to imprecision is incompleteness of the
model, which may be due to difficulties in analyzing evidence and assessing
beliefs. Many of the sources of imprecision mentioned by Walley in the case of
probability models are still relevant when dealing with belief functions, namely:

• lack of introspection or of assessment strategies (precise degrees of belief
may exist, but it may be too difficult, too costly, or unnecessary to elicit
them with great precision),

• instability (underlying beliefs may be unstable, or elicited beliefs may be
influenced by the conditions of elicitation),

• ambiguity (beliefs may be elicited through ambiguous judgments such as
“about 0.3”), etc.

For all these reasons, we need a generalization of the TBM allowing to work
with imprecisely specified beliefs, which is the subject of this paper.

Whereas there is a rich literature on imprecise probabilities (see an excel-
lent survey in [34]), attempts to define a rigorous, yet mathematically tractable
generalization of D-S theory allowing to assign imprecise belief masses to propo-
sitions seem to have been until now limited1. The reason for that may be that
credibility functions have very often been considered as defining probability in-
tervals instead of pointwise beliefs, as explained above. Zadeh [41] mentioned
the possibility of generalizing the concepts of expected possibility and neces-
sity (which themselves generalize the notions of credibility and plausibility) to
the case where belief masses are fuzzy or linguistic, and Smets [26] proposed a
method for defining fuzzy degrees of belief and plausibility by conditioning with
a fuzzy event. However, none of these authors seem to have really explored this
research avenue. Other approaches based on extensions of addition and mul-
tiplication operations to intervals or fuzzy numbers have also been proposed
[16, 17]. However, these methods generally lack clear theoretical justification,
and fail to preserve important properties of the classical theory.

The objective of this paper is to extend the main concepts of D-S theory,
including those of credibility, plausibility, Dempster’s rule of combination, nor-
malization, and entropy-like uncertainty measures, to the case where degrees of
belief in the various propositions are only known to lie within certain intervals.

1This approach should not be confused with the concept of a belief function with fuzzy
focal elements studied by several authors [41, 21, 11, 35, 18, 40, 39]. However, both approaches
are compatible, i.e., imprecise masses may be assigned to fuzzy events.
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These results open the way to further generalization to fuzzy belief numbers
and fuzzy focal elements, which has been undertaken and described elsewhere
[4, 6].

The organization of the paper is as follows. First, the necessary background
concerning D-S theory is recalled in Section 2. Interval-valued belief structures
(IBS), and the associated concepts of imprecise evidential functions and pig-
nistic probabilities are then introduced in Section 3. Section 4 addresses the
dynamic part of the model, i.e., the combination of IBSs induced by multi-
ple sources, as well as normalization rules. It is then shown how uncertainty
and information measures may be extended to IBSs, allowing to quantify the
imprecision of an IBS, and to select a “maximally uncertain” belief structure
compatible with an IBS (Section 5). Finally, an application of these concepts to
pattern classification with partial knowledge of feature vectors is demonstrated
in Section 6.

2 Background

2.1 Belief structures

Let Ω be a finite set called the possibility space, or the frame of discernment,
and m a function from 2Ω to [0, 1] verifying:∑

A⊆Ω

m(A) = 1.

Such a function is called a basic probability structure by Shafer [20], a basic
belief assignment by Smets [23], and a belief structure (BS) by Yager [35]. The
latter terminology will be adopted in this paper. The quantity m(A) (called a
mass of belief or a belief number) may be interpreted as a “part of belief” that
is committed to A given the available evidence, and that cannot be committed
to any strict subset of A because of lack of sufficient information. Let

F(m) = {A ⊆ Ω|m(A) > 0}

The elements of F(m) are called the focal elements of m. Shafer [20] initially
imposed a normality condition for belief structures (∅ 6∈ F(m)). Smets [23]
proposed to relax this condition, and to interpret m(∅) as the part of belief
committed to the assumption that none of the hypotheses in Ω might be true
(open-world assumption). If however the truth is known with absolute certainty
to lie in Ω (closed-world assumption), then the normality condition is justified.
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2.2 Evidential functions

Let m be a BS. For all A ⊆ Ω, the belief (or credibility) and the plausibility of
A are defined respectively as [20, 33]:

belm(A) =
∑
∅6=B⊆A

m(B) (1)

plm(A) =
∑

B∩A 6=0

m(B) (2)

= belm(Ω)− belm(Ā) (3)

where Ā denotes the complement of A. The quantity belm(A) may be in-
terpreted as the total amount of justified support given to A, while plm(A)
quantifies the maximum amount of specific support that could be given to A,
if justified by additional information [33]. Note that ∅ is excluded from the
sum in Equation 1, which under the open-world assumption is justified by the
particular interpretation given to m(∅), and guarantees that belm(A) ≤ plm(A)
for all A.

Shafer [20] also introduced the commonality function defined for all A ⊆ Ω
as:

qm(A) =
∑
B⊇A

m(B). (4)

Although the meaning of qm(A) in not so obvious as those of belm(A) and
plm(A), function q plays an important role in relation to the conjunctive com-
bination of BSs (see Section 2.4).

The credibility, plausibility and commonality functions (henceforth referred
to as evidential functions) are in one-to-one correspondence with belief struc-
tures [20]. Therefore, they can be regarded as different expressions of the same
information.

2.3 Pignistic transformation

The problem of decision making in solved in the TBM using the concept of pig-
nistic probability function, which was shown by Smets [24, 33] to be the only
solution compatible with simple rationality requirements. Given a normalized
belief structure m quantifying one’s beliefs at the credal level, a pignistic prob-
ability distribution BetPm is defined as:

BetPm(A) =
∑
B⊆Ω

m(B)
|A ∩B|
|B|

(5)

for all A ⊆ Ω. In this transformation, the mass m(B) is thus distributed
equally among the elements of B. The same solution would also be obtained
by applying the Insufficient Reason Principle at the level of each mass of belief,
although this principle need not be postulated in the TBM [33].
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2.4 Combination of belief structures

Let m1 and m2 be two BSs on the same frame of discernment Ω induced by
distinct items of evidence. Dempster [1], followed by Shafer [20], suggested a
procedure for combining m1 and m2, known as Dempster’s rule of combination.
According to this rule, the orthogonal sum of m1 and m2 is defined by:

(m1 ⊕m2)(A) =
1

K

∑
B∩C=A

m1(B)m2(C) (6)

with K =
∑

B∩C 6=∅m1(B)m2(C) for A 6= ∅, and m(∅) = 0. Under the open-
world assumption, the normalizing factor may be dropped, leading to the sim-
pler conjunctive sum operation [23]:

(m1 ∧m2)(A) =
∑

B∩C=A

m1(B)m2(C). (7)

The computation of the conjunctive sum is sometimes made simpler by using
the following property of the commonality function:

qm1∧m2(A) = qm1(A)qm2(A) ∀A ⊆ Ω. (8)

The conjunctive sum has a natural disjunctive counterpart, which is appli-
cable when we only know that one of the two pieces of evidence actually holds
[28]:

(m1 ∨m2)(A) =
∑

B∪C=A

m1(B)m2(C). (9)

Yager2 [37] suggested to further generalize these rules to any binary set
operation ∗ as:

(m1 ~m2)(A) =
∑

B∗C=A

m1(B)m2(C). (10)

where ~ is the operation on belief structures induced by ∗.

