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bShanghai University, UTSEUS, Shanghai, China
cInstitut universitaire de France, Paris, France

Abstract

Evidential clustering is an approach to clustering in which cluster-membership uncertainty
is represented by a collection of Dempster-Shafer mass functions forming an evidential par-
tition. In this paper, we propose to construct these mass functions by bootstrapping finite
mixture models. In the first step, we compute bootstrap percentile confidence intervals
for all pairwise probabilities (the probabilities for any two objects to belong to the same
class). We then construct an evidential partition such that the pairwise belief and plausibil-
ity degrees approximate the bounds of the confidence intervals. This evidential partition is
calibrated, in the sense that the pairwise belief-plausibility intervals contain the true proba-
bilities “most of the time”, i.e., with a probability close to the defined confidence level. This
frequentist property is verified by simulation, and the practical applicability of the method
is demonstrated using several real datasets.

Keywords: Belief functions; Dempster-Shafer theory; evidence theory; resampling;
unsupervised learning; mixture models.

1. Introduction

Although the first clustering algorithms were developed more than 50 years ago (see,
e.g., [26] and references therein), cluster analysis is still a very active research topic today.
One of the remaining open problems concerns the description and quantification of cluster-
membership uncertainty [21, 41]. Whereas classical partitional clustering algorithms such
as the c-means procedure are fully deterministic, many of the clustering algorithms used
nowadays are based on ideas from fuzzy sets [4, 3, 22], possibility theory [27, 24], rough
sets [31, 39] and probability theory [7, 37] to represent cluster-membership uncertainty. Re-
cently, evidential clustering was introduced as a very general approach to clustering that
uses the Dempster-Shafer (DS) theory of belief functions [9, 45, 19] as a model of uncer-
tainty. At the core of the evidential clustering approach is the notion of evidential partition
[13, 33]. Basically, an evidential partition is a vector of n mass functions m1, . . . ,mn, where
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n is the number of objects, and mi is a DS mass function representing the uncertainty in
the class-membership of object i [13]. Fuzzy, probabilistic, possibilistic and rough cluster-
ing are recovered as special cases corresponding to restricted forms of the mass functions
[12]. Evidential clustering has been successfully applied in various domains such as machine
prognosis [44], medical image processing [32, 28, 30] and analysis of social networks [52].

Different evidential clustering algorithms have been proposed to build an evidential par-
tition of a given attribute or proximity dataset [13, 33, 14]. The EVCLUS algorithm intro-
duced in [13] and improved in [14] consists in searching for an evidential partition such that
the degrees of conflict between pairs of mass functions (mi,mj) match the dissimilarities dij
between object pairs (i, j), up to an affine transformation. The Evidential c-Means (ECM)
algorithm [33] is an alternate optimization procedure in the hard, fuzzy and possibilistic
c-means family, with the difference that not only clusters, but also sets of clusters are repre-
sented by prototypes. A relational version applicable to dissimilarity data was also proposed
in [34].

Evidential partitions generated by EVCLUS or ECM have been shown to be more infor-
mative than hard or fuzzy partitions. In particular, they make it possible to identify objects
located in an overlapping region between two or more clusters as well as outliers, and they
can easily be summarized as fuzzy or rough partitions [13, 33]. However, they are purely
descriptive and unsuitable for statistical inference. In particular, if datasets are drawn
repeatedly from some probability distribution, there is no guarantee that any statements
derived from the evidential partitions will be true most of time.

In this paper, we propose a new method for building an evidential partition with a
well-defined frequency-calibration property [11, 15], which can be informally described as
follows. Assume that the n objects are drawn at random from some population partitioned
in c classes, and each object i is described by an attribute vector xi. Given any pair of
mass functions (mi,mj) representing uncertain information about two objects i and j, we
can compute a degree of belief Belij and a degree of plausibility Plij that objects i and j
belong to the same class [18, 29]. Now, let Pij denote the true unknown probability that
objects i and j belong to the same class, given attribute vectors xi and xj. We will say
that an evidential partition m1, . . . ,mn is calibrated if, for each pair of objects i and j, the
belief-plausibility interval [Belij, P lij] is a confidence interval for the true probability Pij,
with some predefined confidence level 1 − α. As a consequence, the intervals [Belij, P lij]
will contain the true probability Pij for a proportion at least 1− α of object pairs (i, j), on
average.

Our approach to generate calibrated evidential partitions is based on bootstrapping mix-
ture models. Model-based clustering is a flexible approach to clustering that assumes the
data to be drawn from a mixture of probability distributions [1, 7, 37]. In the case of
data with continuous attributes, we typically assume a Gaussian Mixture Model (GMM),
in which each of the c clusters corresponds to a multivariate normal distribution [51]. The
model parameters are usually estimated by the Expectation-Maximization (EM) algorithm
[10, 36]. The bootstrap is a resampling technique that consists in sampling n observations
from the dataset with replacement [23]. By estimating the model parameters from each
bootstrap sample, we will be able to compute confidence intervals [P l

ij, P
u
ij] for each pair-
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wise probability Pij using the percentile method [23]. We will then compute an evidential
partition m1, . . . ,mn such that the belief-plausibility intervals [Belij, P lij] approximate the
confidence intervals [P l

ij, P
u
ij].

The rest of this paper is organized as follows. Basic definitions and results regarding
evidential clustering are first recalled in Section 2. Our method is then presented in Section
3, and experimental results are reported in Section 4. Finally, Section 5 concludes the paper.

2. Evidential clustering

We first briefly introduce necessary definitions and results about DS theory in Section
2.1. The concept of evidential partition is then recalled in Section 2.2.

2.1. Dempster-Shafer theory

Let Ω be a finite set. A mass function on Ω is a mapping m from the power set of Ω,
denoted by 2Ω, to the interval [0, 1], such that∑

A⊆Ω

m(A) = 1.

Every subset A of Ω such that m(A) > 0 is called a focal set of m. When the empty set
∅ is not a focal set, m is said to be normalized. All mass functions will be assumed to be
normalized in this paper. When all focal sets are singletons, m is said to be Bayesian; it is
then equivalent to a probability mass functions. A mass function with only one focal set is
said to be logical ; when this focal set is a singleton, it is said to be certain. In DS theory,
Ω represents the domain of an uncertain variable Y , and m represents evidence about Y .
The mass m(A) is then the degree with which the evidence supports exactly A without
supporting any strict subset of A [45].

The belief and plausibility functions induced by a normalized mass function m are de-
fined, respectively, as

Bel(A) :=
∑
B⊆A

m(B) and Pl(A) :=
∑

B∩A 6=∅

m(B),

for all A ⊆ Ω. The following equalities hold: Bel(∅) = Pl(∅) = 0, Bel(Ω) = Pl(Ω) = 1, and
Pl(A) = 1 − Bel(A) for all A ⊆ Ω, where A denotes the complement of A. The quantity
Bel(A) measures the total support in A, while Pl(A) measures the lack of support in the
complement of A. Clearly, Bel(A) ≤ Pl(A) for all A ⊆ Ω. The three functions m, Bel
and Pl are three different representations of the same information, as knowing any of them
allows us to recover the other two [45].

