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Abstract This paper reconsiders the problem of statistical inference from the stand-
point of evidence theory and possibility theory. The Generalized Bayes theorem due
to Smets is described and illustrated on a small canonical example. Critiques ad-
dressed to this model are discussed as well as the robust Bayesian solution. Finally,
the proposal made by Shafer to exploit likelihood information in terms of consonant
belief function within the scope of possibility theory is reconsidered. A major ob-
jection to this approach, due to a lack of commutativity between combination and
conditioning, is circumvented by assuming that the set of hypotheses or parameter
values is rich enough.

1 Introduction

Let X be a space of observations. Given a probabilistic parametric modelPθ ,θ ∈Θ ,
interpreted as a conditional probabilityP(·|θ), a set of independent observations
x1, . . . ,xk obtained in the same conditions and a subjective prior probabilityPsub(θ),
Bayes’ theorem in probability theory prescribes that a posterior probability onΘ

can computed asP(θ |x1, . . . ,xk) ∝ ∏k
i=1P(xi |θ)Psub(θ), whereP(xi |θ) is the like-

lihood function. A recurring question in statistical inference is : what information
does observed data provide about a probabilistic model when no prior probability is
supplied and Bayes’ theorem cannot be applied? what to say on the basis of obser-
vations, when only likelihood information is available?

In this paper, we review some statistical inference methods that can be proposed
in the setting of belief functions and possibility theory. Both settings have the merit
of not requiring prior knowledge when learning from data. We try to provide a clear
presentation of Smets’ Generalized Bayes theorem without prior, laying bare the
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assumptions. Then we discuss the related literature in probability theory. We study
to what extent a similar approach makes sense in possibility theory.

2 The Generalized Bayes Theorem for belief functions

The problem of inferring knowledge from likelihood functions has been addressed
by Philippe Smets in his 1978 thesis [10] in the setting of belief functions, given sev-
eral observations forming a finite setX and non-binary parameter spaceΘ . The Gen-
eralized Bayes Theorem (GBT) computes a non-trivial uncertainty measure on the
parameter space from parameterized belief functions onX even if no prior knowl-
edge about the parameter is available. If there is some prior information, it can
be used. Bayes’ theorem is retrieved in the special case where belief functions are
probability measures and a prior probability distribution onΘ is given. The GBT
has been applied to classification problems [3]. It is interesting to study what are its
underlying assumptions and under which conditions it can be applied to statistical
inference; of interest is how it compares with other approaches.

Let X be a frame of discernment. An uncertain body of evidence is defined by
means of a mass functionm which is a probability distribution over the power set
2X. In particular,∑E⊆X m(E) = 1. The massm(E) is the probability mass that could
be allocated to some element ofE but is not by lack of information. The quantity
m( /0) represents a degree of internal conflict, and according to Smets, may suggest
the idea that the truth may lie outsideX (open world assumption). For simplicity,
we assumem( /0) = 0 (closed world assumption). The following notions are useful
in the sequel:

• The degree of belief isbel(A) = ∑E⊆Am(E);
• The degree of plausibility ispl(A) = ∑6=E∩Am(E) = 1−bel(Ā), whereĀ is the

complement ofA;

• Standard (normalized) conditioning :pl(A|B)= pl(A∩B)
pl(B) ;bel(A|B)= bel(A∪B̄)−bel(B̄)

1−bel(B̄) ;

• Conjunctive merging∩©: (m1 ∩©m2)(C) = ∑A,B,A∩B=C m1(A)m2(B);
• Dempster rule of combination⊕: It consists in renormalizingm1 ∩©m2 dividing

it by 1− (m1 ∩©m2)( /0), which makes sense under a closed-world assumption.

Given a family {belX(·|θ),θ ∈ Θ} of belief functions (supposed to be nor-
malized), parameterized byθ , the ballooning extension (or conditional embed-
ding) of belX(·|θ) into X×Θ is the least committed belief function whose con-
ditional onθ is belX(·|θ). It consists in assigning each massmX(E|θ) to the sub-
set E ∪ {θ} ⊆ X×Θ ,∀E ⊆ X. On X×Θ , the ballooning extension is such that
belθ (E∪{θ}) = belX(E|θ) (assumingpl(E∪{θ}) = 1,∀θ ∈Θ ).