3 Interval-valued belief structures

3.1 Definition

In the rest of this paper, we now assume that belief masses are only known
to lie within certain intervals. Uncertainty is then no longer described by a
unique belief structure, but by a convex set of belief structures verifying certain
constraints. More precisely, let us introduce the following definition.

Definition 1 (Interval-valued belief structure)
Let SΩ denote the set of all belief structures on Ω. An interval-valued belief
structure (IBS) is a non empty subset m of SΩ such that there exist n subsets
F1, . . . , Fn of Ω, and n intervals [ai, bi], 1 ≤ i ≤ n (with bi > 0) such that

m = {m ∈ SΩ|ai ≤ m(Fi) ≤ bi, 1 ≤ i ≤ n, and m(A) = 0,∀A 6∈ {F1, . . . , Fn}}

We note F(m) = {F1, . . . , Fn}.
2Yager actually assumed ∗ to be a non-null forming operation (i.e., B ∗ C 6= ∅ for any B

and C), because he only considered normalized BSs. This assumption is unnecessary here.
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Obviously, the condition that m be non-empty imposes certain constraints
on the ai and bi; these constraints are expressed in the following proposition:

Proposition 1
A necessary and sufficient condition for m to be non-empty is that

∑n
i=1 ai ≤ 1

and
∑n

i=1 bi ≥ 1.

Proof. The condition is obviously necessary: if there exists some m ∈ m,
then we have

n∑
i=1

ai ≤
n∑
i=1

m(Fi) = 1

and
n∑
i=1

bi ≥
n∑
i=1

m(Fi) = 1

To prove that it is sufficient, let us note s =
∑n

i=1 ai, S =
∑n

i=1 bi, and

λ =
S − 1

S − s

Let m be the belief structure defined as m(Fi) = λai + (1− λ)bi for 1 ≤ i ≤ n,
and m(A) = 0 for all A 6∈ {F1, . . . , Fn}. We have ai ≤ m(Fi) ≤ bi for 1 ≤ i ≤ n,
and

n∑
i=1

m(Fi) = λs+ (1− λ)S = 1

Hence m ∈m, and m 6= ∅. �

Remarks

1. If m is a belief structure, then the singleton {m} is an IBS with ai = bi =
m(Fi) for all Fi ∈ F(m). Hence, the concept of IBS generalizes that of
BS.

2. The set S(Ω) is an IBS in which the interval associated to each subset of
Ω is [0, 1]. It may be interpreted as reflecting “second-order” ignorance,
i.e., ignorance of what the state of belief of an agent may be.

3.2 Bounds of an IBS

It is important to note that the intervals [ai, bi] specifying an IBS m are not
necessarily unique. Since

m(Fi) ≤ min

bi, 1−∑
j 6=i

ai

 ,
it is obvious that, whenever bi ≥ 1−

∑
j 6=i ai, bi may be replaced by any b′i ≥ bi.

To obtain a unique characterization of m, we must introduce the concepts of
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lower and upper bounds of m, defined respectively as:

m−(A) = min
m∈m

m(A)

m+(A) = max
m∈m

m(A)

for all A ∈ [0, 1]Ω. These functions may easily obtained from any set of intervals
[ai, bi] defining m by:

m−(Fi) = max

ai, 1−∑
j 6=i

bj


m+(Fi) = min

bi, 1−∑
j 6=i

aj


for all 1 ≤ i ≤ n, and m−(A) = m+(A) = 0, for all A /∈ F(m). It is easy to
check that:

m−(Fi) ≥ 1−
∑
j 6=i

m+(Fj)

m+(Fi) ≤ 1−
∑
j 6=i

m−(Fj)

for all 1 ≤ i ≤ n. It the rest of this paper, we note m(Fi) = [m−(Fi),m
+(Fi)].

3.3 Example

Before introducing other definitions, let us describe as an example a typical
situation in which the concept of IBS may be useful.

Example 1 Let us consider a situation in which n balls have been drawn with
replacement from an urn containing white and black balls. Knowing that ex-
actly nb black balls have been selected, what is your belief that the next ran-
domly selected ball will be black ? Let Ω = {b, w} be the possibility space for
that experiment. In [29], Smets has shown that, under the TBM, one’s belief
about which event in Ω will occur should be modeled by the following belief
structure:

m({b}) =
nb

n+ 1

m({w}) =
n− nb
n+ 1

m({b, w}) =
1

n+ 1

Let us now assume that we only know that between 10 and 100 balls have
been selected, among which at least 80 % were black. It is not clear in that
case how beliefs could be represented by a single BS. One possibility could be to
enumerate all possible cases, yielding a finite (but large) set of belief structures.
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However, it is much more convenient to compute lower and upper bounds for
the mass of belief assigned to each hypothesis, which leads to the following IBS:

m({b}) = [
8

11
,
100

101
]

m({w}) = [0,
20

101
]

m({w, b}) = [
1

101
,

1

11
]

3.4 Imprecise evidential functions

The concepts of credibility, plausibility and commonality of a subset A of Ω in-
duced by a BS may easily be generalized to the case of an IBS m by considering
the range of belm(A), plm(A) and qm(A), respectively, for all m ∈ m. Since
these quantities are linear combinations of belief masses constrained to lie in
closed intervals, their ranges are themselves closed intervals. We thus have the
following definition:

Definition 2 (Imprecise evidential functions)
The credibility, plausibility and commonality of a subset A induced by an IBS
m are the closed intervals defined respectively as:

belm(A) = [ min
m∈m

belm(A),max
m∈m

belm(A)] (11)

plm(A) = [ min
m∈m

plm(A),max
m∈m

plm(A)] (12)

qm(A) = [ min
m∈m

qm(A),max
m∈m

qm(A)] (13)

where belm, plm and qm are the belief, plausibility and commonality functions
defined by Equations 1, 2 and 4, respectively.

