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Abstract. One of the difficulties that arises when using the K-nearest neigh-
bor rule is that each of the labeled training samples is given equal importance in
deciding the class of the query pattern to be classified, regardless of their typical-
ity. In this paper, the theory of belief functions is introduced into the K-nearest
neighbor rule to develop an evidential editing version of this algorithm. An ev-
idential editing procedure is proposed to reassign the original training samples
with new labels represented by an evidential membership structure. With the in-
troduction of the evidential editing procedure, the uncertainty of noisy patterns
or samples in overlapping regions can be well characterized. After the eviden-
tial editing, a classification procedure is developed to handle the more general
situation in which the edited training samples are assigned dependent evidential
labels. Two experiments based on synthetic and real data sets were carried out to
show the effectiveness of the proposed method.

Keywords: Data classification, K-nearest neighbor, Theory of belief functions,
Evidential editing

1 Introduction

The K-nearest neighbor (KNN) rule, first proposed by Fix and Hodges [6], is one of the
most popular and successful pattern classification techniques. Given a set of N labeled
training samples T = {(x(1), ω(1)), · · · , (x(N), ω(N))} with input vectors x(i) ∈ RD

and class labels ω(i) ∈ {ω1, · · · , ωM}, the KNN rule classifies a query pattern y ∈ RD

based on the class labels represented by its K nearest neighbors (according to, e.g., the
Euclidean distance measure) in the training set T . The basic rationale for the KNN rule
is both simple and intuitive: samples close in feature space are likely to belong to the
same class. The KNN rule is a suboptimal procedure. However, it has been shown that,
in the infinite sample situation, the error rate for the 1-NN rule is bounded above by no
more than twice the optimal Bayes error rate. Furthermore, as K increases, this error
rate approaches the optimal rate asymptotically [7].

One of the problems encountered in using the KNN classifier is that each of the
training samples is considered equally important in the assignment of the class label
to the query pattern. This limitation frequently causes difficulty in regions where the
data sets from different classes overlap. Atypical samples are given as much weight
as those that are truly representatives of the clusters. Furthermore, it may be argued
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that training samples containing noise should not be given equal weight. In order to
overcome this difficulty, the editing procedure was proposed to preprocess the original
training samples and the KNN rule was used to classify the query pattern based on
the edited training samples [10, 11, 16]. According to the structure of the edited labels,
the editing procedures can be divided into two categories: crisp and soft editing. In
[16], Wilson proposed a simple editing procedure to preprocess the training set. This
procedure classifies a training sample x(i) using the KNN rule with the remainder of
the training set, and deletes it from the original training set if its original label ω(i)

does not agree with the classification result. Later, concerned with the possibility of
large amounts of samples being removed from the training set, Koplowitz and Brown
[11] developed a modification of the simple editing technique. For a given value of K,
another parameter K ′ is defined such that (K + 1)/2 ≤ K ′ ≤ K. Instead of deleting
all the conflicting samples, if a particular class (excluding the original class) has at least
K ′ representatives among these K nearest neighbors, then x(i) is labeled according to
that majority class. Essentially, both the simple editing procedure and its modification
belong to the category of crisp editing procedures, in which each edited sample is either
removed or assigned to a single class. In order to overcome the difficulty of the crisp
editing method in severely noisy conditions, a fuzzy editing procedure was proposed
that reassigns fuzzy membership to each training sample x(i) based on its K nearest
neighbors [10]. This fuzzy editing procedure belongs to the soft editing category, in
which each edited sample can be assigned to several classes. It provides more detailed
information about the samples’ membership than the crisp editing procedures.

