
Statistical inference from ill-known data using belief

functions

Thierry Denœux
UMR CNRS 6599 Heudiasyc

Université de Technologie de Compiègne
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1 Introduction

Whereas current research in statistics and econometrics mainly focuses on the development of
more complex models and inference procedures, data quality is recognized by applied statis-
ticians as a key factor influencing the validity of the conclusions drawn from a statistical
analysis. As noted by Cox [5], “issues of data quality and relevance, while underemphasized
in the theoretical statistical and econometric literature, are certainly of great concern in much
statistical work”. Arguing for better consideration of empirical practice in econometric theory,
Heckman [21] also remarked that “Data quality, data collection and economic interpretation
of statistical evidence are perceived as topics off limits to econometricians, but central to the
field of empirical economics”.

One of the reasons why data quality, in spite of its importance, has received relatively
little attention in the statistical literature, may be that its evaluation often requires subjective
judgements that do not easily fit with the standard likelihood-based or Bayesian frameworks.
While the latter approach allows for the introduction of personalistic prior information, it does
so in a very specific and questionable manner (by treating all unknown quantities as random
variables), which raises a number of theoretical and practical issues [35, 15].

In the past thirty years, alternatives to the Bayesian framework for reasoning from weak
information have emerged, including Possibility Theory [38], Imprecise Probabilities [35] and
the theory of Belief Functions [7, 24]. In particular, the latter approach, also referred to as
Dempster-Shafer or Evidence theory, was introduced by Dempster [6, 8] with the objective
to reconcile Bayesian and fiducial inference. Shafer [24] later formalized this approach as a
general method for representing and combining evidence, not necessarily statistical. Smets
[28, 32] emphasized the singularity of the theory of belief functions as opposed to related but
distinct frameworks such as imprecise probabilities [35] and random sets [23].

The main feature of theory of belief function is that is subsumes both the logical and
probabilistic approaches to uncertainty: a belief function may be seen as a non-additive prob-
ability measure [24] and as a generalized set [17]. Also, basic mechanisms for reasoning with
belief functions extend both probabilistic operations (such as marginalization and condition-
ing) and set-theoretic operations (such as intersection and union). In particular, the belief
function approach coincides with the Bayesian approach when all variables are described by
probability distributions, while allowing for considerably more flexibility when the available
knowledge does not allow for the specification of a reasonable probability distributions without
introducing unsupported assumptions.

In this paper, the theory of belief function is advocated as a suitable framework for statisti-
cal analysis of low quality, i.e., imprecise and/or partially reliable data. The main concepts of
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the theory will first be recalled in Section 2 and its application to the representation of statis-
tical evidence will be discussed in Section 3. The use of belief functions for representing data
uncertainty and corresponding inferential procedures will be introduced in Section 4. Finally,
Section 5 will conclude the paper with a summary of the main results and the presentation of
some research challenges.

2 Belief functions

This section recalls the necessary background notions related to Dempster-Shafer theory. Be-
lief functions on finite domains and Dempster’s rule of combination are first presented in
Subsections 2.1 and 2.2, respectively. Some notions regarding the definition and manipulation
of belief functions on continuous domains are then recalled in Subsection 2.3.

2.1 Belief functions on finite domains

Let θ be a variable taking values in a finite domain Θ, called the frame of discernment.
Uncertain evidence about θ may be represented by a mass function m on Θ, defined as a
function from the powerset of Θ, denoted as 2Θ, to the interval [0, 1], such that m(∅) = 0 and∑

A⊆Θ

m(A) = 1. (1)

Any subset A of Θ such that m(A) > 0 is called a focal set of m. A categorical mass function
has only one focal set (it is thus equivalent to a set), while a Bayesian mass function has only
focal sets of cardinality one and is thus equivalent to a probability distribution. The mass
function m such that m(Θ) = 1 is said to be vacuous.