The calculation of each of these intervals requires to find the extrema of a
function of n variables of the form:

f(x1, . . . , xn) =
∑
i∈I

xi

with I ⊂ {1, . . . , n}, under the constraints

ai ≤ xi ≤ bi
for all 1 ≤ i ≤ n and

n∑
i=1

xi = 1

It is straightforward to show that, under these constraints, the extrema of f
are given by:

min f = max

∑
i∈I

ai, 1−
∑
i 6∈I

bi


max f = min

∑
i∈I

bi, 1−
∑
i 6∈I

ai


9



Using − and + superscripts to denote lower and upper bounds, respectively,
we thus have, for example:

bel−m(A) = max

 ∑
∅6=B⊆A

m−(B), 1−
∑
B 6⊆A

m+(B)−m+(∅)

 (14)

bel+m(A) = min

 ∑
∅6=B⊆A

m+(B), 1−
∑
B 6⊆A

m−(B)−m−(∅)

 (15)

Similar expressions may be obtained for the bounds of plm and qm without
any difficulty. Note that, if m is normalized (m+(∅) = 0), then the relation

plm(A) = 1− belm(Ā)

for all A ⊆ Ω and m ∈m has its counterpart in the following equalities:

pl−m(A) = 1− bel+m(Ā)

pl+m(A) = 1− bel−m(Ā).

Example 2 An example of an IBS on Ω = {a, b, c} and the corresponding
credibility, plausibility and commonality intervals is given in Table 1.

Remark: The one-to-one correspondence between belief structures and each
of the evidential functions is not preserved when dealing with imprecise belief
structures: an interval-valued evidential function does not uniquely specify an
IBS. For instance, it is possible to find an IBS m with corresponding interval-
valued belief function belm, such that belm ∈ belm for some m 6∈ m. Stated
differently, the set of all belief functions associated to a BS in m is strictly in-
cluded in belm (similar statements hold for plausibilities and commonalities).
To illustrate this point, let us consider m and belm as in Example 2, and the
BS m defined by Table 2. We have belm ∈ belm, whereas m 6∈ m. This
example proves that IBSs and interval-valued belief functions are not equiva-
lent representations. Our choice of working with IBSs is essentially driven by
practical considerations: in applications, belief structures are often constructed
directly from the evidence; moreover, they have a simpler mathematical form
than belief functions.

3.5 Interval-valued pignistic probability

An interval-valued pignistic probability function induced by an IBS may also
be defined by considering the range of BetPm(A) for all m ∈m.

Definition 3 (Interval-valued pignistic probabilities)
Let m be a normal IBS, i.e., an IBS such that ∅ /∈ F(m). The pignistic
probability of a subset A induced by m is the closed interval defined as:

BetPm(A) = [ min
m∈m

BetPm(A),max
m∈m

BetPm(A)]

where BetPm denotes the pignistic probability function induced by m.
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The bounds of BetPm(A) may be found as the solutions of a class of rel-
atively simple linear programming (LP) problems which has been extensively
studied by Dubois and Prade [7] (see also [8] and [10] p. 55). The fundamental
result is expressed by the following theorem:

Theorem 1 (Dubois and Prade, 1981)
Let x1, . . . , xn be n variables linked by the following constraints:

n∑
i=1

xi = 1

ai ≤ xi ≤ bi 1 ≤ i ≤ n

and let f be a function defined by f(x1, . . . , xn) =
∑n

i=1 cixi with

0 ≤ c1 ≤ c2 ≤ . . . ≤ cn.

Then

min f = max
k=1,n

k−1∑
j=1

bjcj +

1−
k−1∑
j=1

bj −
n∑

j=k+1

aj

 ck +

n∑
j=k+1

ajcj


max f = min

k=1,n

k−1∑
j=1

ajcj +

1−
k−1∑
j=1

aj −
n∑

j=k+1

bj

 ck +

n∑
j=k+1

bjcj


This theorem may be directly applied by posing ai = m−(Fi), bi = m+(Fi)

and

ci =
|A ∩ Fi|
|Fi|

,

the focal elements Fi being arranged in such a way that

0 ≤ c1 ≤ c2 ≤ . . . ≤ cn.

Example 3 An IBS and its associated pignistic probability function are shown
in Table 3.

4 Combination of IBSs

In this section, we start by generalizing a class of combination operations, in-
cluding the conjunctive and the disjunctive sums, to the case of IBSs. We then
show how normalization procedures may be extended to IBSs.

4.1 Combination of two IBSs

4.1.1 Definition

Let ~ denote a binary operation on BSs induced by some set operation ∗. This
operation may be extended to IBSs by considering the lower and upper bounds
of m1 ~m2, for any A ⊆ Ω.
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Definition 4 (Combination of two IBSs)
Let m1 and m2 be two IBSs on the same frame Ω, and let ~ be a binary
operation on BSs induced by some set operation ∗. The combination of m1 and
m2 by ~ is defined as the IBS m = m1 ~m2 with bounds:

m−(A) = min
(m1,m2)∈m1×m2

(m1 ~m2)(A)

m+(A) = max
(m1,m2)∈m1×m2

(m1 ~m2)(A)

for all A ⊆ Ω.

Remark: An alternative approach to define the combination of two IBSs m1

and m2 could be to consider the set M of all the BSs obtained by combining
one BS in m1 with one BS in m2:

M = {m|∃(m1,m2) ∈m1 ×m2,m = m1 ~m2} (16)

We have obviously M ⊆ m1 ~m2, but this inclusion is strict in general, as
shown by the following example.

Example 4 Let us assume that F(m1) = {A,Ω}, F(m2) = {B,Ω}, with
C = A ∩B 6∈ {A,B}, and:

m1(A) = [0, 0.5] m1(Ω) = [0.5, 1]
m2(B) = [0, 0.5] m2(Ω) = [0.5, 1]

Let us compute the conjunctive sum m of m1 and m2. Let m be the conjunctive
sum of m1 ∈ m1 and m2 ∈ m2. It has four focal elements: A, B, C and Ω.
The belief masses are:

m(A) = m1(A)m2(Ω)

m(B) = m1(Ω)m2(B)

m(C) = m1(A)m2(B)

m(Ω) = m1(Ω)m2(Ω)

Hence, we have:

m(A) = [m−1 (A)m−2 (Ω),m+
1 (A)m+

2 (Ω)] = [0, 0.5]

m(B) = [m−1 (Ω)m−2 (B),m+
1 (Ω)m+

2 (B)] = [0, 0.5]

m(C) = [m−1 (A)m−2 (B),m+
1 (A)m+

2 (B)] = [0, 0.25]

m(Ω) = [m−1 (Ω)m−2 (Ω),m+
1 (Ω)m+

2 (Ω)] = [0.25, 1]

Let m ∈ m defined by m(A) = 0.4, m(B) = 0.2, m(C) = 0.1 and m(Ω) = 0.3.
Let us show that it is impossible to find m1 ∈ m1 and m2 ∈ m2 such that
m = m1 ∧ m2. Let x = m1(A) and y = m2(B). These quantities must be
solutions of a system of four equations:

x(1− y) = 0.4 (17)

(1− x)y = 0.2 (18)

xy = 0.1 (19)

(1− x)(1− y) = 0.3 (20)
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It is easy to see that this system is incompatible: Equations 17 and 19 imply
that x = 0.5 and y = 0.2, which makes it impossible to satisfy the other two
equations.