Different kinds of uncertainty may coexist in real-world classification problems,
e.g., fuzziness may coexist with imprecision or incompleteness. The fuzzy editing pro-
cedure, which is based on fuzzy set theory [17], cannot address imprecise or incomplete
information effectively in the modeling and reasoning processes. In contrast, the theory
of belief functions [1, 14, 15], also called Dempster-Shafer theory, can well model im-
precise or incomplete information thanks to the belief functions defined on the power
set of the frame of discernment. The theory of belief functions has already been used in
the pattern classification field [2, 4, 8, 9, 12]. An evidential version of KNN, denoted by
EKNN [2], has been proposed based on the theory of belief functions; it introduces the
ignorance class to model the uncertainty. In [12], the EKNN was further extended to
deal with uncertainty using a meta-class. Neither the EKNN method nor its extension
consider any editing procedure and the original training set is used to make classifica-
tion. More recently, an editing procedure for multi-label classification was developed in
[9] based on an evidential multi-label KNN rule (EMLKNN) [5], but it essentially be-
longs to the crisp editing category as each edited sample is either removed or assigned
to a new set of classes without considering the class membership degrees.

In this paper, an evidential editing K-nearest neighbor (EEKNN) is proposed based
on the theory of belief functions. The proposed EEKNN classifier contains two stages:
evidential editing and classification. First, an evidential editing procedure reassigns the
original training samples with new labels represented by an evidential membership
structure. Compared with the fuzzy membership used in fuzzy editing, the evidential
labels provide more expressiveness to characterize the imprecision for those samples
with great noise or in overlapping regions. For a training sample x(i), if there is no
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imprecision among the frame of discernment, the evidential membership reduces to the
fuzzy membership. After the evidential editing procedure, a classification procedure is
developed to handle the more general situation in which the edited training samples are
assigned dependent evidential labels.

The rest of this paper is organized as follows. In Section 2, the basics of belief func-
tion theory are recalled. The evidential editing K-nearest neighbor (EEKNN) classifier
is developed in Section 3 and then two experiments are developed to evaluate the per-
formance of the proposed EEKNN in Section 4. Finally, Section 5 concludes the paper.

2 Background on the Theory of Belief Functions

In the theory of belief functions [1, 14], a problem domain is represented by a finite set
Θ = {θ1, θ2, · · · , θn} of mutually exclusive and exhaustive hypotheses called the frame
of discernment. A basic belief assignment (BBA) expressing the belief committed to the
elements of 2Θ by a given source of evidence is a mapping function m: 2Θ → [0, 1],
such that

m(∅) = 0 and
∑
A∈2Θ

m(A) = 1. (1)

Elements A ∈ 2Θ having m(A) > 0 are called the focal elements of the BBA m. Each
number m(A) measures the degree of belief exactly assigned to a proposition A. The
belief assigned to Θ, is referred to as the degree of global ignorance. A BBA is said to
be simple if it has the following form{

m(A) = 1− w
m(Θ) = w,

(2)

for some A ⊂ Θ and w ∈ [0, 1]. Let us denote such a mass function as Aw.
Shafer [14] also defines the belief and plausibility functions as follows

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A̸=∅

m(B), for all A ∈ 2Θ. (3)

Bel(A) represents the exact support to A and its subsets, and Pl(A) represents the total
possible support to A and its subsets. The interval [Bel(A),Pl(A)] can be seen as the
lower and upper bounds of support to A.

For decision making, Smets [15] proposed the pignistic probability BetP to approx-
imate the unknown probability in [Bel(A), Pl(A)], given by

BetP(A) =
∑

B∩A̸=∅

|A ∩B|
|B|

m(B), for all A ∈ 2Θ, (4)

where |X| is the cardinality of set X .
Two useful operations in the manipulation of belief functions are Shafer’s discount-

ing operation and Dempster’s rule of combination. The discounting operation is used
when a source of evidence provides a BBA m, but one knows that this source has a
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probability of α ∈ [0, 1] being reliable. Then, one may adopt (1 − α) as the discount
rate, which results in a new BBA αm defined by

αm(A) =

{
αm(A), for A ̸= Θ
αm(Θ) + (1− α), for A = Θ.

