
k-CEVCLUS: Constrained Evidential Clustering of
Large Dissimilarity DataI

Feng Lia, Shoumei Lia, Thierry Denœuxa,b,∗

aBeijing University of Technology, College of Applied Sciences, Beijing, China.
bSorbonne Universités, Université de Technologie de Compiègne, CNRS, Heudiasyc (UMR

7253), France.

Abstract

In evidential clustering, cluster-membership uncertainty is represented by Demp-
ster-Shafer mass functions. The EVCLUS algorithm is an evidential clustering
procedure for dissimilarity data, based on the assumption that similar objects
should be assigned mass functions with low degree of conflict. CEVCLUS is
a version of EVCLUS allowing one to use prior information on cluster mem-
bership, in the form of pairwise must-link and cannot-link constraints. The
original CEVCLUS algorithm was shown to have very good performances, but
it was quite slow and limited to small datasets. In this paper, we introduce
a much faster and efficient version of CEVCLUS, called k-CEVCLUS, which
is both several orders of magnitude faster than EVCLUS and has storage and
computational complexity linear in the number of objects, making it applicable
to large datasets (around 104 objects). We also propose a new constraint ex-
pansion strategy, yielding drastic improvements in clustering results when only
a few constraints are given.

Keywords: Evidence theory, Dempster-Shafer theory, belief functions,
relational data, credal partition, constrained clustering, instance-level
constraints

1. Introduction

Cluster analysis, also called data segmentation, is one of the basic tasks in
data mining and machine learning. The goal of cluster analysis is to segment a
collection of objects into clusters in such a way that similar objects belong to the
same cluster, while dissimilar ones are assigned to different clusters. Typically,
two data types are considered: attribute and dissimilarity data. Dissimilarity
data, also known as relational data or proximity data, are composed of distances,

IThis research was supported by grant No.11571024 from NSFC, and by the Overseas
Talent program from the Beijing Government.

∗Corresponding author
Email address: tdenoeux@utc.fr (Thierry Denœux)

Preprint submitted to Knowledge-Based Systems November 21, 2017

or dissimilarities between objects. Attribute data can always be transformed
into dissimilarity data by using a suitable metric. In this paper, we focus mostly
on dissimilarity data.

Several approaches to clustering have been developed over the years. In
hard clustering, each object is assigned with full certainty to one and only one
cluster; the c-means algorithm is the reference method in this category. In
contrast, “soft” clustering algorithms [22] are based on different ways of rep-
resenting cluster-membership uncertainty. These include fuzzy [3], possibilistic
[14] and rough [17] clustering. Evidential clustering [9, 20, 8, 18] is a recent
approach to soft clustering, in which uncertainty is represented by Dempster-
Shafer mass functions [25]. The resulting clustering structure is called credal
partition. Thanks to the generality of Dempster-Shafer theory, evidential clus-
tering can be shown to extend all other soft clustering paradigms [7]. Some of
the recent advances in evidential clustering are briefly summarized here. The
Evidential c-Means (ECM) algorithm [20] is an extension of the hard and fuzzy
cMeans, in which prototypes are defined not only for clusters, but also for sets
of clusters. A cost function is minimized in turn with respect to the prototypes,
and with respect to the credal partition. A version of ECM for dissimilarity
data, called RECM, was proposed in [21]. In [18], another variant of the ECM
algorithm (called CCM) was proposed, based on an alternative definition of the
distance between a vector and the prototype of a meta-cluster. This modifi-
cation produces more sensible results in situations where the prototype of a
meta-cluster is close to that of singleton cluster. In [27], Zhou et al. intro-
duced yet another variant of ECM, called Median Evidential c-means (MECM),
which is an evidential counterpart to the median c-means and median fuzzy
c-means algorithms. An advantage of this approach is that it does not require
the dissimilarities between objects to verify the axioms of distances. In [8], the
author proposed another evidential clustering method, called Ek-NNclus, which
is based on evidential k-nearest neighbor rule [5]. Evidential clustering has been
successfully applied in various fields, including machine prognosis [24], medical
image processing [19, 15, 16] and analysis of social networks [27].

The notion of credal partition was first introduced in [9], together with the
first evidential clustering algorithm, called EVCLUS. The EVCLUS algorithm is
similar in spirit to multidimensional scaling procedures [4]. It attempts to build
a credal partition such that the plausibility of two objects belonging to the same
cluster is higher when the two objects are more similar. This result is achieved
by minimizing a stress, or cost function using a gradient-based optimization
procedure. A constrained version of EVCLUS allowing for the utilization of
prior knowledge about the joint cluster membership of object pairs was later
proposed in [1] under the name CEVCLUS. In the CEVCLUS method, pairwise
constraints are formalized in the belief function framework and translated as a
penalty term added to the stress function of EVCLUS.

Both EVCLUS and CEVCLUS were shown to outperform state-of-the-art
clustering procedures [9, 1]. However, their high space and time complexity
restricted their application to small datasets with only a few hundred objects.
Recently, a new version of EVCLUS, called k-EVCLUS, has been proposed [10].

2

k-EVCLUS is based on an iterative row-wise quadratic programming (IRQP)
algorithm, which makes it much faster than EVCLUS. It also uses only a random
sample of the dissimilarities, which reduces the time and space complexity from
quadratic to linear, making it suitable to cluster large datasets.

In this paper, we carry out similar improvements to the CEVCLUS algo-
rithm. We show that the cost function composed of a stress term and a penalty
term encoding pairwise constraints can also be minimized using the IRQP al-
gorithm, which is several orders of magnitude faster than the gradient-based
procedure used in [1]. Together with dissimilarity sampling, this modification
makes the new version of CEVCLUS (called k-CEVCLUS) applicable to large
datasets composed of tens of thousands of objects with pairwise constraints. We
also introduce a new constraint expansion strategy, which brings considerable
improvements in clustering results when only a few constraints are provided.
Altogether, the contributions reported in this paper considerably extend the
applicability of constrained evidential clustering to real-world datasets of real-
istic size.

The rest of this paper is organized as follows. Basic notions on belief func-
tions and credal partitions, as well as the k-EVCLUS and CEVCLUS algorithms
are first recalled in Section 2. The new k-CEVCLUS algorithm and the con-
straint expansion procedure are then described in Section 3, and experimental
results are reported in Section 4. Finally, Section 5 concludes the paper.

2. Background

The purpose of this section is to provide the reader with background informa-
tion so as to make the paper self-contained. Basic notions of Dempster-Shafer
theory are first recalled in Section 2.1, and the concept of credal partition is
introduced in Section 2.2. The k-EVCLUS and CEVCLUS algorithms are then
presented in Sections 2.3 and 2.4, respectively.

2.1. Mass Functions

Let Ω = {ω1, . . . , ωc} be a finite set. A mass function on Ω is a mapping
from the power set 2Ω to [0, 1], satisfying the condition∑

A⊆Ω

m(A) = 1. (1)

Each subset A of Ω such that m(A) > 0 is called a focal set. In Dempster-
Shafer theory, a mass function encodes a piece of evidence about some question
of interest, for which the true answer is assumed to be an element of Ω. For any
nonempty focal set A, m(A) is a measure of the belief that is committed exactly
to A [25]. The mass m(∅) assigned to the empty set has a special interpretation:
it is a measure of the belief that the true answer might not belong to Ω. As we
will see, this quantity is very useful in clustering to identify outliers. A mass
function is said to be

3

• Bayesian if all its focal sets are singletons;

• Logical if it has only one focal set;

• Certain if it is both logical and Bayesian;

• Consonant if its focal sets are nested.

Given a mass function m, the corresponding belief and plausibility functions are
defined, respectively, as

Bel(A) =
∑
∅6=B⊆A

m(B)

and
Pl(A) =

∑
B∩A 6=∅

m(B),

for all A ⊆ Ω. The quantity Bel(A) represents the degree of total support in A,
while Pl(A) can be interpreted as the degree to which the evidence is consistent
with A.