This example shows that Equation 16 is not a good candidate for defining
the combination of two IBS, since M is not, in general, an IBS.

4.1.2 Practical calculation

In practice, the computation of m−(A) and m+(A) requires to search for the
minimum and the maximum of

ϕA(m1,m2) =
∑

B∗C=A

m1(B)m2(C) (21)

under the constraints: ∑
B∈F(m1)

m1(B) = 1

∑
C∈F(m2)

m2(C) = 1

m−1 (B) ≤ m1(B) ≤ m+
1 (B) ∀B ∈ F(m1)

m−2 (C) ≤ m2(C) ≤ m+
2 (C) ∀C ∈ F(m2)

The solution of this quadratic programming problem is trivial when the right-
hand side of Equation 21 contains only one term (as in Example 4), since we
then have a function of non interactive variables. In Appendix A, we give an
analytic solution for a more general case of particular interest: the conjunctive
sum of an arbitrary IBS with a simple IBS (i.e., an IBS with only one focal
element in addition to the possibility space).

In the most general case (combination of two arbitrary IBSs), an explicit
solution seems difficult to obtain, and we have to resort to some kind of iterative
optimization procedure. The particular form of the function to be optimized
suggests to employ the following alternate directions scheme, which proved
experimentally to be very effective.

Consider for example the minimization of ϕA(m1,m2). Let us fix m1 and

m2 to some admissible values m
(0)
1 and m

(0)
2 , respectively. Then ϕA(m1,m

(0)
2 )

is a linear function of the m1(B), for B ∈ F(m1):

ϕA(m1,m
(0)
2 ) =

∑
B∈F(m1)

m1(B)

( ∑
B∗C=A

m
(0)
2 (C)

)

The search for m1 minimizing this expression is a linear programming problem

that may be solved directly using Theorem 1. Let m
(1)
1 be a solution (if m

(0)
1 was

already a solution, then we pose m
(1)
1 = m

(0)
1 ). We then proceed by searching

m
(1)
2 minimizing ϕA(m

(1)
1 ,m2). The procedure is iterated until a fixed point

has been found, i.e., until we have reached k such that m
(k)
1 = m

(k−1)
1 and

m
(k)
2 = m

(k−1)
2 . More formally, the algorithm may be described as follows:
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1. Initialize m
(0)
1 and m

(0)
2 to random admissible values.

2. k ← 0.

3. repeat

(a) k ← k + 1.

(b) Find m∗1 solution of

min
m1

ϕA(m1,m
(k−1)
2 )

(c) If ϕA(m∗1,m
(k−1)
2 ) < ϕA(m

(k−1)
1 ,m

(k−1)
2 ) then m

(k)
1 ← m∗1 else

m
(k)
1 ← m

(k−1)
1 endif.

(d) Find m∗2 solution of

min
m2

ϕA(m
(k)
1 ,m2)

(e) If ϕA(m
(k)
1 ,m∗2) < ϕA(m

(k)
1 ,m

(k−1)
2 ) then m

(k)
2 ← m∗2 else m

(k)
2 ←

m
(k−1)
2 endif.

until m
(k)
1 = m

(k−1)
1 and m

(k)
2 = m

(k−1)
2 .

To prove that a fixed point is always reached, it is sufficient to notice that
the minimization and maximization problems considered in Theorem 1 may
only have a finite number of possible solutions when the values of the coeffi-
cients ci, i = 1, . . . , n are varied. Hence, at each iteration of the algorithm, the
pair s = (m1,m2) may only take a finite number of possible values. Let us
denote as s1, . . . , sr these values, and ϕA,1, . . . , ϕA,r the corresponding values
of the objective function. At each iteration, s is changed from si to sj only if
ϕA,i < ϕA,j (we still consider the minimization problem, but similar arguments
obviously hold for the maximization one). Hence, the objective function strictly
decreases at each iteration. Since it may only take a finite number of values, a
stable point must be reached after a finite number of iterations.

Example 5 Two IBSs m1 and m2 on Ω = {a, b, c} and their conjunctive sum
computed using the above algorithm are shown in Table 4.

4.2 Combination of several IBSs

The extension of the ~ operation from BSs to IBSs as presented in the previous
section does not generally preserve the associativity property. This can be
shown using the following counterexample.

Example 6 Let m1, m2 and m3 be three simple IBSs defined as shown in
Table 5. Using the formula established in Appendix A, we find that

(m1 ∧m2) ∧m3 6= m1 ∧ (m2 ∧m3)

14



This lack of associativity is obviously a drawback, since it makes the result
of the combination of several IBSs dependent on the order in which they are
combined. An approach to solve this problem is to generalize Definition 4 to
allow the combination of n IBSs in one step, as proposed in this section.

Definition 5 (Combination of n IBSs)
Let m1, . . . ,mn be n IBSs on the same frame Ω, and let ~ be a transitive oper-
ation on BSs induced by some set operation ∗. The combination of m1, . . . ,mn

by ~ is defined as the IBS m = m1 ~ . . .~mn with bounds:

m−(A) = min
(m1,...,mn)∈m1×...×mn

(m1 ~ . . .~mn)(A)

m+(A) = max
(m1,...,mn)∈m1×...×mn

(m1 ~ . . .~mn)(A)

for all A ∈ [0, 1]Ω.

The alternate directions algorithm proposed in Section 4.1.2 may easily be
generalized to the combination of n IBSs, the value of mi at iteration k being
determined by finding the solution of

min
mi

ϕ(A)(m
(k)
1 , . . . ,m

(k)
i−1,mi,m

(k−1)
i+1 , . . . ,m(k−1)

n ).

Example 7 With the data of Example 6, we find

m1 ∧m2 ∧m3 = (m1 ∧m2) ∧m3.

Remark: If the IBSs are provided one at a time and the storage resources are
limited, then it may more convenient to combine the IBSs in any order one by
one according to Definition 4, and to regard the result as an approximation to
the n-ary combination. This approach is justified by the following proposition.

Proposition 2
Let m1, . . . ,mn be n IBSs, and ~ an operation on IBSs induced by some tran-
sitive operation on BSs. Then

(. . . ((m1 ~m2)~m3)~ . . .)~mn ⊇m1 ~ . . .~mn

Proof. We detail the proof for n = 3. Extension to arbitrary n is easily
performed by recurrence on n.