Each number m(A) is interpreted as a degree of belief attached to the proposition θ ∈ A
and to no more specific proposition, based on some evidence. As argued by Shafer [26],
the meaning of such degrees of belief can be better understood by assuming that we have
compared our evidence to a canonical chance set-up. The set-up proposed by Shafer consists
of an encoded message and a set of codes Ω = {ω1, . . . , ωn}, exactly one of which is selected
at random. We know the list of codes as well as the chance pi of each code ωi being selected.
Decoding the encoded message using code ωi produces a message of the form “θ ∈ Ai” for
some Ai ⊆ Θ. Then

m(A) =
∑

{1≤i≤n:Ai=A}

pi (2)

is the chance that the original message was “θ ∈ A”. Stated differently, it is the probability of
knowing that θ ∈ A. In particular, m(Θ) is, in this setting, the probability that the original
message was vacuous, i.e., the probability of knowing nothing.

The above setting thus consists of a set Ω, a probability measure P on Ω and a multi-
valued mapping Γ : Ω→ 2Θ \{∅} such that Ai = Γ(ωi) for each ωi ∈ Ω. This is the framework
initially considered by Dempster in [7]. The triple (Ω, P,Γ) formally defines a finite random
set [23]: mass functions are thus exactly equivalent to random sets from a mathematical point
of view. However, the meaning of mass functions differs from the usual interpretation of a
random set as the outcome of a random experiment: here, m(A) is not the chance that A was
selected, but it can be viewed as the chance of the evidence meaning that θ is in A [26].

To each normalized mass function m, we may associate belief and plausibility functions
from 2Θ to [0, 1] defined as follows:

Bel(A) = P ({ω ∈ Ω|Γ(ω) ⊆ A}) =
∑
B⊆A

m(B) (3a)

Pl(A) = P ({ω ∈ Ω|Γ(ω) ∩A 6= ∅}) =
∑

B∩A6=∅

m(B), (3b)
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for all A ⊆ Θ. These two functions are linked by the relation Pl(A) = 1 − Bel(A), for all
A ⊆ Θ. Each quantity Bel(A) may be interpreted as the degree to which the evidence supports
A, while Pl(A) can be interpreted as the degree to which the evidence is not contradictory
with A. The following inequalities always hold: Bel(A) ≤ Pl(A), for all A ⊆ Θ. The function
pl : Θ→ [0, 1] such that pl(θ) = Pl({θ}) is called the contour function associated to m.

If m is Bayesian, then function Bel is identical to Pl and it is a probability measure, and
pl is the corresponding probability mass function. Another special case of interest is that
where m is consonant, i.e., its focal elements are nested. The plausibility function is then a
possibility measure [38, 18] with possibility distribution pl, i.e., the plausibility function can
be recovered from the contour function as follows: [24]:

Pl(A) = max
θ∈A

pl(θ). (4)

for all A ⊆ Θ.
Given two mass functions m1 and m2, m1 is said to be less specific than m2 if it can be

obtained from m2 by transferring belief masses m2(A) to supersets B ⊇ A [37, 17]. In this case,
m1 can be considered as less informative, or less committed1 than m2. The Least Commitment
Principle (LCP) [30] states that, given some constraints on an unknown mass function, the
least committed should be selected. This principle provides a justification of consonant mass
functions: given a function π : Θ→ [0, 1] such that maxπ = 1, the least specific mass function
m with contour function pl such that pl = π is consonant; its plausibility function, given by
(4), will be denoted as pl∗.

2.2 Dempster’s rule

A key idea in Dempster-Shafer theory is that beliefs are elaborated by aggregating differ-
ent items of evidence. The basic mechanism for evidence combination is Dempster’s rule of
combination, which can be naturally derived using the random code metaphor as follows.