The inference problem can then be stated as follows: Given a set of parametric
belief functionsbelX(·|θ), θ ∈Θ , and some observationx∈ X, computebelΘ (·|x).
It is assumed that forT ⊆ Θ , plX(x|T) is a function of elementary likelihoods
plX(x|θ), plX(x|{θ}), θ ∈T. Computing the posterior belief functionbelΘ (·|x) goes



Statistical Inference with Belief Functions and Possibility Measures 3

as follows, given afinite parameter spaceΘ and a set of parametric belief functions
belX(·|θ),θ ∈Θ :

1. Conditional embeddingof eachbelX(·|θ) in X×Θ (ballooning);
2. Conjunctive merging of the embedded belief functionsbelθ ,θ ∈Θ onX×Θ ;
3. Conditioning of the result on the observationx;
4. Marginalizing onΘ .

The use of the conjunctive merging rule in step 2 assumes that the belief func-
tions belX(·|θ),θ ∈ Θ have been inferred from distinct sets of empirical data
obtained from independent sources. Moreover, this step comes down to apply-
ing to T = Θ the disjunctive combination rule to the conditional belief func-
tions belX(·|θ): belX(A|T) = ∏θ∈T belX(A|θ),∀A⊆ X. Finally, after marginaliza-
tion, posterior plausibility functionsplΘ (T|A) are proportional to 1−∏θ∈T(1−
plX(A|θ)),∀T ⊆Θ .

The problem has been extended ton independent observationsx1, . . . ,xn in
{x, x̄}n [11]. The GBT has a nice commutativity property. One may compute
belXn(x1, . . .xn|θ), conjunctively combiningbelX(·|θ), perform a conditional em-
bedding onXn×Θ , then get the posterior belief functionbelΘ (θ |x1, . . . ,xn). It is
equivalent to computingn posterior belief functionsbelΘ (θ |xi) and get the same
belΘ (θ |x1, . . . ,xn) by Dempster’s rule of combination of thesebelΘ (θ |xi). In other
words the following identity holds:belΘ (·|x1, . . . ,xn)= belΘ (·|x1)⊕. . .⊕belΘ (·|xn).

3 Computing the posterior belief function from likelihoods

Suppose only a finite number of frequentist likelihood functions{P(·|θi), i = 1, . . . ,k},
are available,and each one comes from a different population. The procedure then
specializes as follows:

1. Conditional embeddingof P(·|θi) overX×Θ into belief functionsbeli : the as-
sociated mass function is defined bymi(θ̄i ∪{x}) = mi({(θi ,x)}∪ ({θi}×X)) =
P({x}|θi),x∈ X; beli on X×Θ has a vacuous marginal onΘ and yieldsP(·|θi)
back when conditioned onθi .

2. Conjunctive mergingof the belθ ’s on X ×Θ . This step comes down to as-
signing mass∏i=1,...,k P(x j i |θi) to the set

⋂
i=1,...,k{(θi ,x j i )} ∪ ({θi} × X) =⋃

i=1,...,k{(θi ,x j i )}. Let φ be the mapping assigning observationx j i to eachθi .
We can writem(φ) for m(

⋃
i=1,...,k{(θi ,x j i )}).

3. Conditioning m on the observation x. ThenplΘ (θ |x) = ∑φ :φ(θ)=x m(φ)
∑θ∈Θ ∑

φ∈XΘ :φ(θ)=x
m(φ) .

The simplest example of the problem is a simple spaceS = {x, x̄}×{θ , θ̄} with
two possible mutually exclusive hypothesesΘ = {θ , θ̄}, and two possible mutually
exclusive observations{x, x̄}. The available knowledge consists in the two likeli-
hood valuesa = P(x|θ) > b = P(x|θ̄). And it is assumed thatx is observed.

For this example (actually studied by Shafer [9]), conditional embedding comes
down to definingm1(x∪ θ̄) = a,m1(x̄∪ θ̄) = 1− a, and likewise:m2(x∪ θ) =
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b,m2(x̄∪θ) = 1−b. Conjunctive merging yieldsm(x) = ab;m(x̄) = (1−a)(1−b);
m((x∩θ)∪ (x̄∩ θ̄)) = a(1−b);m((x∩ θ̄)∪ (x̄∩θ)) = a(1−b).

The following results are obtained ifx is observed:

belΘ (θ |x) =
pl(x)− pl(x∩ θ̄)

pl(x)
=

a(1−b)
a+b−ab

;belΘ (θ̄ |x) =
b(1−a)

a+b−ab
. (1)

It is natural thatbelΘ (θ |x) should be all the higher asP(x|θ) is close to 1 and
P(x|θ̄) is low. In particular

1. belΘ (θ |x) = 1 if and only ifP(x|θ) = 1 andP(x|θ̄) = 0;
2. belΘ (θ |x) = 0 = belΘ (θ̄ |x) if and only if P(x|θ) = P(x|θ̄) = 0 or= 1;
3. If a = b then 0≤ belΘ (θ |x) = belΘ (θ̄ |x)≤ 1/4.