2.2. Evidential partitions

Let O be a set of n objects. Each object is assumed to belong to one and only one group
in Ω = {ω1, . . . , ωc}. An evidential (or credal) partition [13] is a collection M = (m1, . . . ,mn)
of n mass functions on Ω, in which mi represents evidence about the group membership of
object i. An evidential partition thus represents uncertainty about the clustering of objects
in O. The notion of evidential encompasses several classical clustering structures [12]:
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Figure 1: Butterfly dataset (a) and evidential partition with c = 2 obtained by ECM (b).

• When mass functions mi are certain, then M is equivalent to a hard partition; this
case corresponds to full certainty about the group of each object.

• When mass functions are Bayesian, then M boils down to a fuzzy partition, where the
degree of membership uik of object i to group k is uik = Beli({ωk}) = Pli({ωk}) ∈
[0, 1].

• When each mass function mi is logical with focal set Ai ⊆ Ω, mi is equivalent to
a rough partition [40]. The lower and upper approximations of cluster ωk are then
defined, respectively, as the set of objects that surely belong to group ωk, and the set
of objects that possibly belong to group ωk; they are formally given by

ωlk := {i ∈ O|Ai = {ωk}} and ωuk := {i ∈ O|ωk ∈ Ai}. (1)

We then have Beli({ωk}) = I[i ∈ ωlk] and Pli({ωk}) = I[i ∈ ωuk ], where I[·] denotes
the indicator function.

Example 1. Consider the Butterfly data displayed in Figure 1a, consisting in 11 objects
described by two attributes. Figure 1b shows a normalized evidential partition of these data
obtained by ECM, with c = 2 clusters. (An evidential partition is said to be normalized
if it is composed of normalized mass functions). We can see, for instance, that object 9,
which is situated in the center of the rightmost cluster ω1, has a mass function m9 such that
m9({ω1}) ≈ 1, while object 6, which is located between clusters ω1 and ω2, is assigned a mass
function m6 verifying m6(Ω) ≈ 1 with Ω = {ω1, ω2}.

Given two distinct objects i and j with corresponding normalized mass functions mi and
mj, we may consider the set Θij = {sij,¬sij}, where sij denotes the proposition “Objects
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i and j belong to the same cluster” and ¬sij is the negation of s. As shown in [18], the
normalized mass function mij on Θij derived from mi and mj has the following expression:

mij({sij}) =
c∑

k=1

mi({ωk})mj({ωk}) (2a)

mij({¬sij}) =
∑

A∩B=∅

mi(A)mj(B) (2b)

mij(Θij) =
∑

A∩B 6=∅

mi(A)mj(B)−
c∑

k=1

mi({ωk})mj({ωk}). (2c)

Thus, the belief and plausibility that objects i and j belong to the same class are given,
respectively, by

Belij({sij}) = mij({sij}) =
c∑

k=1

mi({ωk})mj({ωk}) (3a)

and
Plij({sij}) = mij({sij}) +mij(Θij) =

∑
A∩B 6=∅

mi(A)mj(B). (3b)

Given an evidential partition M = (m1, . . . ,m2), the tuple R = (mij)1≤i<j≤n is called
the relational representation of M [18].

Example 2. Consider objects 4 and 5 the Example 1 (see Figure 1). We have

m4({ω1}) = 0.049, m4({ω2}) = 0.863, m4(Ω) = 0.088

and
m5({ω1}) = 0.074, m5({ω2}) = 0.558, m5(Ω) = 0.368.

Consequently, we have

m45({s45}) = 0.049× 0.074 + 0.863× 0.558 ≈ 0.485

m45({¬s45}) = 0.049× 0.558 + 0.863× 0.074 ≈ 0.0912

m45(Θ45) ≈ 1− 0.485− 0.0912 = 0.423.

The degree of belief that objects 4 and 5 belong to the same class is 0.485, and the degree
of plausibility is 0.485 + 0.423 = 0.908. Figure 2 displays the complete relational represen-
tation of the evidential partition of the Butterfly data shown in Figure 1b. The matrices
containing mij({sij}), mij({¬sij}) and mij(Θij) are represented graphically in Figures 2a,
2b and 2c, respectively. The pairwise plausibilities Plij({sij}) are represented in Figure 2d.
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Figure 2: Relational representation of the evidential partition of the Butterfly data shown in Figure 1b:
masses mij({sij}) (a), mij({¬sij}) (b), mij(Θij) (c) and pairwise plausibilities Plij({sij}) (d).

6



3. Computed calibrated evidential partitions

In this section, we describe our method for quantifying the uncertainty of model-based
clustering using an evidential partition with well-defined properties with respect to the
unknown true partition. The assumptions will first be stated in Section 3.1. A method to
compute bootstrap confidence intervals on pairwise probabilities Pij will then be described in
Section 3.2. Finally, an algorithm for computing an evidential partition from these confidence
intervals will be introduced in Section 3.3.

3.1. Assumptions

We consider a population of objects, each one described by an attribute vector X ∈ Rd

and by a class variable Y ∈ Ω = {1, . . . , c}. The conditional distribution of X given
Y = k is described by a probability density function (pdf) pk(x;θk), where θk is a vector of
parameters. The marginal distribution of X is, thus, a mixture distribution with pdf

p(x;θ) =
c∑

k=1

πkpk(x;θk)

where πk = P(Y = k), k = 1, . . . , c are the prior class densities, and θ = (θ1, . . . ,θc, π1, . . . , πc)
is the vector of all parameters in the model. The conditional probability πk(x;θ) that Y = k
given X = x can be computed using Bayes’ theorem as

πk(x;θ) =
pk(x;θk)πk∑c
`=1 p`(x;θ`)π`

.

Let D = {x1, . . . ,xn} be a dataset composed of n attribute vectors describing n objects.
We assume that D is a realization of an i.i.d. sample from X, and we want to quantify the
uncertainty about the classes y1, . . . , yn of the n objects. If parameter θ was known, then
the uncertainty about yi could be described by the conditional class probabilities πk(xi;θ),
k = 1, . . . , c, and the probability Pij(θ) that objects i and j belong to the same class could
be computed as

Pij(θ) := P(Yi = Yj | xi,xj) =
c∑

k=1

πk(xi;θ) πk(xj;θ). (4)

In usual situations, parameter θ is unknown and it needs to be estimated from the data. Let
θ̂ be the maximum likelihood estimate (MLE) of θ obtained, e.g., using the EM algorithm

[10, 36]. The estimated conditional class probabilities are π̂ik := πk(xi; θ̂), k = 1, . . . , c; they

constitute a fuzzy partition of the dataset. The MLE of Pij(θ) is Pij(θ̂) :=
∑c

k=1 π̂ikπ̂jk
for all (i, j) ∈ {1, . . . , n}2. However, these point probability estimates do not adequately
reflect group-membership uncertainty, because they do not account for the uncertainty on
θ. In the next section, we propose a method to compute approximate confidence intervals
on pairwise probabilities Pij(θ).
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3.2. Confidence intervals on pairwise probabilities

Let us consider two fixed vectors xi and xj from dataset D, and an i.i.d. random sample
X ′1, . . . ,X

′
n from p(x;θ). A confidence interval on Pij(θ) at level 1−α is a random interval[

P l
ij(X

′
1, . . . ,X

′
n), P u

ij(X
′
1, . . . ,X

′
n)
]

such that, for all θ,

P
(
P l
ij(X

′
1, . . . ,X

′
n) ≤ Pij(θ) ≤ P u

ij(X
′
1, . . . ,X

′
n)
)
≥ 1− α.