Let m1 and m2 be two mass functions induced by triples (Ω1, P1,Γ1) and (Ω2, P2,Γ2)
interpreted under the random code framework as before. Let us further assume that the
codes are selected independently. For any two codes ω1 ∈ Ω1 and ω2 ∈ Ω2, the probability
that they both are selected is then P1({ω1})P2({ω2}), in which case we can conclude that
θ ∈ Γ1(ω1) ∩ Γ2(ω2). If Γ1(ω1) ∩ Γ2(ω2) = ∅, we know that the pair of codes (ω1, ω2) could
not have been selected: consequently, the joint probability distribution on Ω1 × Ω2 must be
conditioned, eliminating such pairs [26]. This line of reasoning yields the following combination
rule, referred to as Dempster’s rule [24]:

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C) (5)

for all A ⊆ Θ, A 6= ∅ and (m1 ⊕m2)(∅) = 0, where

κ =
∑

B∩C=∅

m1(B)m2(C) (6)

is the degree of conflict between m1 and m2. If κ = 1, there is a logical contradiction between
the two pieces of evidence and they cannot be combined. Dempster’s rule is commutative,
associative, and it admits as neutral element the vacuous mass function defined as m(Ω) = 1.

Dempster’s rule can be easily expressed in terms of contour functions: if pl1 and pl2 are
the contour functions of two mass functions m1 and m2, then the contour function of m1⊕m2

is, using the same symbol ⊕ as used for mass functions and contour functions

(pl1 ⊕ pl2)(θ) =
pl1(θ)pl2(θ)

1− κ
(7)

1Alternative comparative orderings between belief functions have been proposed, see, e.g., [17].
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for all θ ∈ Θ, where κ is the degree of conflict. If m1 or m2 is Bayesian, then so is m1 and m2

and the degree of conflict is then

κ = 1−
∑
θ∈Θ

pl1(θ)pl2(θ). (8)

2.3 Random real intervals

The definition of belief functions and random sets in infinite spaces implies greater mathemat-
ical sophistication than it does in finite spaces [25, 23]. Here, we will restrict our discussion
to random closed intervals on the real line (see, e.g., [9, 31, 11]), which constitute a simple yet
sufficiently general framework for expressing beliefs on a real variable.

Let (Ω,A, P ) be a probability space and (U, V ) : Ω → R2 a two-dimensional real random
vector such that P ({ω ∈ Ω|U(ω) ≤ V (ω)}) = 1. Let Γ be the multi-valued mapping that
maps each ω ∈ Ω to the closed interval [U(ω), V (ω)]. This setting defines a random interval,
as well as belief and plausibility functions on R defined, respectively, by

Bel(A) = P ({ω ∈ Ω|[U(ω), V (ω)] ⊆ A}) (9)

Pl(A) = P ({ω ∈ Ω|[U(ω), V (ω)] ∩A 6= ∅}) (10)

for all elementsA of the Borel sigma-algebra B(R) on the real line [9]. The intervals [U(ω), V (ω)]
are referred to as the focal intervals of [U, V ]. We note that, when U and V are continuous,
the notion of mass function should be replaced by that of mass density function defined by
m([u, v]) = p(u, v), where p(u, v) denotes the joint probability density function (pdf) of (U, V ).
To simplify the terminology, we will continue to use the term “mass function” in this case.

If U = V , then we have a random point, which is equivalent to a real random variable.
Another special case of interest is that of consonant random closed intervals defined as follows.
Let π : R → [0, 1] be an upper semi-continuous function and let Ω = [0, 1]. For each ω ∈ Ω,
let

Γ(ω) = {x ∈ R|π(x) ≤ ω},

which is a closed interval [U(ω), V (ω)]. Finally, let P denote the Lebesgue measure on Ω.
Then, [U, V ] is a random interval and π is its contour function, i.e., pl(x) = Pl({x}) = π(x)
for all x ∈ R. Such a random interval is said to be consonant because its focal intervals Γ(ω)
are nested.

Dempster’s rule can be defined for random intervals as follows. Let us assume that we
have two random intervals (Ωi,Ai, Pi,Γi) with i = 1, 2 and [Ui(ω), Vi(ω)] = Γi(ω). Let Γ12 be
the mapping from Ω1 × Ω2 to the set of closed real intervals defined by

Γ12(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2), ∀(ω1, ω2) ∈ Ω1 × Ω2

and let P12 be the product measure P1×P2 conditioned on the set {(ω1, ω2) ∈ Ω1×Ω2|Γ12(ω1, ω2) 6=
∅}. Then, (Ω1×Ω2,A1×A2, P12,Γ12) define a random interval [U12, V12] = [U1, V1]⊕ [U2, V2].
Its contour function is

(pl1 ⊕ pl2)(x) =
pl1(x)pl2(x)

1− κ
for all x ∈ R, where κ is the degree of conflict between the two random intervals defined as:

κ = P ({(ω1, ω2) ∈ Ω1 × Ω2|Γ12(ω1, ω2) 6= ∅}) .