Let M1,2 = {m|∃m1 ∈ m1, ∃m2 ∈ m2,m = m1 ~ m2}. We have already
noticed that M1,2 ⊆m1 ~m2. We thus have for any subset A of Ω:

(m1 ~m2 ~m3)−(A) = min
(m1,m2,m3)∈m1×m2×m3

(m1 ~m2)~m3

= min
(m,m3)∈M1,2×m3

m~m3

≥ min
(m,m3)∈(m1~m2)×m3

m~m3 =

((m1 ~m2)~m3)−(A)

Similarly,
(m1 ~m2 ~m3)+(A) ≤ ((m1 ~m2)~m3)+(A).

�
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4.3 Normalization

If one is absolutely sure that the true value of the parameter of interest lies
in the possibility space Ω, then the normality condition should be imposed on
BSs. The normalization rule initially proposed by Dempster consists in dividing
m(A) by 1−m(∅) for all A ∈ F∗(m) = F(m) \ ∅ (Equation 6). To avoid some
counterintuitive effects of this rule in the case of strongly conflicting items
of evidence, Yager [38] proposed a different normalization principle (hereafter
referred to as “Yager normalization”) in which the mass assigned to the empty
set is transferred to the possibility space. In this section, we show how these
two procedures may be extended to IBSs.

4.3.1 Dempster normalization

Let m be an IBS such that m−(∅) < 1. We may define a normalized version of
m as the IBS m∗d defined by

F(m∗d) = F∗(m)

and the following bounds:

m∗−d (A) = min
m∈m

m(A)

1−m(∅)
(22)

m∗+d (A) = max
m∈m

m(A)

1−m(∅)
(23)

for all A ∈ F(m∗d). The following theorem gives the values of m∗−d (A) and
m∗+d (A).

Theorem 2 (Dempster normalization of an IBS)
The normalized version m∗d of m has bounds:

m∗−d (A) =
m−(A)

1−max

m−(∅), 1−
∑

B 6=A,B 6=∅

m+(B)−m−(A)


m∗+d (A) =

m+(A)

1−min

m+(∅), 1−
∑

B 6=A,B 6=∅

m−(B)−m+(A)


for all A ∈ F(m∗d).

Proof. Let us note x = m(A) and y = m(∅) for arbitrary m ∈ m. We have
to find the extrema of

f(x, y) =
x

1− y
under the constraints:

α1 = m−(A) ≤ x ≤ m+(A) = β1
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α0 = m−(∅) ≤ y ≤ m+(∅) = β0

α2 = 1−
∑

B 6=A,B 6=∅

m+(B) ≤ x+ y ≤ 1−
∑

B 6=A,B 6=∅

m−(B) = β2

The admissible regionRmay be represented graphically in the (x, y) plane (Fig-
ure 1). It is delimited by 6 lines corresponding to the 6 inequality constraints.
Points A and C of coordinates (α1, β0) and (β1, α0), respectively, always belong
to R, since we have:

α1 ≥ α2 − β0 ⇒ α1 + β0 ≥ α2

β0 ≤ β2 − α1 ⇒ α1 + β0 ≤ β2

α0 ≥ α2 − β1 ⇒ α0 + β1 ≥ α2

β1 ≤ β2 − α0 ⇒ α0 + β1 ≤ β2

The points (x, y) such that f(x, y) = η are situated along the line (Lη) with
equation

x+ ηy = η

When η is gradually increased from 0 to 1, (Lη) first intersects R at the point
P = (α1,max(α0, α2 − α1)). Hence,

min f =
α1

1−max(α0, α2 − α1)
.

Similarly, when η is decreased from 1 to 0, (Lη) meets R at the point Q =
(β1,min(β0, β2 − β1)), which entails that

max f =
β1

1−min(β0, β2 − β1)
.

�

4.3.2 Yager normalization

In [38], Yager suggests an alternative normalization procedure in which the
mass m(∅) is simply transferred to Ω. We thus have:

m∗y(A) =


m(A) if A 6∈ {∅,Ω}
0 if A = ∅
m(Ω) +m(∅) if A = Ω

This simple rule may be readily extended to IBSs: we have m∗−y (A) = m−(A)
and m∗+y (A) = m+(A) for all A 6∈ {∅,Ω},

m∗−y (∅) = m∗+y (∅) = 0,

and

m∗−y (Ω) = max

m−(Ω) +m−(∅), 1−
∑

B 6∈{∅,Ω}

m+(B)


m∗+y (Ω) = min

m+(Ω) +m+(∅), 1−
∑

B 6∈{∅,Ω}

m−(B)

 .
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Example 8 Typical results using the two normalization procedures described
above are shown in Table 6.

5 Uncertainty and information

5.1 Evidential uncertainty measures

Measuring the “amount of uncertainty” involved in a problem-solving situation,
or the “amount of information” contained in an item of evidence, is an impor-
tant problem which is usually tackled, within the framework of Probability
Theory, using the concepts of entropy and information established by Claude
Shannon [15]. More recently, many research efforts have been devoted to the
development of a “Generalized Information Theory” whose purpose is to allow
for uncertainty measurement in the wider context of non-probabilistic models
such as that of belief functions (see e.g. [36, 22, 9, 19, 13, 15]). Although
no single measure seems to have unquestionably emerged from this research
work, some available results may already find interesting applications in such
contexts as knowledge elicitation or statistical inference. The purpose of this
section is to present a few evidential uncertainty measures which appear to us
as particularly promising, and to study their extension to imprecise belief struc-
tures. An immediate application of these measures is to allow the definition of
a “maximally uncertain” BS compatible with an IBS.

One of the first attempts to characterize the amount of information provided
by a piece of evidence was performed by Smets [22], who defined a function I
over the set of belief structure as:

I(m) =
∑
A⊆Ω

qm(A) (24)

The main justification of this measure of information lies in the following addi-
tivity property, which is a direct consequence of Equation 8:

I(m1 ∧m2) = I(m1) + I(m2)

Hence, the amount of information of the conjunctive combination of two distinct
pieces of evidence is the sum of the information of these two pieces of evidence.
It should be noted that function I is infinite in the case of a dogmatic BS, i.e.,
a BS m such that m(Ω) = 0.

Other authors took a different path and tried to directly generalize the
Shannon entropy to belief functions. An interesting approach, proposed by
Klir [13, 15], relies on a distinction between two types of uncertainty, both
modeled by a belief function: nonspecifity, and discord or strife. Nonspecificity
is properly measured by the following function:

N(m) =
∑

A∈F∗(m)

m(A) log2 |A| (25)

which was shown to be unique under some well-defined requirements [19, 14].
On the other hand, the concept of strife refers to the total conflict of evidential
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claims within a body of evidence, and may be defined by the form:

S(m) = −
∑

A∈F(m)

m(A) log2

 ∑
B∈F(m)

m(B)
|A ∩B|
|A|

 . (26)

It is then natural (although not theoretically justified) to define the total un-
certainty by the equation:

NS(m) = N(m) + S(m). (27)

5.2 Application to IBSs

The different uncertainty measures proposed for belief structures may be ex-
tended to imprecise belief structures in the following way. Let

U : S(Ω) 7→ R

denote an uncertainty measure for BSs. We may define U(m) for some IBS m
as an interval whose bounds are the minimum and maximum values of U(m)
for all m ∈m:

U(m) = [ min
m∈m

U(m),max
m∈m

U(m)].