Approximate confidence intervals on Pij(θ) can be obtained in several different ways.
One approach is to use the asymptotic normality of the MLE and to estimate the covariance
matrix of θ̂ by the observed information matrix. MacLachlan and Krishnan [36, Chapter 4]
review different methods for computing or approximating the observed information matrix,
and MacLachlan and Basford [35, Chapter 2] give an approximate analytical expression for

the case of a Gaussian mixture. Estimates v̂ij of the variance vij of Pij(θ̂) could then be
obtained by the delta method, leading to the following standard confidence interval:

Pij(θ̂)± u1−α/2
√
v̂ij, (5)

where u1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution. Standard
confidence intervals are consistent, but they are based on asymptotic approximations that
can be quite inaccurate in practice [20]. As noted in [38], “in the case of mixture models
large sample sizes are required for the asymptotics to give a reasonable approximation”.
In our case, the estimates Pij(θ̂) take values in [0, 1], and their distribution can be very
asymmetric for small n, as will be shown experimentally in Example 3 below (Figure 4) and
in Section 4.1 (Figure 8).

Bootstrap confidence intervals can be seen as algorithms for improving standard in-
tervals such as (5) without human intervention [20]. Given a realization x′1, . . . ,x

′
n of

the random sample, a nonparameteric bootstrap “pseudo-sample” is generated by draw-
ing n observations randomly from x′1, . . . ,x

′
n with replacement. Repeating this operation

B times, we obtain B pseudo-samples {x′b1, . . . ,x′bn}Bb=1 and the corresponding estimates

θ̂1, . . . , θ̂B of θ (computed using the EM algorithm). The simplest technique for comput-
ing approximate confidence intervals using this approach is the bootstrap percentile (BP)
method [23]. The BP confidence interval for Pij(θ) is defined by the α/2 and 1 − α/2

quantiles of Pij(θ̂1), . . . , Pij(θ̂B), which will be denoted as P l
ij and P l

ij. Because the original
dataset x1, . . . ,xn was generated from the same distribution as x′1, . . . ,x

′
n, we can use it to

compute bootstrap confidence intervals for any pair (i, j) of objects. The procedure is sum-
marized in Algorithm 1. For previous applications of the bootstrap approach to model-based
clustering, see [38] and references therein.

Under general conditions stated in [46, Theorem 4.1], BP confidence intervals are con-
sistent, i.e., we have

P
(
P l
ij ≤ Pij(θ) ≤ P u

ij

)
→ 1− α (6)

as n → ∞. As shown by Davison and Hinkley [8, page 213], equi-tailed BP confidence
intervals such as (6) are superior to standard confidence intervals such as (5), in the sense
that they are second-order accurate, i.e., we have

P
(
P l
ij ≤ Pij(θ) ≤ P u

ij

)
= 1− α +O(n−1), (7)
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whereas the coverage probability of normal approximation confidence intervals is 1 − α +
O(n−1/2). More sophisticated procedures such as the bootstrap accelerated bias corrected
(BCa) method have also been developed to further improve the performance of BP confidence
intervals [23], but these methods depend on additional coefficients that are not easy to
determine. As confidence intervals on Pij(θ) need to be computed for each of the n(n−1)/2
pairs of objects, we will stick to the simple BP method. As will be shown in Section 4.1,
the confidence intervals computed by this method have coverage probabilities close to their
nominal values, provided the model is correctly specified.

As a final argument in favor of the bootstrap as compared to the normal approximation
method, we can observe that the latter approach relies on the calculation of the information
matrix, which can very cumbersome and has to be carried out for each new model. Even
if we limit ourselves to the family of Gaussian mixture models, we usually impose various
restrictions on the parameters (as will be shown in Section 4.1), resulting in different ex-
pressions for the information matrix. Furthermore, with some covariance structures, we use
non-differentiable orthogonal matrices, which prohibits the information matrix-based ap-
proach [38]. For non-normal models, the calculations often become intractable. In contrast,
the bootstrap method can be applied without modification to any model. This advantage
does come at the cost of heavier computation but, as we will see in Section 4, the com-
puting time remains manageable on a personal computer with moderate size datasets, for
which the method is useful (with large datasets, the second-order uncertainty on membership
probabilities can often be neglected anyway).

Algorithm 1 Generation of BP confidence intervals on pairwise probabilities.

Require: Dataset x1, . . . ,xn, model p(·;θ), number of bootstrap samples B, confidence
level 1− α

1: for b = 1 to B do
2: Draw xb1, . . . ,xbn from x1, . . . ,xn with replacement
3: Compute the MLE θ̂b from xb1, . . . ,xbn using the EM algorithm
4: for all i < j do
5: Compute Pij(θ̂b)
6: end for
7: end for
8: for all i < j do

9: P l
ij := Quantile

({
Pij(θ̂b)

}B
b=1

; α
2

)
10: P u

ij := Quantile

({
Pij(θ̂b)

}B
b=1

; 1− α
2

)
11: end for

Example 3. As an example, we consider the dataset shown in Figure 3, consisting of n =
30 two-dimensional vectors drawn from a mixture of c = 3 components with the following
parameters:

µ1 := (0, 1)T , µ2 := (1, 0)T , µ3 := (1, 1)T ,

9
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Figure 3: Dataset of Example 3.

Σ1 = Σ2 = Σ3 :=

(
0.1 0
0 0.1

)
, π1 = π2 = π3 := 1/3.

We applied the above method with B = 1000, assuming the true model (spherical classes with

equal volume). Figure 4 shows histograms of the bootstrap estimates Pij(θ̂b) and the bounds of
the percentile 90% confidence interval P l

ij, P
u
ij for four pairs of points. We can see that points

11 and 29 have a low probability P11,29 of belonging to the same class, and the probability
is well estimated with a narrow confidence interval. Point pairs (24,19) and (26,30) have a
high probability of belonging to the same class, and the corresponding confidence interval is
also narrow. In contrast, the true probability that points 22 and 23 belong to the same class
is approximately equal to 0.7, and the corresponding confidence interval is quite large.

3.3. Construction of an evidential partition

The n(n−1)/2 confidence intervals computed as described in the previous section are not
easily interpretable. To obtain a simple and more user-friendly representation, we propose
to construction an evidential partition M = (m1, . . . ,mn) such that, for all pairs (i, j)
of objects, Belij({sij}) and Plij({sij}) as computed by (3) approximate, respectively, the
confidence bounds P l

ij and P u
ij. More precisely, we want to find M that minimizes the error

function
J(M) :=

∑
i<j

(
Belij({sij})− P l

ij

)2
+
(
Plij({sij})− P u

ij

)2
. (8)
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Using the equalities Belij({sij}) = mij({sij}) and Plij({sij}) = 1 − Belij({¬sij}) = 1 −
mij({¬sij}), we get

J(M) =
∑
i<j

(
mij({sij})− P l

ij

)2
+
(
mij({¬sij})− (1− P u

ij)
)2
. (9)

Assuming that Belij({sij}) ≈ P l
ij and Plij({sij}) ≈ P u

ij, we will have, from (6),

P (Belij({sij}) ≤ Pij(θ) ≤ Plij({sij})) ≈ 1− α. (10)

Eq. (10) corresponds to the definition of a predictive belief function at confidence level
1− α as introduced in [11]. It is a particular kind of frequency-calibrated belief function as
reviewed in [17].