The degree of conflict [25] between these two mass functions m1 and m2

defined on the same frame Ω is

κ =
∑

A∩B=∅

m1(A)m2(B). (2)

If m1 and m2 are mass functions representing evidence about two distinct ques-
tions with the same set of possible answers Ω, then the plausibility that the two
questions have the same answer is equal to 1− κ [9].

2.2. Credal Partition

Let O = {o1, . . . , on} be a set of n objets. We assume that each ob-
ject belongs to at most one of c clusters. The set of clusters is denoted by
Ω = {ω1, . . . , ωc}. In evidential clustering, the uncertainty about the cluster
membership of each object oi is represented by a mass function mi on Ω. The
n-tuple M = (m1, . . . ,mn) is called a credal partition. The notion of credal
partition is very general and it encompasses most other types of soft clustering
structures [7]. In particular,

• If all mass functions mi are certain, then we have a hard partition, where
object oi is assigned to cluster ωk if mi({ωk}) = 1.

• If all mass functions mi are Bayesian, then the evidential partition is
equivalent to a fuzzy partition; the degree of membership of object oi to
cluster ωk is then uik = mi({ωk}), for i ∈ {1, . . . , n} and k ∈ {1, . . . , c}.

• If all mass functions mi are logical with a single focal set Ai ⊆ Ω, then we
get a rough partition. The lower and upper approximations of cluster k
can be defined, respectively, as ωk = {oi ∈ O|Ai = {ωk}} and ωk = {oi ∈
O|ωk ∈ Ai}.

4

• If each mi is consonant, then it is equivalent to a possibility distribution,
and it can be uniquely represented by the plausibility of the singletons
plik = Pli({ωk}) for i ∈ {1, . . . , n} and k ∈ {1, . . . , c}. Each number plik
is the plausibility that object i belongs to cluster k; these numbers form
a possibilistic partition of the n objects.

Because a credal partition is more general than other types of hard or soft
partitions, it can be converted into any other type [7]. For instance, we obtain a
fuzzy partition by defining the degree of membership uik of object oi to cluster
ωk as

uik =
plik∑c
`=1 pli`

. (3)

This fuzzy partition can then be converted to a hard partition by assigning each
object to the cluster with the highest membership degree.

2.3. k-EVCLUS Algorithm

The k-EVCLUS algorithm [10, 6] is a faster and more efficient version of the
EVCLUS algorithm introduced in [9]. Let D = (dij) be an n × n matrix of
dissimilarities between object. The basic idea of EVCLUS and k-EVCLUS is to
construct a credal partition M = (m1, . . . ,mn) in such a way that the degrees
of conflict κij between any two mass functions mi and mj match the dissimi-
larities dij . Therefore, similar objects should be assigned mass functions with
low conflict (i.e., a high plausibility of belonging to the same cluster), whereas
dissimilar objects should have highly conflicting mass functions (corresponding
to a low plausibility of belonging to the same cluster). This principle can be
implemented by minimizing a stress function such as

J(M) = η
∑
i<j

(κij − δij)2, (4)

where η =
(∑

i<j δ
2
ij

)−1
and the δij are transformed dissimilarities defined by

δij = ϕ(dij), where ϕ is an increasing function from [0,+∞) to [0, 1], such as

ϕ(d) = 1− exp(−γd2). (5)

In (5), γ is parameter that can be fixed as follows [10]. For α ∈ (0, 1), let d0 =
ϕ−1(1− α) be the dissimilarity value such that two objects whose dissimilarity
exceeds d0 have a plausibility at least equal to 1− α. For ϕ defined by (5), we
have

γ = − logα/d2
0. (6)

We recommend fixing α = 0.05 and leaving d0 as the only parameter to be
adjusted. In practice, d0 can be set to some quantile of distances dij (See
Section 4.2). In [10], the results of k-EVCLUS have been shown to be quite
robust to the choice of d0. However, a smaller value of d0 should generally be
selected when the number of clusters is larger. Practical guidelines for tuning
d0 will be presented in Section 4.2.

5

The EVCLUS algorithm [9] minimizes a stress function similar to (4) us-
ing a gradient-based algorithm. In contrast, k-EVCLUS uses the faster IRQP
algorithm [26], which consists in minimizing J(M) with respect to each mass
function mi at a time. Each iteration of this cyclic coordinate descent strategy
amounts to solving a linearly constrained positive least-squares problems, which
can be done quite efficiently.

Another important innovation of the k-EVCLUS algorithm is to exploit the
redundancies in matrix D by minimizing the sum of the squared error terms
(κij − δij)2 for only a subset of the object pairs (i, j). This can be done by
choosing some value k < n and randomly selecting, for each objet i, k other
objects j1(i), . . . , jk(i). We can then minimize the sum of squared errors (κij −
δij)

2 over the pairs (i, jr(i)),

Jk(M) = η

n∑
i=1

k∑
r=1

(κi,jr(i) − δi,jr(i))
2. (7)

As noted in [10], the calculation of Jk(M) requires only O(nk) operations,
against O(n2) for J(M), which makes it possible to apply k-EVCLUS to very
large datasets. For small datasets, we can select k = n− 1, in which case (7) is
identical to (4).

Another important practical issue in the application of k-EVCLUS is the
number of focal sets. This number must be controlled to make the method
useable for moderate and large values of c. In [9] and [10], very good results
have been reported with focal sets limited to the empty set, the singletons of Ω,
and the whole set Ω itself. The number f of focal sets is then equal to c + 2,
which allows the degrees of conflict κij in (4) to be computed in linear time as
a function of c, making the method useable to datasets with a large number
of clusters. This restriction will be applied in all the experiments reported in
Section 4.

2.4. CEVCLUS Algorithm
The constrained evidential clustering (CEVCLUS) algorithm [1] is a variant

of EVCLUS that makes it possible to take into account prior knowledge about
clusters, in the form of pairwise “must-link” (ML) and “cannot-link” (CL) con-
straints. A ML constraint is a pair of objects that are know to belong to the
same cluster, while a CL constraint is pair of objects that surely belong to
different clusters.

Let Sij denote the event that objects i and j belong to the same cluster,
and Sij the complementary event. Given mass functions mi and mj about the
cluster-membership of objects i and j, the plausibility of Sij and Sij can be
computed as follows [2],

Plij(Sij) = 1− κij (8a)

Plij(Sij) = 1−mi(∅)−mj(∅) +mi(∅)mj(∅)−
c∑

k=1

mi({ωk})mj({ωk}). (8b)

6

Equation (8a) further explains the rationale for stress functions (4) and (7):
when the distance between two objects i and j is large, the plausibility Plij(Sij)
that they belong to the same cluster should be small, and the degree of conflict
κij should be large. Now, if we know for sure that two objects i and j belong
to the same cluster, then we should impose the constraints Plij(Sij) = 1 and
Plij(Sij) = 0. Conversely, if we know that objects i and j actually belong to
different clusters, then we should have Plij(Sij) = 1 and Plij(Sij) = 0. To find
a credal partitionM that meets these constraints approximately, the CEVCLUS
algorithm minimizes the sum of a stress function such as (4), and a penalization
term:

JC(M) = stress +
ξ

2(|ML|+ |CL|)
(JML + JCL), (9)

with

JML =
∑

(i,j)∈ML

Plij(Sij) + 1− Plij(Sij), (10a)

JCL =
∑

(i,j)∈CL

Plij(Sij) + 1− Plij(Sij), (10b)

where ξ is a hyperparameter that controls the trade-off between the stress and
the constraints, and ML and CL are the sets of ML and CL constraints, respec-
tively. The second term on the right-hand side of (9) equals zero for a credal
partition M that meets the constraints exactly. In practice, it is sufficient to
make it small enough so that the constraints are met approximately.

The CEVCLUS algorithm [1] minimizes (9) using an iterative gradient-based
optimization procedure. As noted in [1], this algorithm is limited to small
datasets. In the next section, we introduce several improvements to CEVCLUS,
making it much faster and applicable to very large datasets. We also describe
a new constraint expansion procedure allowing us to drastically increase the
impact of pairwise constraints.