When U denotes the nonspecificity measure, then the calculation of U(m) is
straightforward using Theorem 1, since N(m) is a linear function of the belief
masses. The computation of the other measures is more complex, as it involves
the numerical resolution of non linear programming problems.

The concept of uncertainty measure of an IBS has interesting applications.
For example, the width of the uncertainty interval ∆U(m) = U+(m)−U−(m)
may be used to quantify the imprecision of an IBS. Let us assume that an
agent’s degrees of belief are properly described by some unknown BS m, and
that two elicitation procedures have produced two IBSs m1 and m2, considered
to be imprecise estimates of m. Then, m1 can be said to be more precise than
m2 (according to uncertainty measure U), whenever ∆U(m1) ≤ ∆U(m2).

Another application of uncertainty measures concerns the definition of the
“most uncertain” BS compatible with an IBS. Assume that your beliefs are
described by an IBS m, and that, for some purpose (e.g., decision making), you
have to select a particular BS m ∈ m. This is a typical instance of ampliative
reasoning (i .e., reasoning in which conclusions are not entailed by the premises).
In such a situation, it is wise to apply the Principle of Maximum Uncertainty
[15], which requires that no unavailable information be used in the inference
process. In this case, the application of this principle leads to the selection of
the BS mmax reflecting maximum uncertainty (or minimal information content).

Example 9 Let m denote the IBS on Ω = {a, b, c} defined by

F(m) = {{a}, {a, b}, {b, c}, {a, b, c}}

and
m({a}) = [0.1, 0.7] m({a, b}) = [0, 0.4]
m({b, c}) = [0, 0.6] m({a, b, c}) = [0.2, 0.5]
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Table 7 shows the uncertainty measure intervals and the corresponding mini-
mally and maximally uncertain BSs, for each of the uncertainty measures con-
sidered in this paper. It may be noticed that the nonspecificity criterion has
many minima and maxima, and consequently does not allow in this case to
select a single maximally uncertain BS. The S and NS criteria tend to favor
maximally conflicting BSs (i.e., BSs in which the mass is distributed among
disjoint subsets). It may also be noticed that the BS with minimal information
content is also that with minimal strife, and is very different from that with
maximal total uncertainty.

6 Application to the classification of imprecise data

6.1 Pattern classification and the TBM

Discriminant analysis, or pattern classification, is concerned with the assign-
ment of entities, represented by feature vectors in Rd, to predefined categories
or classes. Typically, a decision rule is elaborated using a learning set of N
vectors with known classification. In conventional statistical approaches to this
problem, each vector is assumed to be drawn from a certain probability dis-
tribution, and decisions regarding previously unseen vectors are based on the
estimated posterior probabilities of each class.

In [2], we showed that this problem could be addressed in a radically different
manner using the TBM. In this new approach, a belief structure is computed for
each new pattern to be classified, on the basis of its similarity to training vectors.
Among other advantages, this method allows a decision rule to be established
from training data with imprecise labeling. Such a situation typically arises,
e.g., in medical diagnosis problems in which some records in a data base are
related to patients for which only a partial or uncertain diagnosis is available.
An incremental learning procedure for this method was described in [42], and
decision-theoretic issues were examined in some detail in [3]. In the following
section, we show how the new concepts presented in this paper may be used
to extend, in a natural way, this classification method to the more general case
where each component of the feature vector is only known to lie within a certain
interval.

Before describing this new approach, let us first summarize the method
exposed in [2] and introduce some basic notation. Let Ω = {ω1, . . . , ωM} denote
the set of categories. The learning set is composed of N examples of the form
zi = (xi, Ai), where xi denotes a vector in Rd, and Ai a subset of Ω containing
the category of xi (the class of the entity described by xi is only known to
belong to Ai)3. For each new vector x, the consideration of example zi induces
a simple BS m(·|zi) focused on Ai and Ω, the mass of belief assigned to Ai

being defined as a decreasing function of the dissimilarity (according to some

3In [2], we actually considered an even more general situation in which each training ex-
ample is of the form (xi,mi), where mi denotes a BS describing one’s belief in the class of
xi. Our analysis can easily be generalized to this general case (with slightly more complex
notations however).
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relevant measure δ) between x and xi:

m(A|zi) =


ϕ(δ(x,xi)) if A = Ai

1− ϕ(δ(x,xi)) if A = Ω
0 otherwise

(28)

where ϕ is a decreasing function verifying ϕ(0) ≤ 1 and limd→∞ ϕ(d) = 0.
When δ denotes the Euclidean distance, a rational choice for ϕ was shown in
[5] to be:

ϕ(d) = αe−γd
2

(29)

where α and γ are parameters that may be learnt form training data [42]. The
BSs induced by each learning sample are then combined using Dempster’s rule:

m = m(·|z1)⊕ . . .⊕m(·|zN ) (30)

6.2 Extension to interval-valued features

Let us now consider the more general case in which each component xij of a

training pattern xi is only known to belong to a certain interval: xij ∈ [xi−j , x
i+
j ].

Let x = (x1, . . . , xd)
t denote an arbitrary interval-valued feature vector such

that xi ∈ [x−i , x
+
i ] for all 1 ≤ i ≤ d. Using the rules of interval arithmetics [12],

it is possible to compute lower and upper bounds for the dissimilarity between
x and xi:

δ(x,xi) ∈ [δi−, δi+] (31)

Assuming the choice of the exponential function for ϕ such as described by
Equation 29, we can then compute lower and upper bounds for the BS m(·|zi)
defined by Equation 28, which yields an IBS m(·|zi) given by:

m(A|zi) =


[
αe−γ(δi+)2 , αe−γ(δi−)2

]
if A = Ai[

1− αe−γ(δi−)2 , 1− αe−γ(δi+)2
]

if A = Ω

0 otherwise

(32)

The IBSs induced by each of the N training samples may then be combined
using the n-ary conjunctive sum operation defined in Section 4.

Remark: The learning procedure proposed in [42] for optimizing the param-
eters α and γ has to be generalized in that case. This may be achieved by
defining a suitable performance criterion. This point would require substan-
tially more developments and will not be studied here. For simplicity, we shall
assume parameters α and γ to be fixed by the user.