To find an evidential partition M minimizing (9), let us assume that each mass function
mi has at most f nonempty focal sets in F = {F1, . . . , Ff} ⊆ 2Ω. If c is small, we can
take F = 2Ω \ {∅}. Otherwise, we can restrict the focal sets to have a cardinality less than
some value (typically, 2). Each mass function mi can then be represented by the f -vector
mi = (mi(F1), . . . ,mi(Ff ))

T . Let S = (Sk`) and C = (Ck`) be the f × f matrices with
general terms

Sk` :=

{
1 if k = ` and |Fk| = 1,

0 otherwise.
(11)

and

Ckl :=

{
1 if Fk ∩ Fl = ∅,
0 otherwise.

(12)

Furthermore, let B be the 2f × f block matrix

B :=

(
S
C

)
,

and let Aj be the 2× 2f matrix defined by

Aj :=

(
1 0
0 1

)
⊗mT

j , (13)

where ⊗ is the Kronecker product.
With these notations, from (2), we have mij({sij}) = mT

j Smi, mij({¬sij}) = mT
i Cmi,

and
mij = AjBmi, (14)

with mij = (mij({sij}),mij({¬sij}))T . Eq. (9) can thus be rewritten as

J(M) =
∑
i<j

(mij −m∗ij)T (mij −m∗ij) (15a)

=
∑
i<j

(AjBmi −m∗ij)T (AjBmi −m∗ij), (15b)

12



with m∗ij = (P l
ij, 1 − P u

ij)
T . From (15b), we can see that J(M) is a quadratic function of

mi. We can then use the Iterative Row-wise Quadratic Programming (IRQP) algorithm
introduced by [47]. The IRQP is a block cyclic coordinate descent procedure [2, Section 2.7]
minimizing J(M) with respect to each vector mi one at a time, while keeping the other
vectors mj for j 6= i fixed. At each iteration, we thus minimize

Ji(mi) :=
n∑
j=1
j 6=i

(AjBmi −m∗ij)T (AjBmi −m∗ij) (16a)

subject to
1Tmi = 1 and mi ≥ 0. (16b)

Developing the expression in the right-hand side of (16a), we get

Ji(mi) = mT
i Qimi + uTi mi + ai (17)

with

Qi := BT

(∑
j 6=i

AT
j Aj

)
B (18a)

ui := −2

(∑
j 6=i

(m∗ij)
TAj

)
B (18b)

ai :=
∑
j 6=i

(m∗ij)
Tm∗ij. (18c)

The minimization of function Ji in (17) subject to constraints (16b) can be performed using
a standard quadratic programming solver. To define a stopping criterion, we compute a
running mean of the relative error as follows: e(0) = 1 and

e(t) := ρ e(t−1) + (1− ρ)
|J (t) − J (t−1)|

J (t−1)
, t = 1, 2, . . . , (19)

where t is the iteration counter, J (t) is the value of the cost function at iteration t, and
ρ = 0.5. The algorithm is then stopped when e(t) < ε, for some threshold ε. The whole
procedure is summarized in Algorithm 2.

As matrix Qi in (18a) is positive definitive, the quadratic programming problem (16) is
convex [48] and has a unique solution. Consequently, the whole block coordinate descent
procedure is guaranteed to converge to a local minimum [2, Proposition 2.7.1].

Example 4. The procedure described in this section was applied to the data and bootstrap
confidence intervals of Example 3. The set F of focal sets was defined to contain the single-
tons and the pairs, i.e.,

F = {{ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3}} ,
13



Algorithm 2 IRQP algorithm.

Require: Confidence intervals m∗ij for 1 ≤ i ≤ j ≤ n, number of clusters c, focal sets
F = {F1, . . . , Ff}, stopping threshold ε

1: Initialize the evidential partition M randomly
2: t := 0, e(0) := 1
3: Compute J (0) using (15)
4: while e(t) ≥ ε do
5: t := t+ 1
6: J (t) := 0
7: for i = 1 to n do
8: Compute Qi and ui in (18)

9: Find m
(t)
i by minimizing (17) subject to (16b)

10: Update M with m
(t)
i

11: J (t) := J (t) + Ji(m
(t)
i )

12: end for
13: e(t) := 0.5 e(t−1) + 0.5|J (t) − J (t−1)|/J (t−1)

14: end while
Ensure: Evidential partition M

Table 1: Mass functions for six objects displayed in Figure 6. For each object, the largest mass is printed
in bold.

Object m({ω1}) m({ω2}) m({ω3}) m({ω1, ω2}) m({ω1, ω3}) m({ω2, ω3})
3 0 0.042 0.113 0 0 0.845
4 0 0 0.926 0 0 0.074
10 0 0.406 0.007 0 0 0.587
11 0.927 0 0 0.073 0 0
12 0 0.635 0.005 0 0 0.360
22 0 0 0.141 0.092 0.415 0.352

and f = 6. Figure 5 shows the pairwise degrees of belief Belij({si}) and plausibility Plij({si})
as functions of, respectively, the lower bounds P l

ij and the lower bounds P u
ij of the bootstrap

percentile 90% confidence intervals. Figure 6 presents a view of the resulting evidential
partition, showing the maximum-plausibility hard partition as well as the convex hulls of the
lower and upper approximations of each cluster [33]. These approximations are obtained by
first assigning each object i to the set of clusters Ai ⊆ Ω with the highest mass, and then
computing the lower and upper approximation defined by (1). The lower approximation of
cluster k contains the objects that surely belong to that cluster, while the upper approximation
contain those objects that possibly belong to cluster k. We can see that objects 3, 10 and 22
are ambiguous. Their mass functions, as well as those of three other objects are shown in
Table 1.

14



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lower bound of 90% CI

B
el

ie
f

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Upper bound of 90% CI

P
la

us
ib

ili
ty

Figure 5: Pairwise degrees of belief Belij({si}) (left) and plausibility Plij({si}) (right) as functions of,
respectively, the lower bounds P l

ij and the lower bounds Pu
ij of bootstrap percentile 90% confidence intervals,

for the data of Example 4.

3.4. Complexity analysis

The propose clustering methods consists in three steps:

1. The computation of the estimates θ̂b and Pij(θ̂b) for each of the B bootstrap samples
(lines 1-7 in Algorithm 1)

2. The computation of the quantiles P l
ij and P u

ij (lines 8-11 in Algorithm 1);

3. The construction of the evidential partition (Algorithm 2).

In Step 1, each iteration of the EM has complexity O(cn). Assuming that the number of
iterations is roughly constant and does not depend on n, the computation of each estimate
θb has complexity O(cn), and the computation of Pij(θ̂b) for all i < j involves O(cn2)
operations. So, the complexity of Step 1 is O(Bcn2). In Step 2, each quantile can be
computed in O(n) operations [5], so the complexity of Step 2 is O(Bn2). Finally, solving each
quadratic programming problem in Step 3 has worst-case complexity O(f 3), where f is the
number of focal sets, so that each iteration of Algorithm 2 has O(nf 3) complexity. Assuming
the number of iterations of the IRQP algorithm to be roughly constant, the complexity of
Step 3 is O(nf 3). Overall, the time complexity of the global procedure is O(Bcn2 + nf 3).
As far as storage space is concerned, we need to store the confidence intervals, which has
O(n2) space complexity, and the evidential partition, which takes O(nf) space, so that the
overall complexity is O(n2 + nf).