3. Constrained k-EVCLUS Algorithm

This section introduces the main contributions of this paper. The new k-
CEVCLUS algorithm, a faster and more efficient version of CEVCLUS, will
first be presented in Section 3.1, and the constraint expansion method will be
described in Section 3.2.

3.1. k-CEVCLUS Algorithm

In section, we propose a constrained version of the k-EVCLUS algorithm
described in Section 2.3. The resulting algorithm, called k-CEVCLUS, will
minimize the following cost function,

JkC(M) = η

n∑
i=1

k∑
r=1

(
κi,jr(i) − δi,jr(i)

)2
+

ξ

2(|ML|+ |CL|)
(JML + JCL), (11)

7

where, as before, j1(i), . . . , jk(i) are k integers randomly selected in 1, 2, . . . , i−
1, i + 1, . . . , n. In Eq. (11), the first term on the right-hand side is identi-
cal to the stress function (7) of k-EVCLUS, while the second term is equal to
the penalty term (10) of CEVCLUS. We note that the calculation of JCk(M)
requires O(nk + |ML|+ |CL|) operations, against O(n2 + |ML|+ |CL|) for CEV-
CLUS. As with CEVLUS, parameter ξ should be set carefully. Selecting a very
large value for ξ will enforce the constraints exactly, but will typically make the
optimization problem more difficult. A good strategy is to increase ξ gradually,
starting from ξ = 0. This strategy will be further discussed in Section 4.2.

To show that the cost function (11) can be minimized using the IRQP
algorithm, we need to express (11) in matrix form. We assume that each
mass function mi has at most f focal sets among the set F = {F1, . . . , Ff},
where F1 = ∅ and the c singletons {ωk}, k = 1, . . . , c are among the f − 1
nonempty subsets {F2, . . . , Ff}. Mass function mi can then be represented by
a vector mi = (mi(F1), . . . ,mi(Ff))T of length f , and the credal partition
M = (m1, . . . ,mn) can be represented by matrix M = (m1, . . . ,mn)T of size
n× f .

The degree of conflict (2) between two mass functions mi and mj can be
written as

κij = mT
i Cmj ,

where C is the square matrix of size f with general term

Ckl =

{
1 if Fk ∩ Fl = ∅,
0 otherwise.

(12)

The plausibility Plij(Sij) in (8a) can then be written as

Plij(Sij) = 1−mT
i Cmj = mT

i (1 · 1T −C)mj ,

where 1 = (1, . . . , 1)T . Before rewriting Plij(Sij), we note that the term mi(∅)+
mj(∅)−mi(∅)mj(∅) in the right-hand side of (8b) can be written as mT

i Bmj ,
where B is the following square matrix of size f ,

B =

1 1 · · · 1
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 , (13)

and the term
∑c

k=1mi({ωk})mj({ωk} can be written as mT
i Amj , where A is

the square matrix of size f with general term

Ak` =

{
1 k = `, |Fk| = 1
0 otherwise.

(14)

8

With these notations, we have

Plij(Sij) = 1−mT
i Bmj −mT

i Amj = mT
i Emj ,

where
E = 1 · 1T −B −A. (15)

The penalty terms in (11) can finally be written as

JML =
∑

(i,j)∈ML

mT
i (C +E)mj ,

JCL =
∑

(i,j)∈CL

mT
i (C +E)mj ,

where
C = 1 · 1T −C and E = 1 · 1T −E. (16)

With these notations, the stress function (11) equals to

JkC(M) = η

n∑
i=1

k∑
r=1

(
mT

i Cmjr(i) − δi,jr(i)

)2
+

ρ

 ∑
(i,j)∈ML

mT
i (C +E)mj +

∑
(i,j)∈CL

mT
i (C +E)mj

 , (17)

where ρ = ξ [2(|ML|+ |CL|)]−1
. From expression (17), it is clear that JkC(M) is

a quadratic function of each vectormi. Consequently, minimizing JkC(M) with
respect to mi alone while leaving the other vectors mj constant is a quadratic
programming problem. This is the underlying principle of the IRQP algorithm
[26, 10]. The cost function to be minimized as each iteration is

g(mi) = η‖MiCmi − δi)‖2+

ρ

 ∑

j∈ML(i)

mT
j (C +E)

mi +

 ∑
j∈CL(i)

mT
j (C +E)

mi

 , (18)

whereMi = (mj1(i), . . . ,mjk(i))
T is the matrix of size k×f whose row r is equal

to vector mjr(i), ML(i) and CL(i) are the sets of objects linked to object i by, re-
spectievely, ML and CL constraints, and δi is the vector of (δi,j1(i), . . . , δi,jk(i))

T

of transformed dissimilarities between object oi and all sampled objects ojr(i).
Developing the right-hand side of (18) and rearranging the terms, we obtain

g(mi) = mT
i Σmi + uTmi + c, (19)

9

with

Σ = ηCTMT
i MiC (20a)

u = −2ηδTi MiC + ρ

 ∑
j∈ML(i)

mT
j

 (C +E) + ρ

 ∑
j∈CL(i)

mT
j

 (C +E)

(20b)

c = ηδTi δi. (20c)

Minimizing g(mi) under the constraints mT
i 1 = 1 and mi ≥ 0 is a quadratic

programming (QP) problem, which can be solved efficiently with any QP solver.
As we iteratively update each row of M , the overall cost JkC(M) decreases
and eventually reaches a (local) minimum. As in [10], we compute the following
running mean after each cycle of the algorithm,

e0 = 1, (21a)

et = 0.5et−1 + 0.5
|Jt − Jt−1|

Jt−1
, (21b)

where t is the iteration counter and Jt is the value of the cost function at iteration
t. The algorithm stops when et becomes less than some given threshold ε. The
whole procedure is summarized in Algorithm 1.

Another important aspect of the procedure is the initialization of the credal
partition matrix M . As the inclusion of a penalization term makes the mini-
mization of (11) more difficult than that of (7), initializing the credal partition
randomly may not yield optimal results. We recommend initializing the ran-
dom partition with k-EVCLUS, i.e., ignoring the constraints, before running
k-CEVCLUS. Also, better results are obtained by running k-CEVCLUS a first
time with a small value of ξ such as ξ = 0.05, before setting ξ to its final value.
The tuning of parameters d0 and ξ will be addressed in greater detail in Section
4.2.

3.2. Constraint Expansion

As shown in [2] and [1], the performances of clustering algorithms (in terms
of proximity to the true partition) get better when the number of constraints
increases. In particular, as the number of constraints tends to the total number
of objects pairs, the partition found by a clustering algorithm can be expected
to tend to the true partition. In some applications, pairwise constraints can be
obtained by objective methods; however, they more often need to be elicited by
visual inspection of the data, which costs time and money. In particular, for
large data sets, pairwise constraints will typically be available only for a tiny
proportion of all object pairs. It is thus important to “make the most” out of
the small number of constraints we usually have.

For that purpose, we propose a constraint expansion strategy based on the
following idea. Out of the n(n − 1)/2 object pairs, some are known to belong

10

Algorithm 1 k-CEVCLUS algorithm.