In general, the combination of two random intervals by Dempster’s rule is not easy to compute
analytically. However, a special case in which the computations are very simple is that were a
random point with pdf p1 is combined with a random interval with contour function pl2. The
results is a random point with pdf

(p1 ⊕ pl2)(x) =
p1(x)pl2(x)

1− κ
, (11)
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where the degree of conflict κ is

κ = 1−
∫ +∞

−∞
p1(x)pl2(x)dx. (12)

3 Modeling statistical evidence

Let us now turn our attention to the representation of statistical evidence. Assume that we
have observed a realization x of a random vector X with pdf p(x;θ), where θ ∈ Θ is an
unknown parameter. What does this item of evidence tell us about θ? Shafer’s solution
[24] derived from the Likelihood and Least Commitment principles will first be recalled in
Subsection 3.1. Arguments for and against this solution will then be discussed in Subsection
3.2 and an illustrative example will be presented in Subsection 3.3.

3.1 Least committed solution based on likelihoods

In the standard statistical framework, information about θ is typically assumed to be repre-
sented by the likelihood function defined by L(θ;x) = p(x; θ) for all θ ∈ Θ. More precisely,
the likelihood principle [2] [3] [19, chapter 3] states that “Within the framework of a statis-
tical model, all the information which the data provide concerning the relative merits of two
hypotheses is contained in the likelihood ratio of these hypotheses on the data”. In statistical
parlance, the likelihood ratio is often referred to as the “relative plausibility”, which suggests
translating the likelihood ratio in the belief function framework as follows:

pl(θ1;x)

pl(θ2;x)
=
L(θ1;x)

L(θ2;x)
,

for all (θ1, θ2) ∈ Θ2 or, equivalently,

pl(θ;x) = cL(θ;x)

for all θ ∈ Θ and some positive constant c. The LCP then leads us to giving the highest
possible value to constant c, i.e., defining pl as the relative likelihood :

pl(θ;x) =
L(θ;x)

supθ∈Θ L(θ;x)
(13)

and representing evidence about θ by the least committed plausibility function induced by pl,
i.e.,

Pl(A;x) = sup
θ∈A

pl(θ;x) =
supθ∈A L(θ;x)

supθ∈Θ L(θ;x)
, (14)

for all A ⊆ Θ. The corresponding belief function is called a likelihood-based belief function
by Wasserman [36].

3.2 Discussion

Equation (14) was first proposed by Shafer in [24, chapter 11] who, however, did not justify
it by the LCP, but by the more questionable requirement that the belief function on Θ be
consonant. In the special case where Θ = {θ1, θ2} has only two points, Wasserman [36] showed
that the plausibility function (14) corresponds to the unique belief function Bel(·;x) verifying
the following requirements:

1. If L(θ1;x) = L(θ2;x), then Bel(·;x) should be vacuous;

2. Bel({θ};x) should be nondecreasing in L(θ;x);
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3. If Bel = Bel(·;x)⊕P0 and P0 is a probability measure, then Bel should be equal to the
Bayesian posterior.

This argument can be extended to the case where Θ is a complete, separable metric space
[36].

One of the main criticisms against the use of the likelihood-based plausibility function
(14) for represented statistical evidence is its incompatibility with Dempster’s rule in the case
of independent observations [27]. More precisely, assume that X is an independent sample
(X1, . . . , Xn) and each observation Xi has a marginal pdf p(xi;θ) depending on θ. We could
combine the n observations at the “aleatory level” by computing Pl(·;x) using (14), or we
could combine them at the “epistemic level” by first computing the consonant plausibility
functions Pl(·;xi) induced by each of the independent observations and applying Dempster’s
rule. Obviously, these two procedures yield different results in general, as consonance is not
preserved by Dempster’s rule.