In the worst case, the number of nonempty focal sets is 2c− 1. It is thus crucial to limit
the number of focals sets when c is large. A simple strategy is to restrict the focal sets
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of mass functions mi in the evidential partition to singletons and pairs, which bring their
number down to c(c+1)/2. A more sophisticated strategy, proposed in [14] is to first identify
the pairs of overlapping clusters, and to use only these pairs (as well as the singletons) as
focal sets; this strategy will be illustrated in Section 4.2 with the GvHD dataset.

Another limitation of our method is its O(n2) complexity, which precludes application
to very large datasets. We can remark that our approach is especially useful with small and
medium-size datasets (typically, containing a few hundred or thousand objects), for which
the cluster-membership probabilities usually cannot be estimated accurately. Nevertheless,
some preliminary ideas to make our approach applicable to large datasets will be mentioned
in the last paragraph of Section 5 as directions for future work.

4. Experimental results

We first present results with simulated data in Section 4.1 to verify the calibration
property experimentally. Some results with real datasets are then reported in Section 4.2.
All the simulations reported in this section were performed using an implementation of our
algorithm in R publicly available as function bootclus in package evclust [16].

4.1. Simulated data

We first considered datasets with n = 300 observations drawn from three different two-
dimensional Gaussian mixture models (GMM) with c = 3 components and the following
parameters:

Mixture 1:
µ1 := (0, 0)T , µ2 := (0, 3)T , µ3 := (3, 0)T ,

Σ1 = Σ2 = Σ3 :=

(
1 0
0 1

)
, π1 = π2 = π3 := 1/3.

Mixture 2:
µ1 := (0, 0)T , µ2 := (0, 2.5)T , µ3 := (2.5, 0)T ,

Σ1 = Σ2 = Σ3 :=

(
1 0.5

0.5 1

)
, π1 = π2 = π3 := 1/3.

Mixture 3:
µ1 := (0, 0)T , µ2 := (0, 3)T , µ3 := (3, 0)T ,

Σ1 :=

(
1 0.5

0.5 1

)
,Σ2 := 1.5

(
1 −0.5
−0.5 1

)
,Σ3 :=

(
1 0
0 1

)
,

π1 = π2 = π3 := 1/3.

17



−2 0 2 4 6

−
2

0
2

4

x1

x2

Mixture 1

−2 0 2 4

−
2

0
2

4

x1

x2

Mixture 2

−2 0 2 4 6

−
2

0
2

4
6

x1

x2

Mixture 3

Figure 7: Three datasets drawn from three Gaussian mixtures with c = 3 components.

We generated 100 datasets from each distribution. Examples of datasets are shown in Figure
7.

For each dataset, we generated B = 1000 nonparametric bootstrap samples and we
estimated the parameters of three-component GMMs under four assumptions1:

1. Spherical distributions, equal volume (EII);

2. Ellipsoidal distributions, equal volume, shape, and orientation (EEE);

3. Ellipsoidal distributions, varying volume, shape, and orientation (VVV);

4. Best model according to the BIC criterion (Auto).

Here, the terms “volume”, “shape” and “orientation” refer to the eigenvalue decomposition
of covariance matrices:

Σk = λkDkAkD
T
k ,

where parameter λk = |Σk|1/d, Dk is a matrix with eigenvectors, andAk is a diagonal matrix
whose elements are proportional to the eigenvalues of Σk, scaled such that |Ak| = 1. With
this parameterization, each of the three sets of parameters has a geometrical interpretation:
λk indicates the volume of cluster k, Dk its orientation, and Ak its shape [1].

It is clear that EII, EEE and VVV are the exact models for, respectively, Mixtures 1,
2 and 3. When the model selection strategy was employed, we selected the best model on
the whole dataset, and we fitted the selected model on each bootstrap replicate. For each
dataset and each model, we computed bootstrap confidence intervals [P l

ij, P
u
ij] on Pij(θ) for

each pair of objects (i, j) using Algorithm 1, at confidence levels α = 0.1 and α = 0.05.
Examples of 90% confidence intervals and approximating belief and plausibility degrees

for four object pairs in one particular dataset drawn from Mixture 2 are shown in Figure
8. In these four examples, both intervals [P l

ij, P
u
ij] and [Belij({sij}), P lij({sij})] contain

the true probability Pij(θ) that object i and j are in the same class. Figure 9 plots the
belief and plausibility degrees Belij({sij}) and Plij({sij}) vs. the lower and upper bounds

1We used the R package mclust [43].
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of 90% confidence intervals on Pij(θ). We can see that there is a reasonably good fit
between the belief-plausibility intervals and the bootstrap confidence intervals, thanks to
the minimization of criterion J(M) in (9). The belief and plausibility degrees are plotted
against the true probabilities Pij(θ) in Figure 10. For this dataset, almost all the belief-
plausibility intervals contained the true probabilities.

Tables 2-4 show the estimated coverage probabilities (i.e., the proportion of intervals con-
taining the true value Pij(θ) for 90% and 95% confidence intervals and their approximations
by belief-plausibility intervals. We can see that confidence intervals and belief-plausibility
intervals have similar coverage probabilities, and these probabilities are close to their nom-
inal levels when the model is correctly specified. For instance, in Table 2, the true model
is EII, which is a special case of models EEE and VVV. Consequently, all three models
are correct in this case, and they lead to intervals with coverage probability close to the
specified value. However, assuming a more general model such as VVV results in wider
intervals because of the larger standard error of the estimates. When the true model is EEE
(Table 3), assuming the incorrect model EII has a devastating effect in terms of coverage
probabilities, which are then much smaller than the specified level. The same phenomenon
is observed in Table 4, where the correct model is VVV and models EII and EEE are both
wrong. The automatic model determination method works well when the true model is EII
or EEE (Tables 2 and 3), but it does not work so well when the true model is VVV (Table
4), because it sometimes select a simpler model than the true one.

From these experiments, we can conclude that the belief-plausibility intervals have cov-
erage probabilities close to their nominal confidence levels when a correct model is assumed.
Correct assumptions about parameter constraints (such as homoscedasticity) make it possi-
ble to obtain shorter intervals when the assumptions are correct, but their can have a negative
effect on coverage probabilities when the assumptions are wrong. Automatic model selection
based, e.g., on the BIC criterion can be used, but the selection should be biased in favor of
more complex models to avoid model misspecification.

Experiment with non-normal data. Given the importance of correct model specification to
ensure the frequency-calibration of belief-plausibility intervals, we can expect poor results
when fitting a GMM to data generated by a mixture whose components are significantly
non-normal. As a case study, we considered data from a mixture of three two-dimensional
skew t distributions [49] with the following parameters:

µ1 := (3,−4)T , µ2 := (3.5, 4)T , µ3 := (2, 2)T ,

Σ1 :=

(
1 −0.1
−0.1 1

)
,Σ2 = Σ3 :=

(
1 0
0 1

)
,

π1 = π2 := 0.4, π3 := 0.4.