Require: D = (dij), ML, CL, F , k, d0, ξ, ε, initial credal partition M
γ ← − log 0.05/d2

0

for all 1 ≤ i < j ≤ n do
δij ← 1− exp(−γd2

ij)
end for

η ←
(∑

i<j δ
2
ij

)−1

Compute matrices C, B, A, E using (12)-(16)
if k < n− 1 then
for i = 1 to n do

pick k integers j1(i), . . . , jk(i) randomly in {1, . . . , i− 1, i+ 1, . . . , n}
end for

else
for i = 1 to n do

(j1(i), . . . , jn−1(i))← (1, . . . , i− 1, i+ 1, . . . , n)
end for

end if
t← 0, e0 ← 1
Compute J0 using (17)
while et ≥ ε do
t← t+ 1
Jt ← 0
for i = 1 to n do

Delete row i from current matrix M to get Mi

Compute Σ, u and c using (20)

Find m
(t)
i by minimizing (19) subject to mT

i 1 = 1 and mi ≥ 0

Replace row i of M by (m
(t)
i)T

Jt ← Jt + g(m
(t)
i)

end for
et ← 0.5et−1 + 0.5|Jt − Jt−1|/Jt−1

end while
return Credal partition M = (m

(t)
1 , . . . ,m

(t)
n)T

11

(a) (b) (c)

Figure 1: (a) A CL constraint (oi, oj) ∈ CL, with the K-neighborhoods NK(oi) and NK(oj)
of oi and oj , respectively (K = 2). (b) The set PK(oi, oj) of pairs of a neighbor of oi and a
neighbor of oj . (c) The K = 2 new CL constraints.

to the same cluster (those in ML), some are known not to belong to the same
cluster (those in CL), and the rest have an unknown status. Determining the ML
or CL status of unlabeled object pairs can thus be seen as a binary classification
problem. Because there is typically only a small proportion of labeled pairs, we
cannot reliably classifying all object pairs. We thus propose to classify only
those pairs that are similar to one pair in ML or CL. For each pair (oi, oj) in
set S, with S ∈ {ML,CL}, neighboring pairs that are not already labeled will be
found and added to S.

More precisely, the proposed constraint expansion can be described as fol-
lows. Let K be a integer such that K � n. For any object o ∈ O, let NK(o)
denote the set composed of o and its K nearest neighbors (NN) in O. For
each pair (oi, oj) in set S, where S ∈ {ML,CL}, let PK(oi, oj) be the subset of
NK(oi) × NK(oj) composed of pairs (or, os) such that: or 6= os, (or, os) 6∈ ML
and (or, os) 6∈ CL. For all pairs (or, os) in PK(oi, oj), we compute the dissimi-
larity with (oi, oj), as the sum of the dissimilarity between oi and or, and the
dissimilarity between oj and os:

∆ [(oi, oj), (or, os)] = dir + djs.

We then add the K nearest neighbors of (oi, oj) to S. This procedure is illus-
trated in Figure 1, and described formally in Algorithm 2.

4. Numerical Experiments

In this section, we compare the performances of k-CEVCLUS to those of
alternative algorithms for constrained evidential clustering. The experimental
settings will first be described in Section 4.1, and the tuning of parameters ξ and
d0 will be specifically addressed in Section 4.2. A comparison with alternative
clustering methods will then be presented in Section 4.3, and results with large
datasets will be reported in Section 4.4. Finally, the efficiency of the constraint
expansion procedure will be demonstrated in Section 4.5.

12

Algorithm 2 Constraint expansion algorithm.

Require: D = (dij), ML, CL, K
ML′ ← ML, CL′ ← CL
for all S ∈ {ML,CL} do
for all (oi, oj) ∈ S do

Find the K NN {oi1 , . . . , oiK} of oi in O
NK(oi)← {oi, oi1 , . . . , oiK}
Find the K NN {oj1 , . . . , ojK} of oj in O
NK(oj)← {oj , oj1 , . . . , ojK}
PK(oi, oj)← [(NK(oi) \ NK(oj))× (NK(oj) \ NK(oi))] \ (ML′ ∪ CL′)
for all (or, os) ∈ PK(oi, oj) do

Compute the dissimilarity ∆ [(oi, oj), (or, os)] = dir + djs
end for
Find the K NN {(or1

, os1
), . . . , (orK , osK)} of (oi, oj) in PK(oi, oj)

if S == ML then
ML′ ← ML′ ∪ {(or1 , os1), . . . , (orK , osK)}

else
CL′ ← CL′ ∪ {(or1

, os1
), . . . , (orK , osK)}

end if
end for

end for
return ML′, CL′

4.1. Experimental Settings

Datasets. The datasets used in our experiments are summarized in Table 1.
The Banana datasets are synthetic data composed of two-dimensional attribute
vectors uniformly distributed along intertwined circular segments with standard
normal additive noise (Figure 2). This distribution was chosen to generate two
clusters separated by a complex boundary, as such clusters are typically difficult
to identify without prior information. All other datasets contain real data.
The Glass, Iris, Ecoli and Letter were downloaded from the UCI repository1.
Dissimilarities were computed as Euclidean distances in the attribute space for
all datasets except for the Zongker data, which already consist of dissimilarities.

The Letter dataset is composed of a large number of black-and-white rectan-
gular pixel displays of the 26 capital letters in the English alphabet; each object
is characterized by 16 dimensional attributes. As in Refs. [2, 1], we only kept
three classes corresponding to letters I, J, and L because these letters are hard
to recognize. However, the authors of Refs. [2, 1] used only 10% of the data. As
k-CEVCLUS can deal with large datasets, we used all the data with n = 2263.

The Zongker digit dissimilarity dataset2, which was also used in Ref. [10],
contains similarities between 2000 handwritten digits in 10 classes, based on

1Available at http://archive.ics.uci.edu/ml.
2Available at http://prtools.org/disdatasets/index.html.

13

Table 1: Datasets used in the experiments.

Dataset Number of objects Number of clusters Number of attributes
Banana n n 2 2
Glass 214 2 9
Iris 150 3 4
Ecoli 272 3 7
Letter 2263 3 16
Zongker 2000 10 NA

1

1

11

1

1

1

1
1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1 1

1

1

1

1

1

1

1

1 1
1

1

1
1

1

11
1

1
1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1

1

1

1

1

1

1

1

1 1
1

1

1

11

1

1

1
1

1
1

2

2

22

2

2

2

2

2

2

2

2

2

2
2

2

2
2

2
2

22

2

2

2

2

2

2

2 2

2

2
2

2
2

2

2
2

2

2

2

2

2

2
2

2

2

2

2

2
2

2
2

2

2

2
2

2

2

2

2

22

2

2

2

2

2

2

2

2
2

2
2

2

2
2

2

2
2

2

2

2

2

2

2

2
2

2

2

2

2

2

22

2

2

2

2

2

−10 −5 0 5

−
10

−
5

0
5

x2 x2

x1

Figure 2: Banana 200 dataset with n = 200.

14

deformable template matching. As the dissimilarity matrix was initially non
symmetric, we symmetrized it by the transformation dij ← (dij + dji)/2. It
should be noted that the dissimilarities are non metric, i.e., they are not Eu-
clidean distances.

Evaluation criteria. For all the datasets considered in this study, some “ground-
truth” partition exists. To compare an evidential partition with the true par-
tition, we first converted it to a hard partition using the maximum plausibility
rule as explained in Section 2.2, and we computed the Adjusted Rand Index
(ARI) between the derived hard partition and the true partition [13]. We recall
that the ARI is a chance-adjusted version of the Rand Index (RI), which is a
classical measure of similarity between hard partitions [23]; the ARI is designed
in such a way that it takes on the value 0 when the RI equals its expected
value for random partitions, and it is equal to 1 when the two partitions being
compared are identical. The exact definition of the ARI is this. Consider two
partitions X = {X1, X2, . . . , Xr} and Y = {Y1, Y2, . . . , Ys} of a set with n ob-
jects. Let nij = |Xi ∩ Yj | be the number of objects that belong to both Xi and
Yj , ni· = |Xi| =

∑
j nij the number of objects in Xi, and n·j = |Yi| =

∑
i nij

the number of objects in Yj , for i = 1, . . . , r and i = 1, . . . , r. Then, we have

ARI =

∑
i,j

(
nij
2

)
−

∑
i

(
ni·
2

)∑
j

(
n·j
2

)/(n
2

)
1

2

∑
i

(
ni·
2

)
+
∑
j

(
n·j
2

)−
∑

i

(
ni·
2

)∑
j

(
n·j
2

)/(n
2

) . (22)

The ARI can only be used when a ground truth partition is available. When
there is no such reference partition, as it is the case in real applications, some
internal quality index has to be used. In [9], the authors proposed to measure
the degree of imprecision of a credal partition by the average nonspecificity,
defined by

N∗ =
1

n log2(c)

n∑
i=1

 ∑
A∈2Ω\∅

mi(A) log2 |A|+mi(∅) log2(c)

 . (23)

This measure was shown in [9, 10] to be a good internal validity index for
credal partitions, allowing us, for instance, to compare credal partitions with
different numbers of clusters. Average nonspecificity is comprised between 0
and 1. Smaller values indicate that masses are assigned to non empty focal sets
with small cardinality, which is evidence for the adequacy of the credal partition
to the data.