Shafer [27] seems to have regarded the above argument as strong enough to reject (14) as
a reasonable method to represent statistical evidence. However, Aickin [1] proposed to keep
(14) but questioned Dempster’s rule as a mechanism for combining statistical evidence. Addi-
tional arguments against the use of Dempster’s rule for combining evidence from independent
observations can be found in [34].

Based on the above discussion, we propose to adopt (13) and (14) as models of statistical
evidence. Further arguments in favor of this approach are summarized below:

1. This method of inference is considerably simpler than other methods such as Demp-
ster’s initial proposal [8] and other methods discussed in [27], while being more widely
applicable than Smets’ Generalized Bayesian Theorem [29, 16].

2. Combining Pl(·;x) given by (14) with a Bayesian prior P0 on Θ using Dempster’s rule
yields a Bayesian plausibility function Pl(·;x) ⊕ P0 which is identical to the posterior
probability obtained using Bayes’ rule: consequently, the proposed method of inference
boils down to Bayesian inference when a Bayesian prior is available.

3. Finally, viewing the relative likelihood function as a possibility distribution seems to be
consistent with statistical practice, although this point of view has not been adopted
explicitly in the statistical literature. For instance, likelihood intervals [22, 33] are focal
intervals of the relative likelihood viewed as a possibility distribution. In the case where
θ = (θ1, θ2) ∈ Θ1×Θ2 and θ2 is considered as a nuisance parameter, the relative profile
likelihood function can be written

pl(θ1;x) = sup
θ2∈Θ2

pl(θ1, θ2;x),

which is the marginal possibility distribution on Θ1. Eventually, we can remark that the
usual likelihood ratio statistics Λ(x) for a composite hypothesis H0 ⊂ Θ is nothing but
the plausibility of H0, as

Λ(x) =
supθ∈H0

L(θ;x)

supθ∈θ L(θ;x)
= sup
θ∈H0

pl(θ;x) = Pl(H0;x).

3.3 Illustrative example

As a concrete example, let us consider the following problem using real dataset. Average
public teacher pay and spending on public schools per pupil in 1985 for 49 states and the
District of Columbia were reported by the Albuquerque Tribune2. The data are plotted in
Figure 1 for each of the three areas: Northeast and North Central, South and West. We can
see that public teacher pay is approximately linearly related to spending on public schools. Is
there any statistical evidence of different relations holding in the three regions?

2The dataset can be downloaded from the Data and Story Library at http://lib.stat.cmu.edu/DASL. The
data for Alaska is an outlier and was not considered in this analysis
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Figure 1: Average public school teacher annual salary ($) as a function of spending on public
schools per pupil ($) for 49 states and the District of Columbia.

Let yki and xki denote, respectively, the teacher pay and spending on public schools in
state i of region k (k = 1, 2, 3). We assume that yk = {yki}nk

i=1 is a realization of a Gaussian
random vector Yk ∼ N (Xkbk, σ

2
kIn), where Xk is the fixed design matrix with line i equal to

(1, xki), In is the identity matrix of size n, and θk = (bk, σk)′ is the parameter vector.
Figure 2 shows the contour functions pl(bk;yk). We recall that this function is obtained

as the relative profile likelihood function considering variance as a nuisance parameter, i.e.,

pl(bk;yk) = sup
σk>0

pl(bi, σk;yk) =
supσk>0 L(bk, σk;yk)

supbk∈R2,σi>0 L(bk, σk;yk)
,

with

L(bk, σk;yk) = φ(yk;X′kbk, σ
2
kIn) =

n∏
i=1

φ(yki; (1, xki)
′bk, σ

2
k),

We can see from Figure 2(d) that the contour at level 0.1 for region 3 does not intersect the
corresponding contour for region 2, which suggests that b3 is different from b2 with a high
plausibility. To carry the analysis further, we can compute the plausibilities Pl(bi = bj) for
each pair of regions, as well as the plausibility Pl(b1 = b2 = b3) that the three parameters
are equal. It is easy to see [14] that these plausibilities are equal to one minus the degree of
conflict between the belief functions related to each parameter. These degrees of conflict are
not easy to compute analytically, but they can be estimated by Monte-Carlo simulation. This
is achieved by picking a focal set at random independently for each of the belief function, and
estimating the probability for the focal sets to be disjoint. We obtain the following values:

Pl(b1 = b2) = 0.70, P l(b1 = b3) = 0.12, P l(b2 = b3) = 0.02

Pl(b1 = b2 = b3) = 0.01.

which confirms that the hypotheses b2 = b3 and b1 = b2 = b3 can be discarded as having
very small plausibility.
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Figure 2: Contour functions pl(bk;yk) for each of the three regions (a-c) and 0.1-level contours
(d). Please note that the x and y axes have different ranges in the four plots.
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4 Inference from uncertain data

We consider in this section the situation where the data x have been generated by a random
process but have been imperfectly observed [12, 13, ?]. Our partial knowledge of x will then
be described by a mass function m on the data space ΩX ⊆ Rd. Our objective will be to find a
suitable representation of the information about the parameter provided by such data, in the
belief function framework. Our approach will be to generalize the likelihood function and, as
before, to consider the relative likelihood as the contour function of a consonant plausibility
measure.

Before we describe our approach, it must be emphasized that, in this model, the pdf or
probability mass function p(x,θ) and the Dempster-Shafer mass function m represent two
different pieces of knowledge:

• p(x,θ) represents generic knowledge about the data generating process or, equivalently,
about the underlying population; it corresponds to random uncertainty ;

• m represents specific knowledge about a given realization x of X; this knowledge is
only partial because the observation process is imperfect; function m captures epistemic
uncertainty, i.e., uncertainty due to lack of knowledge.

The uncertain data m is thus not assumed to be produced by a random experiment, which is
in sharp contrast with other approaches based on random sets [23] or fuzzy random variables
[20].

Our approach will first be described in Subsection 4.1. The impact of stochastic and
cognitive independence assumptions will then be examined in Subsection 4.2.

4.1 Representation of uncertain statistical evidence

Let us assume that the mass function m is induced by a random set (Ω,A, P,Γ). We will
further assume that one of the following two conditions holds:

• X is discrete, or

• X is continuous an Γ(ω) is not reduced to a point (which would correspond an infinite
precision).

Under these assumptions, the probability of observing the result Γ(ω) given that the interpre-
tation ω ∈ Ω holds is

P (Γ(ω); θ) =

∫
Γ(ω)

p(x; θ)dx,

assuming that the integral in the right-hand side is well defined. The probability of the
uncertain observation m may then defined as the average of P (Γ(ω); θ) over ω ∈ Ω, which can
be written as

P (m; θ) =
∑
ω∈Ω

p(ω)P (Γ(ω); θ)

if Ω is finite and

P (m; θ) =

∫
Ω

p(ω)P (Γ(ω); θ)dω

otherwise, assuming this integral to be defined. The likelihood function given the uncertain
observation m can then be defined as L(θ;m) = P (m; θ) for all θ ∈ Θ. It is easy to show that
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L(θ;m) only depends on the contour function. To see this, we may write:

L(θ;m) =

∫
Ω

p(ω)

(∫
Γ(ω)

p(x; θ)dx

)
dω, (15)

=

∫
ΩX

p(x; θ)

(∫
{ω|Γ(ω)3x}

p(ω)dω

)
dx, (16)

=

∫
ΩX

p(x; θ)pl(x)dx (17)

= Eθ [pl(X)] . (18)

As a natural extension of (13), we propose to represent the information on θ provided by
the uncertain data by the consonant plausibility function with the following contour function:

pl(θ;m) =
L(θ;m)

supθ∈Θ L(θ;m)
. (19)

An iterative procedure for finding a value θ̂ of θ that maximizes pl(θ;m) has been intro-
duced in [4] and generalized in [12, ?]. This procedure, called the Evidential Expectation
Maximization (E2M) algorithm, is an extension of the EM algorithm [10].