ν1 := 3, ν2 = ν3 := 5

δ1 := (3, 3)T , δ2 := (1, 5)T , δ3 := (−3, 1)T ,

where νk and δk denote, respectively, the degrees of freedom and the skewness parameters.
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Figure 8: Histograms of bootstrap estimates Pij(θ̂b), b = 1, . . . , 1000 for four pairs of objects (i, j) in a
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Figure 9: Dataset drawn from Mixture 2: (a) Lower bound P l
ij of the 90% confidence interval on Pij(θ)

(x-axis) vs. belief degree Belij({sij}) (y-axis); (b) Upper bound Pu
ij of the 90% confidence interval on Pij(θ)

(x-axis) vs. plausibility degree Plij({sij}) (y-axis).
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Figure 10: Dataset drawn from Mixture 2: (a) True probability Pij(θ) (x-axis) vs. belief degree Belij({sij})
(y-axis); (b) True probability Pij(θ) (x-axis) vs. plausibility degree Plij({sij}) (y-axis).
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Table 2: Coverage rates and lengths of bootstrap confidence intervals (CI) and belief-plausibility intervals for 100 datasets generated from
Mixture 1 (model EII), at nominal 90% and 95% confidence levels. The numbers in parentheses are the standard deviations over the 100
datasets. The coverage rates for correctly specified models are printed in bold.

Assumed model
EII EEE VVV Auto

True
1− α CI [Bel,Pl] CI [Bel,Pl] CI [Bel,Pl] CI [Bel,Pl]

model

EII

0.90

cover. 0.87 0.90 0.88 0.90 0.92 0.91 0.88 0.89
(0.159) (0.101) (0.125) (0.091) (0.102) (0.088) (0.15) (0.12)

length 0.11 0.11 0.14 0.14 0.32 0.32 0.11 0.11
(0.017) (0.017) (0.028) (0.028) (0.085) (0.088) (0.018) (0.018)

0.95
cov. 0.93 0.94 0.94 0.94 0.96 0.94 0.93 0.93

(0.121) (0.079) (0.087) (0.065) (0.067) (0.062) (0.126) (0.097)
length 0.13 0.13 0.17 0.17 0.39 0.40 0.133 0.132

(0.021) (0.021) (0.033) (0.033) (0.097) (0.100) (0.022) (0.022)
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Table 3: Coverage rates and lengths of bootstrap confidence intervals (CI) and belief-plausibility intervals for 100 datasets generated from
Mixture 2 (model EEE), at nominal 90% and 95% confidence levels. The numbers in parentheses are the standard deviations over the 100
datasets. The coverage rates for correctly specified models are printed in bold.

Assumed model
EII EEE VVV Auto

True
1− α CI [Bel,Pl] CI [Bel,Pl] CI [Bel,Pl] CI [Bel,Pl]

model

EEE

0.90

cover. 0.34 0.50 0.89 0.91 0.89 0.89 0.88 0.90
(0.033) (0.038) (0.122) (0.080) (0.125) (0.114) ( 0.155) (0.107)

length 0.16 0.16 0.15 0.15 0.37 0.37 0.16 0.16
(0.032) (0.032) (0.031) (0.031) (0.082) (0.084) (0.036) (0.036)

0.95
cov. 0.40 0.56 0.95 0.95 0.95 0.92 0.94 0.94

(0.035) (0.040) (0.085) (0.056) (0.088) (0.086) (0.112) (0.083)
length 0.19 0.19 0.18 0.19 0.45 0.46 0.19 0.19

(0.038) (0.039) (0.037) (0.037) (0.088) (0.091) (0.043) (0.044)
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Figure 11: Evidential partitions of a dataset drawn from a mixture of skew t distributions, fitted with a
GMM (a) and with a mixture of skew t distributions (b). The true groups are represented by different
symbols, and the maximum-plausibility groups are represented by different colors. The solid and broken
lines represent, respectively, the convex hulls of the lower and upper approximation of each cluster. (This
figure is better viewed in color).

Figure 11a shows a dataset of n = 300 observations drawn from this distribution, to-
gether with the partition obtained by fitting a GMM with the assumption of equal volume
of the three clusters (model EVV in package mclust), as well as the lower and upper ap-
proximations of each cluster. We can see that the partition obtained with the normality
assumption is close to the true partition (with only 12 misclassified points out of 300). How-
ever, only 50.4% of the belief-plausibility intervals computed from 90% bootstrap confidence
intervals contain the true probabilities, which suggests that their true coverage probability
is significantly smaller than the nominal one (see Figure 12).

As noted by McLachlan and Basford [35, Section 2.7], “In the situation where the sample
is completely unclassified, as in the usual cluster analysis setting where there is no genuine
group structure, it is a difficult task to assess the fit of a mixture model”. For assessing the
fit of a GMM, a method that is not fully rigorous but that works reasonable well in practice
is to fit a GMM first, and then to test the normality of the data in each cluster. Here,
normality is rejected for all three components with high significance by, for instance, Henze-
Zirkler’s test of multivariate normality [25], with p-values equal to 3.2 × 10−5, 4.0 × 10−7

and 3.9 × 10−5. Figure 11b displays the obtained partition as well as the lower and upper
approximations of each cluster obtained by fitting a mixture of skew t distributions to the
data (using the R package EMMIXskew [50]). As shown by Figure 13, 93.2% of the belief-
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Figure 12: Dataset drawn from a mixture of skew t distributions fitted with a GMM: (a) True probability
Pij(θ) (x-axis) vs. belief degree Belij({sij}) (y-axis); (b) True probability Pij(θ) (x-axis) vs. plausibility
degree Plij({sij}) (y-axis).

plausibility intervals now contain the true probabilities, which is close to the nominal value
of 90%.

These results suggest that the belief-plausibility intervals computed by our method may
not be well calibrated when there is a severe lack of fit of the mixture model to the data,
even though the obtained credal partition can still reveal the clustering structure of the
data. In most cases, however, the data distribution can be reasonably well approximated
by a GMM. This model will be assumed for the analysis of real datasets carried out in the
next section.

4.2. Real data

In this section, we apply our approach with GMMs to three real datasets, and we compare
it to two evidential clustering algorithms: ECM [33] and EVCLUS [13, 14], both implemented
in the R package evclust [16].

Iris data

We first consider the well-known Iris dataset2, composed of 150 four-dimensional vectors
partitioned in three groups corresponding to three species of Iris flowers (setosa, versicolor
and virginica, abbreviated as se, ve and vi). For this dataset we fixed the number of clusters
to c = 3, and we searched for the best GMM model using function Mclust in the mclust

package. The selected model was “VEV” corresponding to ellipsoidal clusters with equal

2Available in the R package datasets.
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Figure 13: Dataset drawn from a mixture of skew t distributions, fitted with the correct model: (a) True
probability Pij(θ) (x-axis) vs. belief degree Belij({sij}) (y-axis); (b) True probability Pij(θ) (x-axis) vs.
plausibility degree Plij({sij}) (y-axis).

shape. The result is represented graphically in Figure 14, showing the obtained partition as
well as the cluster centers and cluster shapes represented by isodensity ellipses. The adjusted
rand index (ARI) for the obtained partition is 0.90, with five objects from the versicolor
group incorrectly assigned to the virginica group.

We then computed 90% bootstrap percentile confidence intervals using Algorithm 1 with
B = 1000, and we constructed an evidential partition using Algorithm 2, with f = 6 focal
sets (the singletons and the pairs). As shown by Figure 15, the confidence bounds are quite
well approximated by the belief-plausibility intervals. Some belief values are smaller than
the lower bounds of the confidence intervals (Figure 15b), which suggests that the coverage
probability of these intervals might be larger than the 90% specified level.