(5)

Several distinct bodies of evidence characterized by different BBAs can be combined
using Dempster’s rule. Mathematically, the combination of two BBAs m1 and m2 de-
fined on the same frame of discernment Θ yields the following BBA,

m1 ⊕ m2 =


0, for A = ∅∑

B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C) , for A ∈ 2Θ and A ̸= ∅. (6)

To combine BBAs induced by nondistinct bodies of evidence, a cautious rule of
combination and, more generally, a family of parameterized t-norm based combination
rules with behavior ranging between Dempster’s rule and the cautious rule are proposed
in [3]:

m1 ~s m2 =
⊕

∅≠A⊂Ω

Aw1(A)⊤sw2(A), (7)

where m1 and m2 are separable BBAs [14], such that m1 =
⊕

∅̸=A⊂Ω

Aw1(A) and m2 =⊕
∅̸=A⊂Ω

Aw2(A), and ⊤s is the Frank’s parametrized family of t-norms:

a⊤sb =


a ∧ b, if s = 0
ab, if s = 1

logs

(
1 + (sa−1)(sb−1)

s−1

)
, otherwise,

(8)

for all a, b ∈ [0, 1], where s is a positive parameter. When s = 0, the t-norm based rule
corresponds to cautious rule and when s = 1, it corresponds to Dempster’s rule.

3 Evidential Editing K-Nearest Neighbor Classifier

Let us consider an M -class classification problem and let Ω = {ω1, · · · , ωM} be the
set of classes. Assuming that a set of N labeled training samples T = {(x(1), ω(1)),
· · · , (x(N), ω(N))} with input vectors x(i) ∈ RD and class labels ω(i) ∈ Ω are avail-
able, the problem is to classify a query pattern y ∈ RD based on the training set T .

The proposed evidential editing K-nearest neighbor (EEKNN) procedure is com-
posed of the following two stages:

1. Preprocessing (evidential editing): The evidential editing algorithm assigns eviden-
tial labels to each labeled sample.

2. Classification: The class of the query pattern is decided based on the distance to the
sample’s K nearest neighbors and these K nearest neighbors’ evidential member-
ship information.
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3.1 Evidential Editing

The goal of the evidential editing is to assign each sample in the training set T with a
new soft label with an evidential structure as follows:

T ′ = {(x(1),m(1)), (x(2),m(2)), · · · , (x(N),m(N))}, (9)

where m(i), i = 1, 2, · · · , N , are BBAs defined on the frame of discernment Ω.
The problem is now to compute an evidential label for each training sample. In [2],

an evidential K-nearest neighbor (EKNN) rule was proposed based on the theory of
belief functions, where the classification result of the query pattern is a BBA. In the
following part, we use the EKNN rule to carry out the evidential editing.

For each training sample x(i), i = 1, 2, · · · , N , we denote the leave-it-out training
set as T (i) = T \ {(x(i), ω(i))}, i = 1, 2, · · · , N . Now, we consider the evidential
editing for one training sample x(i) on the basis of the information contained in T (i).
For the training sample x(i), each neighbor x(j) (j ̸= i) provides an item of evidence
regarding the class membership of x(i) as follows

m(i)({ωq} | x(j)) = αϕq(dij)
m(i)(Ω | x(j)) = 1− αϕq(dij)
m(i)(A | x(j)) = 0, ∀A ∈ 2Ω \ {Ω, {ωq}},

(10)

where dij = d(x(i),x(j)), ωq is the class label of x(j) (that is, ω(j) = ωq), and α is a
parameter such that 0 < α < 1. As suggested in [2], α = 0.95 can be used to obtain
good results on average. When d is the Euclidean distance, a good choice for ϕq is

ϕq(d) = exp(−γqd
2), (11)

with γq being a positive parameter associated to class ωq and can be heuristically set to
the inverse of the mean squared Euclidean distance between training samples belonging
to class ωq.

Based on the distance d(x(i),x(j)), we select the Kinit nearest neighbors of x(i)

in training set T (i) and calculate the corresponding Kinit BBAs in the above way. As
the items of evidence from different neighbors are independent, the Kinit BBAs are
combined using Dempster’s rule displayed as Eq. (6) to form a resulting BBA m(i),
synthesizing the final evidential membership regarding the label of x(i) as

m(i) = m(i)(· | x(i1))⊕ m(i)(· | x(i2))⊕ · · · ⊕ m(i)(· | x(iKinit)), (12)

where i1, i2, · · · , iKinit are the indices of the Kinit nearest neighbors of x(i) in T (i).