4.2. Guidelines for Tuning Parameters ξ and d0

The k-CEVCLUS procedure (Algorithm 1) depends on the following param-
eters:

15

• Parameter d0 in (5)-(6);

• Parameter ξ in (11);

• The number k of dissimilarities taken into account for each object;

• The set F of focal sets;

• The threshold ε in the stopping criterion (21).

As suggested in [9] and [10], we recommend choosing as focal sets the empty set,
the singletons and Ω, i.e., F = {∅, {ω1}, . . . , {ωc},Ω}. This choice was made
for all the simulations reported in this section. For the stopping criterion, we
set ε = 10−5 in all our simulations. For small datasets, we recommend using
k = n − 1. The influence of k for large datasets will be studied in Section
4.4. The most important parameters that need some tuning are d0, used to
transform dissimilarities, and ξ, which defines the weight of the constraints in
the cost function. In this section, we present some experimental results with
four datasets (Banana 200 with n = 200, Glass, Iris and Ecoli), from which we
derive some guidelines for tuning d0 and ξ.

Influence of ξ. Table 2 shows the ARI and nonspecificity criteria for nbconst =
100 and nbconst = 200 randomly selected constraints and different values of ξ.
As explained in Section 3.1, k-CEVCLUS was first initialized using k-EVCLUS
(i.e., with ξ = 0) and run a second time with ξ = 0.05 before being run with a
higher value of ξ. Parameter d0 was set to the 0.9-quantile of the dissimilarities
for the Banana, Glass and Ecoli datasets and to the 0.6-quantile for the Iris data.
For each dataset and for each value of ξ, we ran k-CEVCLUS 10 times. The
average ARI and nonspecificity values are reported in Table 2. From these
results, we can see that for both values of nbconst, the average nonspecificity
usually gets smaller with larger values of ξ. In contrast, the ARI is not very
sensitive to the choice of ξ, particularly for nbconst = 200. Although the best
value of ξ differs for different datasets, the value ξ = 0.5 general yields close-to-
optimal results considering both ARI and nonspecificity. We thus adopted this
value in other experiments, unless otherwise specified.

Influence of d0. Parameter d0 determines the size of each class [10]. Typically,
d0 can be set to some quantile q of the dissimilarities D. Table 3 shows results
with different values of q, from 0.1 to 1 (by 0.1 increments), with nbconst = 100
and nbconst = 200 randomly chosen constraints. In each experiment, we used
ξ = 0.5 as mentioned above. For the Ecoli and Glass datasets, we can see
that the ARI gets higher when increasing d0, while for the Iris dataset the best
ARI is obtained with q = 0.6. In contrast, for the Banana 200 data, the best
value of ARI was obtained with the smallest value of d0. However, if d0 is too
small, the average nonspecificity is high because most objects are classified as
outliers. Similarly, when d0 is large, such as q = 1, the nonspecificity is also
high, because for the objects near the boundary between two clusters, some
mass is assigned to the union of the clusters. But for both values of nbconst, the

16

Table 2: Average ARI and average nonspecificity as a function of ξ for nbconst = 100 and
nbconst = 200, with d0 = quantile(D, 0.9) for Banana 200, Glass and Ecoli data and d0 =
quantile(D, 0.6) for the Iris data. The best results in terms of ARI are shown in bold.

nbconst ξ Banana 200 Glass Iris Ecoli
100 0 0.38 (0.17) 0.63 (0.21) 0.75 (0.11) 0.79 (0.16)

0.05 0.48 (0.16) 0.78 (0.19) 0.86 (0.08) 0.85 (0.13)
0.1 0.59 (0.14) 0.79 (0.17) 0.87 (0.06) 0.86 (0.10)
0.2 0.70 (0.12) 0.80 (0.14) 0.89 (0.04) 0.87 (0.09)
0.3 0.69 (0.10) 0.80 (0.13) 0.90 (0.03) 0.86 (0.09)
0.4 0.70 (0.09) 0.79 (0.11) 0.89 (0.03) 0.87 (0.09)
0.5 0.73 (0.08) 0.82 (0.11) 0.89 (0.03) 0.87 (0.10)
0.6 0.69 (0.07) 0.83 (0.11) 0.90 (0.03) 0.86 (0.09)
0.7 0.70 (0.07) 0.82 (0.10) 0.90 (0.03) 0.86 (0.10)
0.8 0.73 (0.08) 0.77 (0.09) 0.88 (0.03) 0.85 (0.10)
0.9 0.75 (0.08) 0.78 (0.10) 0.89 (0.03) 0.85 (0.10)
1 0.69 (0.08) 0.81 (0.11) 0.88 (0.04) 0.84 (0.09)

200 0 0.38 (0.17) 0.6 (0.2) 0.76 (0.11) 0.79 (0.16)
0.05 0.51 (0.15) 0.77 (0.19) 0.87 (0.08) 0.87 (0.13)
0.1 0.61 (0.14) 0.83 (0.18) 0.93 (0.06) 0.89 (0.11)
0.2 0.77 (0.12) 0.91 (0.14) 0.97 (0.03) 0.90 (0.08)
0.3 0.86 (0.10) 0.92 (0.12) 0.95 (0.02) 0.91 (0.06)
0.4 0.90 (0.09) 0.92 (0.10) 0.96 (0.02) 0.91 (0.05)
0.5 0.90 (0.07) 0.92 (0.09) 0.97 (0.01) 0.91 (0.05)
0.6 0.90 (0.06) 0.94 (0.08) 0.97 (0.01) 0.91 (0.05)
0.7 0.92 (0.05) 0.94 (0.07) 0.97 (0.01) 0.93 (0.05)
0.8 0.92 (0.04) 0.93 (0.06) 0.96 (0.01) 0.92 (0.05)
0.9 0.91 (0.04) 0.92 (0.06) 0.97 (0.01) 0.91 (0.05)
1 0.92 (0.04) 0.94 (0.06) 0.96 (0.01) 0.93 (0.06)

17

Table 3: Average ARI and average nonspecificity as a function of q with d0 = quantile(D, q)
for nbconst = 100 and nbconst = 200, with ξ = 0.5. The best results in terms of average
nonspecificity are shown in bold.

nbconst q Banana 200 Glass Iris Ecoli
100 0.1 0.94 (0.33) 0.23 (0.38) 0.57 (0.23) 0.27 (0.45)

0.2 0.93 (0.31) 0.31 (0.36) 0.91 (0.20) 0.46 (0.4)
0.3 0.92 (0.27) 0.46 (0.31) 0.93 (0.16) 0.71 (0.34)
0.4 0.86 (0.23) 0.89 (0.28) 0.95 (0.10) 0.8 (0.27)
0.5 0.84 (0.21) 0.87 (0.23) 0.91 (0.05) 0.83 (0.2)
0.6 0.84 (0.17) 0.86 (0.16) 0.91 (0.03) 0.83 (0.15)
0.7 0.79 (0.13) 0.82 (0.11) 0.83 (0.03) 0.83 (0.11)
0.8 0.74 (0.09) 0.80 (0.11) 0.65 (0.05) 0.85 (0.09)
0.9 0.74 (0.08) 0.84 (0.11) 0.68 (0.07) 0.86 (0.09)
1 0.69 (0.26) 0.76 (0.27) 0.66 (0.2) 0.84 (0.25)

200 0.1 0.99 (0.21) 0.85 (0.28) 0.93 (0.09) 0.24 (0.22)
0.2 0.97 (0.19) 0.86 (0.25) 0.97 (0.08) 0.46 (0.20)
0.3 0.97 (0.17) 0.96 (0.22) 0.98 (0.05) 0.73 (0.18)
0.4 0.97 (0.15) 0.95 (0.19) 0.99 (0.04) 0.82 (0.14)
0.5 0.95 (0.13) 0.96 (0.16) 0.98 (0.02) 0.87 (0.12)
0.6 0.94 (0.12) 0.92 (0.12) 0.96 (0.01) 0.88 (0.09)
0.7 0.94 (0.10) 0.94 (0.10) 0.97 (0.02) 0.89 (0.06)
0.8 0.91 (0.07) 0.94 (0.09) 0.92 (0.03) 0.91 (0.05)
0.9 0.90 (0.07) 0.91 (0.09) 0.88 (0.06) 0.90 (0.05)
1 0.81 (0.24) 0.92 (0.21) 0.87 (0.21) 0.89 (0.20)

average nonspecificity reaches a minimum for some value of q, which is around
q = 0.9 for the Banana 200, Glass and Ecoli datasets and q = 0.6 for the Iris
data. These results confirm those reported in [10], in which it was recommended
to start with d0 = quantile(D, 0.9), but it was also noted that “finding a suitable
value of d0 may sometimes require a trial and error process”.