The lower and upper cluster approximations for the obtained evidential partition are
represented in Figure 16. We can see that the setosa group, which is well separated from the
other two, has a precise representation (for that cluster, the lower and upper approximations
are equal). In contrast, the other two groups are overlapping, resulting in some objects being
assigned to more than one group. Table 5 shows the mass functions for the five objects from
the versicolor group wrongly clustered with the virginica in the model-based clustering. We
can see that four of them (objects 69, 71, 73 and 78) have a large mass on the set {ve, vi}
corresponding to the union of the versicolor and virginica, which indicates doubt in the
assignment to any of these two clusters. Table 6 shows the confusion matrix, after each
object has been assigned to the cluster subset with the highest mass. Clusters were labeled
according to the majority group of objects they contained. We can see that 11 objects from
the versicolor group, and three from the virginica, are assigned to the set {ve, vi}. Only
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Figure 14: Iris data with the partition obtained by fitting a GMM with c = 3 components. Covariances in
each group are represented by isodensity ellipses. (This figure is better viewed in color).
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Figure 15: Approximation of confidence intervals by belief-plausibility intervals for the Iris data. (a) Lower
bound P l

ij of the 90% confidence interval on Pij(θ) (x-axis) vs. belief degree Belij({sij}) (y-axis); (b) Upper
bound Pu

ij of the 90% confidence interval on Pij(θ) (x-axis) vs. plausibility degree Plij({sij}) (y-axis).

Table 5: Mass functions for the five misclassified instances in the Iris dataset. The three clusters have been
renamed as se, ve and vi.

Object m({se}) m({ve}) m({vi}) m({se, ve}) m({se, vi}) m({ve, vi})
69 0.012 0 0.007 0 0 0.991
71 0 0.005 0.077 0 0 0.918
73 0 0.003 0.202 0 0 0.795
78 0 0.051 0.052 0 0 0.897
84 0 0 0.882 0 0 0.117

objet (# 84) from the versicolor group is misclassified as virginica.
We also compared the above results to those obtained using ECM and EVCLUS. For

ECM, we set the parameters α and β to their default values (α = 1 and β = 2), and we set
δ = 100 to avoid having any mass on the empty set. To select the focal sets, we used the
method described in [14]: we first ran the algorithm using only the singletons as focal sets,
and we found the pairs of classes with high similarity (see [14] for details). Here, the pair
{ve, vi} was selected. Then, we ran the ECM algorithm again with focal sets {se}, {ve},
{vi} and {ve, vi}. The resulting evidential partition is shown in Figure 17, and the confusion
matrix is shown in Table 7. As we can see, ECM tends to extract spherical clusters, and
thus fails to identify correctly the versicolor and virginica groups. Comparing Tables 6 and
7, we can see that ECM also misclassified one virginica object as versicolor, but it provides
a much more imprecise evidential partition, with 16 objects from the versicolor group and
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Figure 16: Evidential partition of the Iris data using the model-based approach. The true groups are
represented by different symbols (o: setosa; triangle: versicolor; +: virginica), and the maximum-plausibility
groups are represented by different colors. The solid and broken lines represent, respectively, the convex
hulls of the lower and upper approximation of each cluster. (This figure is better viewed in color).

Table 6: Confusion matrix for the Iris dataset.

Clustering
{se} {ve} {vi} {ve, vi}

setosa 50 0 0 0
versicolor 0 38 1 11
virginica 0 0 47 3
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Figure 17: Evidential partition obtained by ECM applied to the Iris data. The true groups are represented
by different symbols (o: setosa; triangle: versicolor; +: virginica), and the maximum-plausibility groups are
represented by different colors. The solid and broken lines represent, respectively, the convex hulls of the
lower and upper approximation of each cluster. (This figure is better viewed in color).

17 objects from the virginica assigned to the compound cluster {ve, vi}.
Finally, we also applied the k-EVCLUS algorithm [14] to the same data, after normalizing

the four attributes. We used the default settings and k = 50 (see [14] for details). We used
the same procedure as with ECM to identify pairs of clusters to include as focal sets, and
the whole set Ω = {se, ve, vi} was also included as a focal set. Again, the pair {ve, vi}
was correctly identified and included as focal set. The resulting evidential partition is
shown in Figure 18, and the confusion matrix is shown in Table 8. EVCLUS is designed to
assign some mass to the empty set, with a high mass on the empty set signaling an outlier.
Here, four points were identified as outliers: they are the points outside the cluster upper
approximations in Figure 8. As shown by the confusion matrix in Table 8, EVCLUS does
not perform very well on this dataset, with roughly the same number of correctly classified
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Table 7: Confusion matrix for the evidential partition obtained by ECM on the Iris dataset.

Clustering
{se} {ve} {vi} {ve, vi}

setosa 50 0 0 0
versicolor 0 34 0 16
virginica 0 1 32 17

Table 8: Confusion matrix for the evidential partition obtained by k-EVCLUS on the Iris dataset.

Clustering
∅ {se} {ve} {vi} {ve, vi}

setosa 2 48 0 0 0
versicolor 0 0 32 10 8
virginica 2 0 6 33 9

objects as ECM, but 16 misclassified objects. Overall, both ECM and EVCLUS performed
significantly worse on this dataset than the model-based approach.

Diabetes data

The Diabetes dataset3 [42, 43] contains three measurements made on 145 non-obese adult
patients classified into three groups (normal, overt, and chemical, abbreviated as no, ov and
ch). The three attributes are glucose (area under plasma glucose curve after a three hour
oral glucose tolerance test), insulin (area under plasma insulin curve after a three hour oral
glucose tolerance test), and sspg (steady state plasma glucose). For this dataset, the best
model according to BIC was found to be the full unconstrained model (“VVV”) with c = 3
components. The data with the obtained partition as well as the estimated cluster centers
and covariance ellipses are shown in Figure 19. The ARI for the obtained partition is 0.66,
and the confusion matrix is shown in Table 9. As before, clusters were labeled from the
majority group among their elements. As we can see, there are 20 misclassified objects.

As before, we computed 90% bootstrap percentile confidence intervals with B = 1000,
and we used these intervals to constructed an evidential partition with f = 6 focal sets
(the singletons and the pairs). The resulting evidential partition is displayed in Figure 21

3Available in the R package mclust.

Table 9: Confusion matrix for the hard partition of the Diabetes dataset (model-based approach).

Clustering
{ch} {no} {ov}

chemical 26 9 1
normal 4 72 0
overt 6 0 27
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Figure 18: Evidential partition obtained by k-EVCLUS applied to the Iris data. The true groups are
represented by different symbols (o: setosa; triangle: versicolor; +: virginica), and the maximum-plausibility
groups are represented by different colors. The solid and broken lines represent, respectively, the convex
hulls of the lower and upper approximation of each cluster. (This figure is better viewed in color).
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Figure 19: Diabetes data with the partition obtained by fitting a GMM with c = 3 components. Covariances
in each group are represented by isodensity ellipses. (This figure is better viewed in color).
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Figure 20: Approximation of confidence intervals by belief-plausibility intervals for the Diabetes data. (a)
Lower bound P l

ij of the 90% confidence interval on Pij(θ) (x-axis) vs. belief degree Belij({sij}) (y-axis);
(b) Upper bound Pu

ij of the 90% confidence interval on Pij(θ) (x-axis) vs. plausibility degree Plij({sij})
(y-axis).