3.2 Classification

After the evidential editing procedure introduced in Section 3.1, the problem now turns
into classifying a query pattern y ∈ RD based on the new edited training set T ′ as
shown in Eq. (9). In this section, we extend the evidential K-nearest neighbor (EKNN)
rule [2] to handle the more general situation in which the edited training samples are
assigned dependent evidential labels. This classification procedure is composed of the
following two steps: first, the BBAs from the query pattern’s K nearest neighbors are
computed; then, the K BBAs are combined to obtain the final result.
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Determination of the BBAs Considering the K nearest neighbors of the query pattern
y, if one training sample x(i) is very close to y, it means that x(i) is a very reliable
piece of evidence for the classification of y. In contrast, if x(i) if far from y, then it pro-
vides only little reliable evidence. In the theory of belief functions, Shafer’s discounting
operation can be used to discount the unreliable evidence before combination.

Denote m(i) as the class membership of the training sample x(i), and βi as the con-
fidence degree of the class membership of y with respect to the training sample x(i).
The evidence provided by x(i) for the class membership of y is represented with a dis-
counted BBA βim(i) by discounting m(i) with a discount rate 1 − βi. The confidence
degree βi is determined based on the distance di between x(i) and y, in such a way
that a larger distance results in a smaller confidence degree. Thus, βi should be a de-
creasing function of di. We use a similar decreasing function with Eq. (11) to define the
confidence degree βi ∈ (0, 1] as

βi = exp(−λid
2
i ), (13)

where λi is a positive parameter associated to the training sample x(i) and is defined as

λi =

(
M∑
q=1

m(i)({ωq})d
q
+ m(i)(Ω)d

)−2

, (14)

with d being the mean distance between all training samples, and d
q

being the mean
distance between training samples belonging to each class ωq , q = 1, 2, · · · ,M .

Combination of the BBAs To make a decision about the class of the query pattern y,
the generated K BBAs should be combined to obtain the final fusion result. For com-
bination, Dempster’s rule lies in the assumption that the items of evidence combined
be distinct or, in other words, that the information sources be independent. However,
in the editing process, common training samples may be used for calculating the class
membership of different edited samples. Therefore, the items of evidence from different
edited samples to classify the query pattern y cannot be regarded as independent.

To account for this dependence, we use the parameterized t-norm based combination
rule shown in Eq. (7) to obtain the final combination result for query pattern y as

m = βi1 m(i1) ~s
βi2 m(i2) ~s · · ·~s

βiK m(iK), (15)

where i1, i2, · · · , iK are the indices of the K nearest neighbors of y in T ′. The selection
of parameter s depends on the potential dependence degrees of the edited samples. In
practice, we can use the cross-validation test to search for the optimal t-norms based
combination rule.

For making decisions based on the above combined BBA m, the pignistic probabil-
ity BetP shown in Eq. (4) is used and the query pattern y is assigned to the class with
the maximum pignistic probability.



Evidential Editing K-Nearest Neighbor Classifier 7

4 Experiments

The performance of the proposed evidential editing K-nearest neighbor (EEKNN) clas-
sifier was compared with other nearest-neighbor-based methods (the modified simple
editing KNN (SEKNN) [11], the fuzzy editing KNN (FEKNN) [10] and the evidential
KNN (EKNN) [2]) through two different types of experiments. In the first experiment,
the behavior of the proposed method was studied using synthetic data sets. In the sec-
ond experiment, six real benchmark data sets from the UCI repository [13] were used
to compare the methods.

4.1 Synthetic data sets test

This experiment was designed to evaluate the proposed EEKNN with other nearest-
neighbor-based methods using synthetic data sets with different class overlapping ra-
tios, defined as the number of training samples in the overlapping region divided by
the total number of training samples. A training sample x(i) is considered to be in the
overlapping region if its corresponding maximum plausibility Pl(i)max after editing is less
than a set upper bound Pl∗, namely, Pl∗ = 0.9. A two-dimensional three-class classi-
fication problem was considered. The following class-conditional normal distributions
were assumed. For comparisons, we changed the variance of each distribution to control
the class overlapping ratio.