4.3. Performance Comparison

In this section, we compare the performances of the k-CEVCLUS to those
of two alternative constrained evidential clustering methods: CEVCLUS with
gradient-based cost minimization [1], and the Constrained Evidential c-means
(CECM) algorithm [2]. The CECM algorithm is a prototype-based clustering
method for attribute data, adapted from the Evidential c-means (ECM) algo-
rithm [20] to take into account pairwise constraints. Note both CEVCLUS and
CECM were shown in [1] and [2], respectively, to outperform other relational
or attribute constrained clustering methods, such as the constrained Fuzzy C-
means [12] and SSCARD [11] algorithms. In the experiments reported in this
section, we used k = n − 1, so that k-CEVCLUS and CEVCLUS have exactly
the same cost function and differ only by the optimization algorithm.

18

The three methods were compared on the Banana 200, Iris, Glass and Ecoli
datasets with different numbers of pairwise constraints nbconst between 0 and
200. All the algorithms were run 20 times for each number of constraints. As
suggested in Section 4.2, k-EVCLUS was run twice, with ξ0 = 0.05 and ξ = 0.5.
Parameter d0 was fixed to d0 = quantile(D, 0.9) for the Banana 200, Glass and
Ecoli datasets and to d0 = quantile(D, 0.6) for the Iris data. The same parameter
values were used for CEVCLUS. For CECM, we used the parameter values as
recommended in [2], i.e., δ = max(D) and ξ = 0.5. All the algorithms were
initialized with the corresponding unconstrained method, namely k-EVCLUS
for k-CEVCLUS and CEVCLUS and ECM for CECM. Figures 3 and 4 show
the median as well as the lower and upper quartiles of ARI, computing time
and nonspecificity over the 20 runs.

In most cases, k-CEVCLUS and CEVCLUS yield similar results in terms of
ARI, as expected. However, when the number of constraints exceeds 100, k-
CEVCLUS outperforms CEVCLUS for the Banana 200 (Figures 3(a)) and Glass
(Figure 3(b)) datasets. The CECM method generally performs worse than the
other two methods, except on the Banana 200 dataset with a small number of
constraints (Figure 3(a)). The results obtained by CECM also have much higher
variability than those of the two other methods (Figures 3(b), 4(a) and 4(b)).

As far as computing times are concerned, k-CEVCLUS is much faster than
CEVCLUS (see Figures 3(c), 3(d), 4(c), 4(d)), which confirms the superiority
of the IRQP algorithm over the gradient-based procedure and is consistent with
the results in [10]. The k-CEVCLUS method is also faster than CECM, by a
lesser amount.

In terms of average nonspecificity, k-CEVCLUS also outperforms CEVCLUS
as it reaches lower values. It also outperforms CECM, except for the Glass
data (Figure 3(f)). However, lower nonspecificity values can be obtained by
fine-tuning parameters ξ and d0. For example, if we set ξ = 1 for the Glass
data, the average nonspecificity is only 0.06, as can be seen from Table 2 with
nbconst = 200.

In this section, we have shown that k-CEVCLUS is considerably faster than
CEVCLUS, while reaching comparable of better values of ARI and nonspeci-
ficity. In the next section, we will demonstrate the performances of k-CEVCLUS
on large datasets.

4.4. Results with Large Datasets

In this section, we focus on the performances of the k-CEVCLUS algorithm
applied to large datasets with 2000 to 10,000 objects. For such datasets, it
is usually not feasible to store the whole dissimilarity matrix. The approach
outlined in Section 3.1 is to use only k � n−1 randomly sampled dissimilarities
for each object, which reduces the space and time complexity of the stress
function calculation from quadratic to linear. The purpose of this section is to
verify that this strategy does not negatively impact the performances of the k-
CEVCLUS algorithm. We will not attempt any comparison with CECM, as the
complexity of this algorithm limits its use to datasets with only a few hundred
objects.

19

0 50 100 150 200

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Banana 200
A

R
I

nbconst

k−CEVCLUS
CEVCLUS
CECM

(a)

0 50 100 150 200

Glass data

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
R

I

nbconst

k−CEVCLUS
CEVCLUS
CECM

(b)

0 50 100 150 200

0
5

10
15

20

Banana 200

tim
e

nbconst

k−CEVCLUS
CEVCLUS
CECM

(c)

0 50 100 150 200

0
5

10
15

20
25

Glass data
tim

e

nbconst

k−CEVCLUS
CEVCLUS
CECM

(d)

0 50 100 150 200

0.
05

0.
10

0.
15

0.
20

0.
25

Banana 200

no
ns

pe
ci

fic
ity

nbconst

k−CEVCLUS
CEVCLUS
CECM

(e)

0 50 100 150 200

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Glass data

no
ns

pe
ci

fic
ity

nbconst

k−CEVCLUS
CEVCLUS
CECM

(f)

Figure 3: Results obtained with k-CEVCLUS (black), CEVCLUS (red) and CECM (green)
for the Banana 200 and Glass datasets, with ξ = 0.5 and d0 = quantile(D, 0.9).

20

0 50 100 150 200

Iris data

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
R

I

nbconst

k−CEVCLUS
CEVCLUS
CECM

(a)

0 50 100 150 200

Ecoli data

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
R

I

nbconst

k−CEVCLUS
CEVCLUS
CECM

(b)

0 50 100 150 200

0
5

10
15

20

Iris data

tim
e

nbconst

k−CEVCLUS
CEVCLUS
CECM

(c)

0 50 100 150 200

0
10

20
30

40

Ecoli data

tim
e

nbconst

k−CEVCLUS
CEVCLUS
CECM

(d)

0 50 100 150 200

0.
00

0.
05

0.
10

0.
15

0.
20

Iris data

no
ns

pe
ci

fic
ity

nbconst

k−CEVCLUS
CEVCLUS
CECM

(e)

0 50 100 150 200

0.
05

0.
10

0.
15

0.
20

0.
25

Ecoli data

no
ns

pe
ci

fic
ity

nbconst

k−CEVCLUS
CEVCLUS
CECM

(f)

Figure 4: Results obtained with k-CEVCLUS (black), CEVCLUS (red) and CECM (green)
for the Iris dataset with ξ = 0.5 and d0 = quantile(D, 0.6), and for the Ecoli dataset with
ξ = 0.5 and d0 = quantile(D, 0.9).

21

We applied the k-CEVCLUS algorithm to four datasets: Banana 2000 with
2000 objects, Banana 10,000 with 10, 000 objects, Letter and Zongker. Parame-
ters d0 was set to quantile(D, 0.9) for the Banana datasets and to quantile(D, 0.8)
for the Letter and Zongker datasets. Parameter ξ was set to 0.5 for the Banana
datasets and to 0.1 and 0.05, respectively, for the Letter and Zongker datasets.
In each case, we computed the ARI, running time and nonspecificity as a func-
tion of k for a fixed number of constraints nbconst, and as a function of nbconst
for fixed k. The results are shown in Figures 5 to 8.