Table 10: Confusion matrix for the evidential partition of the Diabetes dataset (model-based approach).

Clustering
{ch} {no} {ov} {ch, no} {no, ov}

chemical 18 6 0 8 4
normal 2 68 0 6 0
overt 2 0 25 0 6

and the quality of the approximation of confidence intervals by belief-plausibility intervals
is illustrated in Figure 20. The confusion matrix is shown in Table 10. As we can see, the
number of misclassifications is down to 14 (including 4 objects of class “chemical” wrongly
assigned to {no, ov}). As a comparison, we show the confusion matrices for ECM (Table 11)
and k-EVCLUS (Table 12), which were used with the same parameter settings as for the
Iris data. As we can see, these two methods fail to group the observations from the class
“chemical” in a single cluster, and they perform significantly worse than the model-based
approach.

GvHD data

The GvHD (Graft-versus-Host Disease) data4 consist of four biomarker variables, namely,
CD4, CD8b, CD3, and CD8, observed in flow cytometry data for two patients [6, 43]. We

4Available in the R package mclust.

35



glucose

0
50

0
10

00
15

00

100 200 300

0 500 1000 1500

insulin

10
0

20
0

30
0

0 200 400 600

0
20

0
40

0
60

0

sspg

Figure 21: Evidential partition of the Diabetes data obtained using the model-based approach. The true
groups are represented by different symbols (o: chemical; triangle: normal; +: overt), and the maximum-
plausibility groups are represented by different colors. The solid and broken lines represent, respectively, the
convex hulls of the lower and upper approximation of each cluster. (This figure is better viewed in color).

Table 11: Confusion matrix for the evidential partition of the Diabetes dataset obtained by ECM.

Clustering
{ch} {no} {ov} {ch, no}

chemical 8 17 0 11
normal 2 68 0 6
overt 1 10 21 1
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Table 12: Confusion matrix for the evidential partition of the Diabetes dataset obtained by k-EVCLUS.

Clustering
{ch} {no} {ov} {no, ov} {ch, no, ov}

chemical 8 27 0 0 1
normal 1 75 0 0 0
overt 1 9 21 2 0
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Figure 22: Model selection for the GvHD: BIC vs. number of clusters for the 14 models defined in R package
mclust.

used the data from the GvHD positive patient, which originally contained 9083 observations.
We randomly selected 1000 observations. The objective of the analysis is to identify cell
sub-populations present in the sample. There are no ground truth labels for this dataset,
but we use it to as an example of a dataset with a larger number of clusters than the two
previous datasets.

As seen in Figure 22, the best model according to BIC is the full (unconstrained) model
with c = 7 clusters. The corresponding partition as well as the cluster centers and covariance
ellispses are shown in Figure 23.

With seven clusters, the maximum number of nonempty focal sets in the evidential
partition is 27 − 1 = 127. Restricting the focal sets to singletons and pairs leaves us with
7 + (6 × 7)/2 = 28 focal sets. However, not all pairs are needed, because some pairs of
clusters actually do not overlap. To further reduce the number of focal sets, we can use a
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Figure 23: GvHD data with the partition obtained by fitting a GMM with c = 7 components. Covariances
in each group are represented by isodensity ellipses. (This figure is better viewed in color).
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Figure 24: Evidential partition of the GvHD data: lower approximations and convex hulls of the upper
approximations. The solid and broken lines represent, respectively, the convex hulls of the lower and upper
approximation of each cluster. (This figure is better viewed in color).

method similar to the one proposed in [14]. The similarity between two clusters k and l can
be measured by

skl =
n∑
i=1

πk(xi; θ̂) πl(xi; θ̂).

Based on these similarities, we can identify clusters that are mutual K-nearest neighbors.
With K = 2, we obtained five pairs of mutual nearest neighbors: (1,3), (2,4), (1,6), (3,7) and
(5,7). These five pairs and the seven singletons gave us f = 12 focal sets. We used the same
method as above to compute the bootstrap percentile confidence intervals and construct an
evidential partition. The cluster lower approximations and the convex hulls of the upper
approximations are shown in Figure 24.

Using this pair selection approach, the model can be used even with large numbers of
clusters (several dozens or even several hundreds). The main limitation of the method is
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related to the number of objects. The necessity to compute and store the n(n− 1)/2 belief-
plausibility intervals results in a quadratic memory and time complexity, which precludes
application of the method to datasets with more than a few thousand objects. However, it
might be possible to use only pairwise belief-plausibility intervals for pairs of neighboring
objects, as done in [14] to make the EVCLUS algorithm applicable to large datasets. This
idea remains to be investigated.

5. Conclusions

We have described a new model-based approach to evidential clustering. The method
starts by estimating the parameters of a finite mixture model. In this paper, we used GMMs,
but there is no restriction on the kinds of models that can be used. For instance, for categor-
ical data, latent class models would be more suitable. The model is first fitted using the EM
algorithm, and bootstrap percentile confidence intervals on pairwise probabilities Pij at some
confidence level 1−α are computed. Here, Pij is the probability that objects i and j belong
to the same cluster. Finally, an evidential partition is constructed in such a way that pair-
wise degrees of belief Belij({sij}) and plausibility Plij({sij}) approximate the bounds of the
confidence intervals in the least squares sense. The evidential partitions constructed using
this method are approximately calibrated, in the sense that the belief-plausibility intervals
[Belij({sij}), P lij({sij})] contain the true probabilities Pij with probability approximately
equal to 1 − α. This evidential partition provides a more complete description of the clus-
tering structure than does the fuzzy partition directly provided by the EM algorithm, as it
also takes into account uncertainty in the estimation of class probabilities.

We have presented extensive experimental results showing that the coverage probabilities
of the belief-plausibility intervals are close to their nominal confidence level when the model
is correctly specified. We have also demonstrated the applicability of this approach to sev-
eral real datasets, and compared the evidential partitions obtained using this model-based
approach to those obtained with ECM and EVCLUS, the two main evidential clustering
algorithms available so far. Model-based evidential clustering inherits the advantages of
classical model-based clustering. In particular, various assumptions about cluster shapes
can be formalized as assumptions about component probability distributions, and model
selection criteria such as BIC make it possible to determine the number of clusters automat-
ically.

As the method requires the construction of confidence intervals for each pair objects, it
has quadratic complexity, which makes it unsuitable for the analysis of very large datasets
containing more than a few thousands of objects. One remedy could be to use only the belief-
plausibility intervals for pairs of neighboring objects, an idea exploited in [14] to apply the
EVCLUS algorithm to large datasets. This research direction will be explored in future
work.
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[28] Benôıt Lelandais, Su Ruan, Thierry Denœux, Pierre Vera, and Isabelle Gardin. Fusion of multi-tracer

PET images for dose painting. Medical Image Analysis, 18(7):1247–1259, 2014.
[29] Feng Li, Shoumei Li, and Thierry Denœux. k-CEVCLUS: Constrained evidential clustering of large

dissimilarity data. Knowledge-Based Systems, 142:29–44, 2018.
[30] C. Lian, S. Ruan, T. Denoeux, H. Li, and P. Vera. Spatial evidential clustering with adaptive distance

metric for tumor segmentation in FDG-PET images. IEEE Transactions on Biomedical Engineering,
65(1):21–30, 2018.

[31] Pawan Lingras and Georg Peters. Applying rough set concepts to clustering. In G. Peters, P. Lingras,
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