Shafer [9] extended this example ton observations of the formx or x̄. He showed that
for large values ofn,bel(θ |x1, . . . ,xn)+bel(θ̄ |x1, . . . ,xn)≈ 1 and that the posterior
beliefs agree at the limit with the Bayesian solution with uniform prior.

A different approach applies sensitivity analysis to Bayes rule, varying the un-
known prior probability. This approach is popular in the robust Bayesian community
where some prior information is supposed to be available in the form of a suitable
family of probability functions (see Whitcomb[13] for a bibliography). The sensitiv-
ity analysis approach and the GBT presuppose different assumptions: In the former,
no information on the dependence between the two itemsa= P(x|θ) andb= P(x|θ̄)
is assumed; but in case of total ignorance on the prior, the resulting posterior is un-
known and no information is gained from observingx. But the GBT assumes cog-
nitive independence between two distinct populations or sources that provide each
likelihood function. This is what makes the posterior belief function non-trivial. A
number of other approaches to theno prior problem come down to selecting a “rea-
sonable” probability measure onS in the setP = {P,a = P(x|θ) > b = P(x|θ̄)},
induced by the likelihood values, for instance applying the maximum likelihood
principle, i.e. maximizingP(x) (which is not so good as it results inP(θ |x) = 1).
Several such approaches are reviewed by Dubois, Gilio and Kern-Isberner [6] : max-
imal entropy, Shapley value, uniform prior, etc.

Alternatively, one may keep the likelihood values upon observingx asλ (θ) =
a,λ (θ̄) = b and view them as a measures of confidence, as strongly advocated by
frequentist statisticians after Fisher and Edwards [7]; however, this approach may be
considered as lacking formal foundations, all the more so as this school of thought
never considers extending such uncertainty measures from elementary parameter
values to disjunctions thereof.

4 Critiques of the GBT

There are several situations where the GBT is questionable as shown by Shafer
[9]. Moreover, some authors like Walley [12] have criticized it as not satisfying the
strong likelihood principle.
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1. The binomial example.Consider the case of a coin such thatP(x|θ) = θ ∈
Θ = [0,1] is the probability of getting a tail (x), to be learned from observations.
We now have an uncountable infinite family of conditional belief functions such
thatbelX(x|θ) = θ ,belX(x̄|θ) = 1−θ , θ ∈ [0,1]. The assumption that these be-
lief functions have been obtained from distinct sets of data is no longer tenable,
as this would imply an infinite quantity of information! A way to circumvent
this problem could be to discretize the domainΘ into Θ ′ = {θ1, . . . ,θk}, with
θ1 ≤ θ2 ≤ . . .≤ θk. However, thek belief functionsbelX(·|θi) for i = 1, . . . ,k are
now linked by the following relations:belX(x|θi)≤ belX(x|θ j) wheneverθi ≤ θ j .
Consequently, they cannot be independent. As noted by Shafer [9], “the choice
of a belief function analysis depends on the nature of the evidence for the model,
not just on the model itself”.

2. The fiducial example.Shafer also considers the case of a measuring instrument
with errors. Letθ ∈Θ be the unknown quantity andx∈X be the measured value.
It is supposed thatΘ = X = N contains integers. Suppose we know the symmetric
probability distributionP of errorse = x− θ . This probability distribution can
be viewed as a belief function onX ×Θ , letting m({(x,θ) : e = |x− θ |}) =
P(e). The projection of this belief function onX is bel(x|θ) = P(x− θ), i.e., it
is additive and coincides withP(x|θ). But the same holds for the projection of
this belief function onΘ , sinceP(x|θ) = P(θ |x) = P(x−θ). If Θ = X = {0,1}
and x = θ + e modulo 2, assumingP(0) = a,P(1) = b = 1− a, we find that
bel(θ = 1|x = 1) = a, which differs from the value obtained with the GBT if

b = 1− a, that is a2

1−a−a2 . Again in this case the two likelihood functions are
related.