For all three datasets, we can see that setting k to some value between
200 and 500 yields similar solutions in terms of ARI (Figures 5(a), 6(a), 7(a)
and 8(a)) and nonspecificity (Figures 5(e), 6(e), 7(e) and 8(e)) as compared to
considering the full dissimilarity matrix, while significantly reducing computing
time (Figures 5(c), 6(c), 7(c) and 8(c)).

When the number of constraints increases for fixed k, the ARI gets higher
(Figures 5(b), 6(b), 7(b) and 8(b)) at the cost of a longer running time (Figures
5(d), 6(d), 7(d) and 8(d)). In constrast, nonspecificity monotonically decreases
as a function of nbconst for the Banana datasets (Figures 5(f) and 6(f)), but it
exhibits a U-shaped curve for the Letter and Zongker datasets (Figures 7(f) and
8(f)). However, the variation of nonspecificity is smaller than that of ARI.

For the Letter dataset, higher variability of the ARI (Figure 7(b)) and com-
puting time (Figure 7(d)) across repetitions is observed for 1500 to 2000 con-
straints, due to local minima of the cost function. In general, the optimization
problem becomes more difficult with large numbers of objects and constraints,
and the algorithm needs to be started several times from different random initial
conditions, to avoid being trapped in a local minimum.

Comparing Figures 5(b) and 6(b), we can see that the curves of ARI as a
function of nbconst have similar shapes for the Banana datasets with n = 2000
and n = 10, 000 objects. However, with 10,000 objects, we need 10,000 con-
straints to reach the maximum value of ARI (around 0.88), whereas this value
is reached with only 2000 constraints for the smaller dataset. It thus seems
that larger datasets require a larger number of constraints, and the number
of constraints should be of the same order of magnitude as the number of ob-
jects. To test this assumption, we applied k-CEVLUS to Banana datasets with
n = 105 objects, and found that nbconst = 105 were needed to reach a value
of ARI around 0.88. In real applications, it may be impractical to obtain as
many constraints, especially if they are elicited by experts. This makes the
constraint expansion procedure introduced in Section 3.2 even more useful for
large datasets. This procedure will be evaluated in the next section.

4.5. Experiments with Expanded Constraints

In this section, we study experimentally the constraint expansion method
introduced in Section 3.2 (Algorithm 2). We recall that this procedure adds K
new constraints for each initial constraint, thus increasing the total number of
constraints from nbconst to (K+1)×nbconst without requesting any additional
information from the user.

22

0 500 1000 1500 2000

0.
84

0.
85

0.
86

0.
87

0.
88

0.
89

0.
90

Banana 2000
A

R
I

A
R

I

k

(a)

0 500 1000 1500 2000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Banana 2000

A
R

I
A

R
I

nbconst

(b)

0 500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

30
0

Banana 2000

tim
e

tim
e

k

(c)

0 500 1000 1500 2000

26
28

30
32

34

Banana 2000
tim

e
tim

e

nbconst

(d)

0 500 1000 1500 2000

0.
07

0.
08

0.
09

0.
10

0.
11

0.
12

0.
13

Banana 2000

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

k

(e)

0 500 1000 1500 2000

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

Banana 2000

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

nbconst

(f)

Figure 5: ARI, computing time and average nonspecificity of k-CEVCLUS as a function of k
with nbconst = 2000 ((a), (c), (e)), and as a function of nbconst with k = 200 ((b), (d), (f))
for the Banana 2000 dataset with d0 = quantile(D, 0.9) and ξ = 0.5. The error bars show the
median as well as the lower and upper quartiles over 10 runs of the algorithm.

23

0 200 400 600 800 1000

0.
85

5
0.

86
5

0.
87

5
0.

88
5

Banana 10,000
A

R
I

A
R

I

k

(a)

0 2000 4000 6000 8000 10000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Banana 10,000

A
R

I
A

R
I

nbconst

(b)

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00
14

00

Banana 10,000

tim
e

tim
e

k

(c)

0 2000 4000 6000 8000 10000

10
0

12
0

14
0

16
0

18
0

Banana 10,000
tim

e
tim

e

nbconst

(d)

0 200 400 600 800 1000

0.
07

0.
08

0.
09

0.
10

Banana 10,000

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

k

(e)

0 2000 4000 6000 8000 10000

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

Banana 10,000

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

nbconst

(f)

Figure 6: ARI, computing time and average nonspecificity of k-CEVCLUS as a function of k
with nbconst = 10000 ((a), (c), (e)), and as a function of nbconst with k = 200 ((b), (d), (f))
for the Banana 10,000 dataset with n = 10000, d0 = quantile(D, 0.9) and ξ = 0.5. The error
bars show the median as well as the lower and upper quartiles over 10 runs of the algorithm.

24

0 500 1000 1500 2000

0.
65

0.
70

0.
75

0.
80

Letter data

A
R

I
A

R
I

k

(a)

0 500 1000 1500 2000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Letter data

A
R

I
A

R
I

nbconst

(b)

0 500 1000 1500 2000

0
50

10
0

15
0

Letter data

tim
e

tim
e

k

(c)

0 500 1000 1500 2000

50
60

70
80

90

Letter data

tim
e

tim
e

nbconst

(d)

0 500 1000 1500 2000

0.
18

5
0.

19
0

0.
19

5
0.

20
0

0.
20

5
0.

21
0

0.
21

5 Letter data

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

k

(e)

0 500 1000 1500 2000

0.
16

0.
18

0.
20

0.
22

Letter data

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

nbconst

(f)

Figure 7: ARI, computing time and average nonspecificity of k-CEVCLUS as a function of k
with nbconst = 2000 ((a), (c), (e)), and as a function of nbconst with k = 300 ((b), (d), (f))
for the Letter dataset with d0 = quantile(D, 0.8) and ξ = 0.1. The error bars show the median
as well as the lower and upper quartiles over 10 runs of the algorithm.

25

0 500 1000 1500 2000

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

Zongker data

A
R

I
A

R
I

k

(a)

0 500 1000 1500 2000

0.
70

0.
75

0.
80

0.
85

0.
90

Zongker data

A
R

I
A

R
I

nbconst

(b)

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
50

0

Zongker data

tim
e

tim
e

k

(c)

0 500 1000 1500 2000

65
70

75
80

85
90

95

Zongker data

tim
e

tim
e

nbconst

(d)

0 500 1000 1500 2000

0.
13

0
0.

13
5

0.
14

0
0.

14
5

Zongker data

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

k

(e)

0 500 1000 1500 2000

0.
12

0.
14

0.
16

0.
18

0.
20

Zongker data

no
ns

pe
ci

fic
ity

no
ns

pe
ci

fic
ity

nbconst

(f)

Figure 8: ARI, computing time and average nonspecificity of k-CEVCLUS as a function of
k with nbconst = 2000 ((a), (c), (e)), and as a function of nbconst with k = 300 ((b), (d),
(f)) for the Zongker dataset with d0 = quantile(D, 0.8) and ξ = 0.05. The error bars show the
median as well as the lower and upper quartiles over 10 runs of the algorithm.

26

We considered the Banana 2000, Letter and Zongker datasets as in Section
4.4, with the same parameter settings. Figure 9 shows the ARI as a function
of the number nbconst of initial constraints, for K ∈ {0, 1, 3, 5, 10}. We can see
that, for a given number of initial constraints, better results in terms of ARI
can be obtained as K increases. For instance, for the Banana 2000 dataset,
when K = 5 and only 500 initial constraints are given (resulting in 3000 ex-
panded constraints), the ARI equals that obtained with 1500 initial constraints
(Figure 9(a)). For the Letter dataset, the best ARI value, obtained by 2000
initial constraints, can be obtained with K = 3 and only nbconst = 1100 initial
constraints, corresponding 4400 expanded constraints (Figure 9(b)). For the
Zongker dataset, the same results can be obtained with 1400 initial constraints
or with only 1000 initial constraints and K = 1, resulting in 2000 expanded
constraints (Figure 9(c)).