Case 1 Class A: µA = (6, 6)T , ΣA = 3I; Class B: µB = (14, 6)T , ΣB = 3I;
Class C: µC = (14, 14)T , ΣC = 3I. Overlapping ratio ρ = 6.67%

Case 2 Class A: µA = (6, 6)T , ΣA = 4I; Class B: µB = (14, 6)T , ΣB = 4I;
Class C: µC = (14, 14)T , ΣC = 4I. Overlapping ratio ρ = 10.00%

Case 3 Class A: µA = (6, 6)T , ΣA = 5I; Class B: µB = (14, 6)T , ΣB = 5I;
Class C: µC = (14, 14)T , ΣC = 5I. Overlapping ratio ρ = 21.33%

A training set of 150 samples and a test set of 3000 samples were generated from
the above distributions using equal prior probabilities. For each case, 30 trials were
performed with 30 independent training sets. Average test classification rates and the
corresponding 95% confidence intervals were calculated. For the proposed EEKNN
method, the best values for the parameters Kinit and s were determined in the sets
{3, 6, 9, 12, 15, 18, 21, 24} and {1, 10−1, 10−2, 10−3, 10−4, 10−5, 0}, respectively, by
cross-validation. For all the considered method, values of K ranging from 1 to 25 have
been investigated. Fig. 1 shows the classification results for synthetic data sets with
different overlapping ratios. It can be seen that, for the three cases, the EEKNN method
provides better classification performance than other nearest-neighbor-based methods.
With the increase of the class overlapping ratio, the performance improvement becomes
more important. Furthermore, the EEKNN method is not sensitive to the value of K and
it performs well even with a small value of K.

4.2 Benchmark data sets test

The main characteristics of the six real data sets used in this experiment are summarized
in Table 1. To assess the results, we considered the resampled paired test. A series of
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Fig. 1. Classification results for synthetic data sets with different overlapping ratios

30 trials was conducted. In each trials, the available samples were randomly divided
into a training set and a test set (with equal sizes). For each data set, we calculated
the average classification rates of the 30 trials and the corresponding 95% confidence
intervals. For the proposed EEKNN method, the best values for the parameters Kinit
and s were determined with the same procedure used in the previous experiment. For
all the considered method, values of K ranging from 1 to 25 have been investigated.

Table 1. Description of the benchmark data sets employed in the study

Data set # Instances # Features # Classes Overlapping ratio
Balance 625 4 3 19.23%
Haberman 306 3 2 18.59%
Liver 345 6 2 19.19%
Pima 336 8 2 19.05%
Vertebral 310 6 3 11.20%
Waveform 5,000 21 3 19.60%

Fig. 2 shows the classification results of different methods for benchmark data sets.
It can be seen that, for data sets with high overlapping ratios, like Balance, Haberman,
Liver, Pima and Waveform, the EEKNN method provides better classification perfor-
mance than other nearest-neighbor-based methods, especially for small value of K. In
contrast, for those data sets with relatively low overlapping ratios, like Vertebral, the
classification performances of different methods were quite similar. The reason is that,
for this data set, the best classification performance was obtained when K took a small
value and, under this circumstance, the evidential editing cannot improve the classifica-
tion performance.
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5 Conclusions

An evidential editing K-nearest neighbor (EEKNN) classifier has been developed based
on an evidential editing procedure that reassigns the original training samples with new
labels represented by an evidential membership structure. Thanks to this procedure,
patterns situated in overlapping regions have less influence on the decisions. Our re-
sults show that the proposed EEKNN classifier achieves better performance than other
considered nearest-neighbor-based methods, especially for data sets with high overlap-
ping ratios. In particular, the proposed EEKNN classifier is not sensitive to the value
of K and it can gain a quite good performance even with a small value of K. This is
an advantage in time or space-critical applications, in which only a small value of K is
permitted in the classification process.
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Fig. 2. Classification results of different methods for benchmark data sets
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