3. The strong likelihood principle. In the statistical literature, likelihood func-
tions are considered to live on a ratio scale. Edwards [7] considers the likelihood
function λ (θ) to be proportional toP(x|θ), the proportionality constant being
arbitrary. In particular, no comparison of likelihood of hypotheses across data
sets, sayλ1(θ) = P(x1|θ) andλ2(θ) = P(x2|θ) is considered meaningful; only

likelihood ratiosP(x2|θ)
P(x1|θ) make sense. Moreover the likelihood principle states that

all the information that is provided by the datax concerning the relative merits of
two hypothesesθ1 andθ2 is contained in the likelihood ratio of these hypotheses.
Hence the invariance property, recalled by Walley [12], here stated in terms of
belief functions: Letf be the function such thatbelΘ (·|x1, . . .xn) = f (P(xi |θ), i =
1, . . .n,θ ∈Θ). Then, for all real valuesc > 0, f (P(xi |θ), i = 1, . . .n,θ ∈Θ) =
f (c·P(xi |θ), i = 1, . . .n,θ ∈Θ). It is clear that the GBT violates this property, as
well as other inference techniques recalled in Section 2. However the Bayesian
inference method does satisfy this strong likelihood principle. Walley essentially
shows that, when the initial information takes the form of likelihood functions
P(xi |θ), enforcing the strong likelihood principle to the GBT leads to a proba-
bilistic posterior belief function where the plausibility of each singletonθ ∈Θ

is proportional toP(x|θ)α for someα > 0. So it comes down to working with
a Bayesian approach under uniform priors, up to a rescaling of the likelihood
functions.
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Is the strong likelihood principle asine qua noncondition for statistical infer-
ence? It can be questioned. First, there seems to be a clash of intuitions between
this principle and the frequentist approach based on a fixed amount of observa-
tionsN. SupposeP(x|θ) derives from the result of experiments that yieldN(xθ) =
n1,N(x̄θ) = n2,N(xθ̄) = n3,N(x̄θ̄) = n4 with N = ∑4

i=1ni . ThenP(x|θ) = a= n1
n1+n2

andP(x|θ̄) = b = n3
n3+n4

. Hencen1
a + n3

b = N, so that multiplyinga andb by pos-
itive constantc clearly implies dividingN by c. In such a situation, claiming the
invariance of the likelihood under positive scalar multiplication comes down to con-
sidering the statistical validity of the joint probability distribution onX×Θ as not
being affected by the numberN of outcomes.

Another reason for questioning the strong likelihood principle is that if we extend
the likelihoodλ (θ) = cP(x|θ) of elementary hypotheses, viewed as a representation
of uncertainty aboutθ , to disjunctions of hypotheses, the corresponding set-function
Λ should obey the laws of possibility measures [2, 5] in the absence of probabilistic
prior, namely, the following properties look reasonable for such a set-functionΛ :

• The properties of probability theory enforce∀T ⊆Θ ,Λ(T)≤maxθ∈T λ (θ);
• A set-function representing likelihood should be monotonic with respect to in-

clusion: If θ ∈ T,Λ(T)≥ λ (θ);
• Keeping the same scale as probability functions, we assumeΛ(Θ) = 1.

Then it is clear thatλ (θ) = P(x|θ)
maxθ∈Θ P(x|θ) andΛ(T) = maxθ∈T λ (θ), i.e., the ex-

tended likelihood function is a possibility measure, and the coefficientc is then
fixed. We find Shafer [8] proposal of a consonant belief function induced by likeli-
hood information.

5 Statistical inference in possibility theory

It is interesting to see if the same approach as the GBT can be carried out in the
more restrictive setting of possibility theory, where only consonant belief functions
are used. Suppose conditional possibility distributions{π(·|θ),θ ∈Θ} in the unit
interval are available. The consonant conditional embedding consists in defining
possibility distributionsπθ onX×Θ asπθ (x,θi) = π(x|θ) if θi = θ and 1 otherwise.
It is clear that the projection ofπθ onΘ is vacuous, i.e., maxx∈X πθ (x,θi) = 1,∀θi ∈
Θ . Combining all theseπθ (·, ·) conjunctively by means of any t-norm just yields the
joint possibility distributionπ(x,θ) = π(x|θ). By conditioning on observationx, it

yieldsπΘ (θ |x) = π(x|θ)
max

θ ′∈Θ
π(x|θ ′) .