6.3 Example

A simple three-class data set composed of 6 patterns in two dimensions is shown
in Table 8 and represented graphically in Figure 2. Each learning example
consists in two intervals corresponding to each of the two features, and a class
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label. Three samples (z2, z4 and z6) have incomplete class specification. An
additional interval-valued feature vector x has unknown class membership. The
problem is to quantify our belief concerning the class of x, based on the evidence
of the training set. Parameters α and γ were given arbitrary values of 0.9 and
0.5, respectively.

The unnormalized IBS m characterizing the uncertainty on the class of x
was computed using the iterative algorithm described in Section 4.2 as:

m = m(·|z1) ∧m(·|z2) ∧m(·|z3) ∧m(·|z4) ∧m(·|z5) ∧m(·|z6)

Table 9 shows the result of this calculation, as well as the IBS m̂ computed by
combining the IBS m(·|zi) two by two using the formula presented in Appendix
A:

m̂ = ((((m(·|z1) ∧m(·|z2)) ∧m(·|z3)) ∧m(·|z4)) ∧m(·|z5)) ∧m(·|z6)

As can be seen from Table 9, m̂ is a reasonably good approximation of m, while
requiring far less computations.

The interval-valued belief and plausibility functions induced by m are also
shown in Table 9, as well as the BS m0 obtained by replacing each interval
[xi−j , x

i+
j ] by a single value xij = (xi−j + xi+j )/2 (which amounts to ignoring the

imprecision on the feature values).
Let us now assume that some decision has to made, regarding the assignment

of x to one of the three classes. Several strategies may be applied, for instance:

1. Compute the interval-valued pignistic probabilities BetP({ωi}), i = 1, 2, 3;
if, for some i, BetP−({ωi}) > BetP+({ωj}) for all j 6= i, then assign x to
class ωi.

2. Applying the Principle of Maximum Uncertainty, compute a “maximally
uncertain” or “least informative” BS m̃ compatible with m (according to
some uncertainty measure), and make a decision according to the pignistic
probability function induced by m̃.

These two strategies are illustrated in Table 10. The IBS m computed as
explained above was normalized using the formula of Theorem 2, yielding a
normalized IBS m∗d. We then computed the least informative BS m̃ compatible
with m∗d, defined by:

I(m̃) = min
m∈m∗

d

I(m)

where I denotes the information measure defined by Equation 24. The values of
BetPm∗

d
and BetPm̃ are shown in Table 10. The pignistic probability function

induced by m0 (after normalization) is also given for comparison. As can be
seen, the strategy based on imprecise pignistic probabilities leads to indecision
in that case, while the use of m̃ leads to assigning the pattern to class 1. The
same decision is prescribed if imprecision on feature values is neglected; note
however that a higher confidence is attached to the decision in that case, as a
result of ignoring an important source of uncertainty.
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7 Conclusions

In this paper, the Transferable Belief Model has been enriched with new con-
cepts and techniques allowing to model the situation in which the beliefs held by
a rational agent may only be expressed (or are only known) with some impreci-
sion. Central to our approach is the concept of interval-valued belief structure,
which is defined as a set of belief structures verifying certain constraints. Start-
ing from this definition, many other concepts of Evidence Theory (including
belief and plausibility functions, pignistic probabilities, combination rules and
uncertainty measures) have been extended to cope with imprecision in the belief
numbers attached to each hypothesis. An application of this new framework
to the classification of patterns with partially known feature values has been
demonstrated.

Although intervals are probably the simplest formalism for representing im-
precise numerical values, there are certain contexts in other models of uncer-
tainty should be prefered. In particular, the theory of fuzzy sets has proved
very efficient for representing vague quantities expressed though verbal state-
ments. Our current work aims at further extending the concepts presented in
this paper to the case where beliefs are expressed as fuzzy numbers.
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A Conjunctive sum with a simple IBS

Let us consider the simple case where an arbitrary IBS m1 is combined with a
simple IBS m2 with F(m2) = {A,Ω} (A ⊂ Ω). Let us denote m = m1 ∧m2.
For any B ⊆ Ω, m1 ∈m1 and m2 ∈m2, we then have:

m(B) =
∑

C∩D=B

m1(C)m2(D) (33)

= m2(A)
∑

A∩C=B

m1(C) +m2(Ω)m1(B) (34)

To find the minimum and maximum of m(B), let us consider two cases.

Case 1: B 6⊆ A. In that case, the first term in Equation 34 vanishes, and we
have:

m(B) = m2(Ω)m1(B)

It is then obvious that

m−(B) = m−2 (Ω)m−1 (B) (35)

m+(B) = m+
2 (Ω)m+

1 (B) (36)
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Case 2: B ⊆ A. By noticing that m2(Ω) = 1 −m2(A) and rearranging the
terms in Equation 34, we find:

m(B) = m1(B) +m2(A)
∑
C

: A ∩ C = BC 6= Bm1(C)

Let us denote

x =
∑

A∩C 6=B
m1(C) y =

∑
C

: A ∩ C = BC 6= Bm1(C) z = m1(B)

We have to find the minimum and maximum of:

m(B) = 0 · x+m2(A)y + z

under the constraints:
x+ y + z = 1

α1 =
∑

A∩C 6=B
m−1 (C) ≤ x ≤

∑
A∩C 6=B

m+
1 (C) = β1

α2 =
∑
C

: A ∩ C = BC 6= Bm−1 (C) ≤ y ≤
∑
C

: A ∩ C = BC 6= Bm+
1 (C) = β2

α3 = m−1 (B) ≤ z ≤ m+
1 (B) = β3

By applying Theorem 1, we obtain:

min
m1∈m1

m(B) =

max[m2(A)α2 + α3,m2(A)(1− β1 − α3) + α3,m2(A)β2 + 1− β1 − β2] (37)

max
m1∈m1

m(B) =

min[m2(A)β2 + β3,m2(A)(1− α1 − β3) + β3,m2(A)α2 + 1− α1 − α2] (38)

Since for given m1 the minimum (resp., the maximum) of m(B) is realized for
m2(A) = m−2 (A) (resp., m2(A) = m+

2 (A) ), we finally have proved the following
proposition:

Proposition 3
In the case where B ⊆ A, the bounds of m in Equation 34 are given by:

m−(B) = max(X1, X2, X3)

m+(B) = min(Y1, Y2, Y3)

with

X1 = m−1 (B) +m−2 (A)
∑

C:A∩C=B
C 6=B

m−1 (C)

X2 = m−1 (B) +m−2 (A)

1−
∑

A∩C 6=B
m+

1 (C)−m−1 (B)


X3 = 1−

∑
A∩C 6=B

m+
1 (C) + (m−2 (A)− 1)

∑
C:A∩C=B
C 6=B

m+
1 (C)
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and

Y1 = m+
1 (B) +m+

2 (A)
∑

C:A∩C=B
C 6=B

m+
1 (C)

Y2 = m+
1 (B) +m+

2 (A)

1−
∑

A∩C 6=B
m−1 (C)−m+

1 (B)


Y3 = 1−

∑
A∩C 6=B

m−1 (C) + (m+
2 (A)− 1)

∑
C:A∩C=B
C 6=B

m−1 (C)
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Table 1: Example of credibility, plausibility and commonality intervals induced
by an IBS (Example 2).