4.2 Independence assumptions

Let us assume that the random vector X can be written as X = (X1, . . . ,Xn), where each Xi

is a p-dimensional random vector taking values in ΩXi
. Similarly, its realization can be written

as x = (x1, . . . ,xn) ∈ ΩX. Two different independence assumptions can then be made:

1. Under the stochastic independence of the random variables X1, . . . ,Xn, the pdf or prob-
ability mass function p(x;θ) can be decomposed as:

p(x;θ) =

n∏
i=1

p(xi;θ), ∀x = (x1, . . . ,xn) ∈ ΩX (20)

2. Under the cognitive independence of x1, . . . ,xn with respect to m (see [24, page 149]),
we can write:

pl(x) =

n∏
i=1

pli(xi), ∀x = (x1, . . . ,xn) ∈ ΩX, (21)

where pli is the contour function corresponding to the mass function mi obtained by
marginalizing m on ΩXi .

We can remark here that the two assumptions above are totally unrelated as they are of
different natures: stochastic independence of the random variables Xi is an objective property
of the random data generating process, whereas cognitive independence pertains to our state
of knowledge about the unknown realization x of X.

If both assumptions hold, the likelihood criterion (18) can be written as a product of n
terms:

L(θ;m) =

n∏
i=1

Eθ [pli(Xi)] (22)

and pl(θ;m) can be written as:

pl(θ;m) =

∏n
i=1 pl(θ;mi)

supθ∈Θ

∏n
i=1 pl(θ;mi)

. (23)
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(d) 0.1-level contours

Figure 3: Contour functions pl(bk;yk) for each of the three regions (a-c) and 0.1-level contours
(d), with simulated data uncertainty. Please note that the x and y axes have different ranges
in the four plots.
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Example 1 Let us come back to the analysis of Subsection 3.3, this time assuming that the
observations of the dependent variable are uncertain. This is reasonable if we assume that
teacher pay data for each state are not known exactly but are estimated by surveys carried
out with samples of different sizes and under different conditions. As we do not know in which
conditions the data were collected, we simulated data uncertainty by assuming the contour
functions plki(yki) to be normalized Gaussians centered at each data point and with standard
deviation ski selected at random from a uniform distribution in [0, 5000].

The results are shown in Figure 3. We can see that the consideration of data uncertainty
actually leads to less committed plausibility functions in the parameter space. The plausibility
values for the same hypotheses as considered in Subsection 3.3 are now:

Pl(b1 = b2) = 0.61, P l(b1 = b3) = 0.39, P l(b2 = b3) = 0.13,

P l(b1 = b2 = b3) = 0.08,

which shows that the hypotheses b2 = b3 and b1 = b2 = b3 can no longer be rejected based
on the uncertain statistical evidence.

5 Conclusion

The Dempster-Shafer theory of belief functions places emphasis on the representation of evi-
dence for evaluating degrees of belief. This generality and flexibility of this framework makes
it suitable for representing and combining expert judgments and statistical evidence.

In this paper, we have focused on the representation of statistical evidence, seeing the rela-
tive likelihood function as the contour function of a consonant belief function in the parameter
space, as originally proposed by Shafer. Likelihood-based and Bayesian inference schemes can
both be seen as special cases of this approach.

We have shown that this method can be extended in a simple way to the representation of
uncertain statistical evidence or ill-known data, where lack of knowledge comes from imper-
fectness of the observation process. Maximum plausibility estimation can still be performed in
this case using a computationally simple iterative procedure that extends the EM algorithm.

A interesting perspective of this approach concerns situations in which statistical evidence
needs to be combined with expert judgements. Such problems typically arise in climate change
studies, in which statistical data cannot be considered as a unique source of information but
have to be pooled with expert opinions summarizing findings from physical modeling. Results
concerning the application of the belief approach to such problems will be reported in future
publications.
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