In case ofn observationsxi , we are faced again with two procedures to com-
puteπ(θ |x1, . . . ,xn): Either combine the resulting conditional possibilitiesπΘ (θ |xi),
using an appropriate t-norm?, or combine first the possibilistic likelihoods as
π(x1, . . . ,xn|θ) and condition next. It is clear that these two procedures are not

equivalent since?i=1...n
π(xi |θ)

max
θ ′∈Θ

π(xi |θ ′) 6=
?i=1...nπ(xi |θ)

max
θ ′∈Θ

?i=1...nπ(xi |θ ′) . This difficulty is the

cause of the rejection of this technique by Shafer himself [9]. In fact it is easy to see
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that a sufficient condition for these two approaches coinciding is that

max
θ ′∈Θ

π(x|θ ′) = 1,∀x∈ X.

This property, previously laid bare in [4], can be called the Hypothesis Exhaustivity
Assumption (HEA). It means that the distributionπ(x|θ) is a normalized possibility
distribution onΘ as much as it is onX. This situation is similar to the one for
probabilistic likelihood functions in the fiducial case. This is an assumption about
Θ stating that for any piece of evidencex ∈ X, at least one hypothesisθ is not in
conflict withx, i.e.,∀x,∃θ ,π(x|θ) = 1. It will hold if Θ is large enough to explain all
observations. Aickin [1] seems to have rediscovered it and callsπ(x|θ) committed
to the model.

An example where such an assumption is verified is the following: Suppose
lower probability bounds 0< axθ ≤ P(x|θ) are available. They can be viewed as
conditional necessity valuesN({x}|θ) = axθ ,θ ∈Θ . Now, N({x}|θ) = axθ > 0 is
equivalent toπ(x|θ) = 1, π(x′|θ) = 1−axθ for x′ 6= x. The HEA onΘ now means
that for eachx ∈ X there is a constraint of the form 0< axθ ≤ P(x|θ) for some
θ ∈Θ , so that this observation is totally possible, under some assumptionθ . Let
Θ(x) = {θ ∈ Θ ,P(x|θ) ≥ axθ > 0} be the set of hypotheses that may tentatively
explainx. The HEA says∀x∈ X,Θ(x) 6= /0. Note thatΘ(x) = {θ ∈Θ ,π(x|θ) = 1},
so that∀x∈ X,maxθ ′∈Θ π(x|θ ′) = 1 holds.

Let us now consider the properties of possibilistic inference in this case:

• If lower bounds on likelihoods are viewed as unrelated items of possibilistic in-
formation, we can combine possibility degrees via product in case of a sequence
of observationsx1, . . .xn: π(θ |x1, . . .xn)= ∏i=1,...,n π(xi |θ)= ∏i:θ 6∈Θ(xi)(1−axiθ ).
It means that we can all the more certainly rule out assumptionθ as there are
more observations for whichθ is not a plausible explanation.

• N(θ |x1, . . .xn)= 1−maxθ ′ 6=θ ∏i=1,...,n π(xi |θ ′)> 0 only if ∀θ ′ 6= θ ,∃xi ,π(xi |θ ′)<
1, that is:∀θ ′ 6= θ ,∃xi : θ ′ 6∈Θ(xi). It means that:

– We become more and more certain aboutθ as long as all hypotheses other
thanθ fail to plausibly explain one of the observations.

– We have no longer any certainty at all aboutθ , if θ ′ ∈
⋃

i=1,...,nΘ(xi), for
someθ ′ 6= θ , i.e., some hypothesis other thanθ can explain the whole set of
observations.

In other words this form of statistical inference looks as reasonable as can be.

6 Conclusion

It is clearly interesting from both theoretical and practical points of view to recon-
sider the statistical inference methodology outside the Bayesian framework, beyond
a mere sensitivity analysis method as done by robust statisticians, when only like-
lihood functions, or even only bounds on them are available and prior probabilities
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are not assigned. In particular, it is clear that the inference technique should de-
pend on what kind of information is available and on the way it is acquired. One
situation where likelihood functions can be exploited in a non-trivial way is when
these likelihoods come from separate populations for each parameter values. More
generally, some additional assumption is needed to complement the pure likelihood
information. This paper has reviewed a number of techniques to that effect, whereby
the notion of conditioning at work in learning schemes of probabilistic inference is
extended to other theories of uncertainty. It seems that possibility theory may play a
key role in the development of simple inference techniques under poor information,
especially as an approximation of more complex methods, due to the close connec-
tions between likelihoods and possibility distributions. A more extensive account of
the literature is needed so as to encompass alternative approaches based on impre-
cise probabilities such as the imprecise Dirichlet model. It is useful to re-examine,
in the light of the GBT and the possibilistic inference scheme, Bayesian objections
against classical likelihood-based inference techniques, which have often been de-
veloped in an ad hoc way with no relations to new uncertainty theories.
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