A m(A) belm(A) plm(A) qm(A)

∅ [0,0.2] 0 0 1
{a} 0 0 [0.6, 0.8] [0.6, 0.8]
{b} [0.2, 0.4] [0.2, 0.4] [0.4, 0.6] [0.5, 0.6]
{c} 0 0 [0.5, 0.7] [0.5, 0.7]
{a, b} [0.1, 0.2] [0.3, 0.5] [0.8,1] [0.2, 0.4]
{a, c} [0.4, 0.5] [0.4, 0.5] [0.6, 0.8] [0.5, 0.7]
{b, c} 0 [0.2 0.4] [0.8,1] [0.1, 0.3]
{a, b, c} [0.1, 0.3] [0.8,1] [0.8,1] [0.1, 0.3]

Table 2: A belief structure and its associated belief function.

∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
m 0 0 0.3 0 0 0.5 0.1 0.1

belm 0 0 0.3 0 0.3 0.5 0.4 1

Table 3: An IBS and its associated pignistic probability function (Example 3).

A m(A) BetPm(A)

{a} 0 [0.283, 0.383]
{b} [0.2, 0.4] [0.317, 0.483]
{c} 0 [0.233, 0.317]
{a, b} [0.1, 0.2] [0.683,0.767]
{a, c} [0.4, 0.5] [0.517, 0.683]
{b, c} 0 [0.617,0.717]
{a, b, c} [0.1, 0.3] 1

Table 4: Conjunctive sum of two IBSs (Example 5).

{a} {a, b} {a, c} {a, b, c}
m1 [0.2,0.5] [0.3,0.7] [0,0.4] [0.1,0.5]
m2 [0.2,0.5] [0.1,0.2] [0.3,0.7] [0,0.4]

m1 ∧m2 [0.45,0.91] [0.04,0.37] [0.03,0.35] [0,0.2]
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Table 5: Non associativity of the conjunctive sum in the case of IBSs (Exam-
ple 6).

{a} {a, b} {a, c} {a, b, c}
m1 [0.6,0.8] [0.2,0.4]
m2 [0.1,0.6] [0.4,0.9]
m3 [0.2,0.6] [0.4,0.8]

m1 ∧m2 [0.64,0.92] [0.08,0.36]
m2 ∧m3 [0.02,0.36] [0.04,0.48] [0.08,0.54] [0.16,0.72]

(m1 ∧m2) ∧m3 [0.128,0.552] [0.256,0.736] [0.016,0.216] [0.032,0.288]
m1 ∧ (m2 ∧m3) [0.068,0.712] [0.136,0.816] [0.016,0.216] [0.032,0.288]

Table 6: Example of Dempster and Yager normalization (Example 8).

A m(A) m∗d m∗y
∅ [0.1,0.3] 0 0
{a} [0.2 0.5] [0.222, 0.714] [0.2,0.5]
{b} [0, 0.4] [0, 0.5] [0.0.4]
{a, b} [0.2, 0.7] [0.222,0.778] [0.3,0.8]

Table 7: Uncertainty measure intervals and corresponding minimally
and maximally uncertain BSs for 4 uncertainty criteria. The be-
lief masses for mmin and mmax are given in the following order:
(m({a}),m({a, b}),m({b, c}),m({a, b, c})) (Example 9).

U U(m) mmin mmax

N [0.417,1.193] (0.7, *, * , 0.2) (0.1, *, * , 0.5)
S [0.191,0.739] (0.1, 0.4, 0 , 0.5) (0.425, 0, 0.375 , 0.2)
NS [0.679,1.509] (0.7, 0.1, 0 , 0.2) (0.271, 0, 0.530 , 0.2)
I [1.492,4.529] (0.1, 0.4, 0 , 0.5) (0.7, 0, 0.1 , 0.2)

Table 8: Data set

name xi1 xi2 Ai

z1 [1.9,2.1] [1.0,1.4] {ω1}
z2 [1.4,1.7] [1.8,2.0] {ω1, ω2}
z3 [0.8,1.0] [2.7,3.0] {ω2}
z4 [1.9,2.0] [2.9,3.4] {ω2, ω3}
z5 [2.8,3.2] [2.9,3.0] {ω3}
z6 [2.4,2.6] [2.0,2.2] {ω1, ω3}
x [2.0,2.3] [1.8 1.9] ?
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Table 9: Results of the pattern classification experiment (see notations in text)

focals m̂ m belm plm m0

∅ [0.32,0.88] [0.41,0.83] 0 0 0.65
{ω1} [0.09,0.58] [0.11,0.48] [0.11,0.48] [0.11,0.59] 0.27
{ω2} [0.00,0.08] [0.00,0.07] [0.00,0.07] [0.01,0.18] 0.02
{ω3} [0.00,0.16] [0.01,0.12] [0.01,0.12] [0.01,0.25] 0.03
{ω1, ω2} [0.00 0.06] [0.00,0.06] [0.11,0.58] [0.12,0.59] 0.01
{ω1, ω3} [0.00,0.08] [0.00,0.08] [0.12,0.59] [0.12 0.59] 0.02
{ω2, ω3} [0.00,0.02] [0.00,0.02] [0.01,0.21] [0.01,0.38] 0.00
{ω1, ω2, ω3} [0.00,0.03] [0.00,0.03] [0.17,0.59] [0.17,0.59] 0.00

Table 10: Results of the pattern classification experiment (continued)

focals m∗d BetPm∗
d

m̃ BetPm̃ m∗0d BetPm∗
0d

{ω1} [0.22,0.97] [0.23,0.98] 0.22 0.52 0.76 0.80
{ω2} [0.00,0.37] [0.01,0.57] 0.00 0.24 0.04 0.07
{ω3} [0.01,0.50] [0.01,0.64] 0.01 0.24 0.09 0.13
{ω1, ω2} [0.00,0.32] [0.36,0.99] 0.24 0.76 0.03 0.87
{ω1, ω3} [0.01,0.41] [0.43,0.99] 0.24 0.76 0.06 0.93
{ω2, ω3} [0.00,0.12] [0.02,0.77] 0.12 0.48 0.01 0.20
{ω1, ω2, ω3} [0.00,0.16] 1 0.16 1 0.01 1
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Figure 1: Normalization of an IBS.
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