As can be expected, the benefits of expanding the constraints are less remark-
able when the initial number of constraints is very large. Also, the difference in
ARI between K = 5 and K = 10 is small, which suggests that increasing the
value of K beyond 10 will just increase computing time without significantly
improving the results. A large value of K might also have a negative impact on
the results, as more pairs might be incorrectly labeled as ML or CL constraints.
Overall, the very good results are obtained with moderate numbers of initial
constraints and K = 5. With this setting, for instance, the ARI can be in-
creased for the Banana 2000 dataset from 0.5 to 0.8 with 500 initial constraints
(Figure 9(a)); for the Letter dataset, it can be increased from 0.3 to 0.8 with
1100 constraints 9(b)).

5. Conclusions

Evidential clustering represents a new direction of research in cluster analy-
sis, aiming at a better representation of cluster-membership uncertainty using
Dempster-Shafer mass functions. Until recently, the use of evidential cluster-
ing algorithms was limited to small datasets, due to their inherent algorithmic
complexity. In particular, the EVCLUS algorithm [9], which has been shown to
perform very well with non-metric dissimilarity data, could only be applied to
datasets with a few hundred objects.

In [10], the authors introduced k-EVCLUS, a variant of EVCLUS applicable
to to very large datasets, thanks to (1) a new optimization algorithm and (2)
random sampling of the the dissimilarity matrix. In this paper, the same ideas
have been applied to CEVCLUS, a constrained version of EVCLUS making
it possible to take into account prior knowledge in the form of ML and CL
constraints [9]. Contrary to CEVCLUS, the new k-CEVCLUS algorithm can
be applied to datasets with several thousands or tens of thousands of objects,
which makes it applicable to a wider range of real-world data. Clustering even
larger datasets with, e.g., 106 objects or more, might require further algorithmic
and theoretical developments which are left for further research.

We have also introduced a constraint expansion strategy, which consists in
inferring new constraints from initial ones, resulting in drastic improvements of

27

0 500 1000 1500 2000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Banana 2000

A
R
I

A
R
I

nbconst

K=0
K=1
K=3
K=5
K=10

(a)

0 500 1000 1500 2000

0.
2

0.
4

0.
6

0.
8

Letter data

A
R
I

A
R
I

nbconst

K=0
K=1
K=3
K=5
K=10

(b)

0 500 1000 1500 2000

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Zongker data

A
R
I

A
R
I

nbconst

K=0
K=1
K=3
K=5
K=10

(c)

Figure 9: ARI as a function of the number nbconst of initial constraints, after running the
constraint expansion algorithm, for different values of K. The datasets are: Banana 2000 (a),
Letter (b) and Zongker (c).

28

clustering results when a moderate number of constraints are initially provided.
We note that the same technique could be used with other constrained clustering
methods such as CECM [2]. In the future, it would be interesting to investigate
the relation and the synergies between this new constraint expansion method
and active learning techniques [2, 12].

References

[1] Antoine, V., Quost, B., Masson, M.-H., Denoeux, T., 2014. CEVCLUS:
evidential clustering with instance-level constraints for relational data. Soft
Computing 18 (7), 1321–1335.

[2] Antoine, V., Quost, B., Masson, M.-H., Denoeux, T., 2012. CECM: Con-
strained evidential c-means algorithm. Computational Statistics & Data
Analysis 56 (4), 894–914.

[3] Bezdek, J., 1981. Pattern Recognition with fuzzy objective function algo-
rithm. Plenum Press, New-York.

[4] Cox, T. F., Cox, M. A., 1994. Multidimensional scaling. Chapman and
Hall, London.

[5] Denœux, T., 1995. A k-nearest neighbor classification rule based on
Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics
25 (05), 804–813.

[6] Denœux, T., 2016. evclust: Evidential Clustering. R package version 1.0.3.
URL https://CRAN.R-project.org/package=evclust

[7] Denoeux, T., Kanjanatarakul, O., September 2016. Beyond fuzzy, possi-
bilistic and rough: An investigation of belief functions in clustering. In:
Soft Methods for Data Science (Proc. of the 8th International Conference
on Soft Methods in Probability and Statistics SMPS 2016). Vol. AISC 456
of Advances in Intelligent and Soft Computing. Springer-Verlag, Rome,
Italy, pp. 157–164.

[8] Denœux, T., Kanjanatarakul, O., Sriboonchitta, S., 2015. EK-NNclus:
a clustering procedure based on the evidential k-nearest neighbor rule.
Knowledge-based Systems 88, 57–69.

[9] Denœux, T., Masson, M.-H., 2004. EVCLUS: Evidential clustering of prox-
imity data. IEEE Trans. on Systems, Man and Cybernetics B 34 (1), 95–
109.

[10] Denœux, T., Sriboonchitta, S., Kanjanatarakul, O., 2016. Evidential clus-
tering of large dissimilarity data. Knowledge-based Systems 106, 179–195.

[11] Frigui, H., Hwang, C., Rhee, F. C.-H., 2007. Clustering and aggregation of
relational data with applications to image database categorization. Pattern
Recognition 40 (11), 3053–3068.

29

[12] Grira, N., Crucianu, M., Boujemaa, N., 2008. Active semi-supervised fuzzy
clustering. Pattern Recognition 41 (5), 1834–1844.

[13] Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classifica-
tion 2 (1), 193–ñ218.

[14] Krishnapuram, R., Keller, J., 1993. A possibilistic approach to clustering.
IEEE Trans. on Fuzzy Systems 1, 98–111.

[15] Lelandais, B., Ruan, S., Denœux, T., Vera, P., Gardin, I., 2014. Fusion of
multi-tracer PET images for dose painting. Medical Image Analysis 18 (7),
1247–1259.

[16] Lian, C., Ruan, S., Denoeux, T., Li, H., Vera, P., 2017. Spatial evidential
clustering with adaptive distance metric for tumor segmentation in FDG-
PET images. IEEE Transactions on Biomedical Engineering (In Press).

[17] Lingras, P., Peters, G., 2012. Applying rough set concepts to clustering. In:
Peters, G., Lingras, P., Ślezak, D., Yao, Y. (Eds.), Rough Sets: Selected
Methods and Applications in Management and Engineering. Springer-
Verlag, London, UK, pp. 23–37.

[18] Liu, Z.-G., Pan, Q., Dezert, J., Mercier, G., 2015. Credal c-means clustering
method based on belief functions. Knowledge-Based Systems 74 (0), 119–
132.

[19] Makni, N., Betrouni, N., Colot, O., 2014. Introducing spatial neighbour-
hood in evidential c-means for segmentation of multi-source images: Ap-
plication to prostate multi-parametric MRI. Information Fusion 19, 61–72.

[20] Masson, M.-H., Denoeux, T., 2008. ECM: an evidential version of the fuzzy
c-means algorithm. Pattern Recognition 41 (4), 1384–1397.

[21] Masson, M.-H., Denœux, T., 2009. RECM: relational evidential c-means
algorithm. Pattern Recognition Letters 30, 1015–1026.

[22] Peters, G., Crespo, F., Lingras, P., Weber, R., 2013. Soft clustering: fuzzy
and rough approaches and their extensions and derivatives. International
Journal of Approximate Reasoning 54 (2), 307–322.

[23] Rand, W. M., 1971. Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association 66 (336), 846–850.

[24] Serir, L., Ramasso, E., Zerhouni, N., 2012. Evidential evolving Gustafson-
Kessel algorithm for online data streams partitioning using belief function
theory. International Journal of Approximate Reasoning 53 (5), 747–768.

[25] Shafer, G., 1976. A mathematical theory of evidence. Princeton University
Press, Princeton, N.J.

30

[26] ter Braak, C. J., Kourmpetis, Y., Kiers, H. A., Bink, M. C., 2009. Ap-
proximating a similarity matrix by a latent class model: A reappraisal of
additive fuzzy clustering. Computational Statistics & Data Analysis 53 (8),
3183–3193.

[27] Zhou, K., Martin, A., Pan, Q., Liu, Z.-G., 2015. Median evidential c-means
algorithm and its application to community detection. Knowledge-Based
Systems 74 (0), 69–88.

31

