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Abstract

The problem of clustering objects based on interval-valued dissimilarities is tackled in
the framework of the Dempster-Shafer theory of belief functions. The proposed method
assigns to each object a basic belief assignment (or mass function) defined on the set of
clusters, in such a way that the belief and the plausibility that any two objects belong to
the same cluster reflect, respectively, the observed lower and upper dissimilarity values.
Experiments with synthetic and real data sets demonstrate the ability of the method to
detect meaningful clusters, even in the presence of imprecise data and outliers.

Keywords: Relational Data, Clustering, Unsupervised Learning, Dempster-Shafer the-
ory, Evidence theory, Belief Functions, Multi-dimensional Scaling.



1 Introduction

Cluster analysis refers to a wide range of numerical methods for discovering groups in
data. The groups are defined as subsets of more or less “similar” objects [16]. Many
clustering methods start from an n× n matrix ∆, the elements of which are quantitative
measurements of closeness or dissimilarity between objects. The dissimilarity is either
directly available, or derived from a n × p multivariate matrix of attributes. Reviews of
classical methods for clustering such relational or proximity data, including hard or fuzzy
methods, may be found in [2, chapter 3]. All these methods assume that the dissimilarity
δij between objects i and j is expressed as a real number reflecting with certainty the
closeness of the two objects. However, in certain situations, the dissimilarity between i
and j is only known to lie within a certain interval [δ−ij ; δ

+
ij ]. Here are some examples of

such situations:

• The initial data may consist in interval-valued feature vectors whose components are
intervals. Such a data type may be useful to describe a set of entities or the range of
a variable observed during a certain period. It may be also a good way to summarize
a large amount of data in data mining applications (see, for instance, [13]).

• The dissimilarities may be directly elicited from human evaluators who have some
difficulty in precisely quantifying the proximity of two objects. An interval rather
than a real value may be more suitable to account for the vagueness of the evaluation.

• The dissimilarities may be measured independently by several sensors, so that the
available information concerning the dissimilarity between any two objects takes the
form of an empirical distribution. One way to analyze such data is to describe the
distribution by an interval such as the interquartile range or the mean plus or minus
the standard deviation.

In recent years, a great deal of attention has been paid to the analysis of imprecise or fuzzy
data. Several references may be found in the literature focusing on inferential statistics,
regression or classification [14] [12] [15][7] [4]. For representing interval-valued dissimilar-
ities [9] or fuzzy dissimilarities [17] in a low dimensional space, we have proposed several
extensions of classical multidimensional scaling methods (MDS). Regarding cluster analy-
sis, there have been only few studies. In the framework of Symbolic Data Analysis [13], a
hierarchical divisive clustering method has been proposed based on a generalized within-
cluster inertia criterion [5]. Chavent and Lechevallier have also proposed a c-means-like
algorithm for interval data [6]. In [1], a “linguistic” version of the popular fuzzy c-means
algorithm (FCM) is presented. A FCM-like procedure for symbolic data has also been
described by El Sonbaty and Ismail [23]. These methods do not start from a dissimilarity
matrix, but from interval-valued or fuzzy attributes describing a set of objects; a general-
ized similarity measure between objects or groups of objects si then defined, and a classical
clustering procedure is applied.

The method presented in this paper uses a different approach. It generalizes a cluster-
ing algorithm for crisp relational data using belief function theory introduced in [10][11].
In this approach, the membership of an object to a cluster or a subset of clusters is repre-
sented by a “mass of belief”. Belief masses are determined in such a way that the belief
and the plausibility that any two objects belong to the same class reflect, respectively,
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their observed lower and upper dissimilarities. The possibility to assign masses not only
to single classes but also to subsets of classes or to the empty set makes this partitioning
model more general than the classical hard or fuzzy ones. The method allows to gain a
deeper insight into the structure of the data, as will be shown by experimental results.

The rest of the paper is organized as follows. First, the necessary background on
belief functions theory is recalled in Section 2. Section 3 shows how to apply these general
concepts to the problem of clustering interval-valued relational data. Finally, experimental
results, with synthetic and real datasets, are described in Section 4. Section 5 concludes
this paper.

2 Evidence theory

Let Ω denote a finite and unordered set, called the frame of discernment, composed of
c singletons or atomic propositions ωk, k = 1, c. A basic belief assignment (bba) on Ω
[19, 22] is a function m from the power set 2Ω to [0,1] verifying:∑

A⊆Ω

m(A) = 1. (1)

The term m(A) is called the basic belief mass (bbm) given to A. It represents the part of
belief that supports A witout supporting any more specific subset. The subsets A from
Ω such that m(A) > 0 are the focal sets of m. One of the main attractive features of
belief functions is that they provide a nice and flexible way to represent uncertainty, from
complete ignorance (m(Ω) = 1) to complete knowledge (m({ωk}) = 1 for some k). A bba
such that m(∅) = 0 is said to be normal. This condition was originally imposed by Shafer
[19] but it may be relaxed if one accepts the open-world assumption stating that the set
Ω might not be complete [20] and that the true proposition might not lie in Ω. Given a
bba m, one can define a belief function bel : 2Ω 7→ [0, 1] as:

bel(A) ,
∑
∅6=B⊆A

m(B) ∀A ⊆ Ω , (2)

and a dual plausibility function pl : 2Ω 7→ [0, 1] as

pl(A) ,
∑

B:A∩B 6=∅

m(B) = bel(Ω)− bel(A) ∀A ⊆ Ω , (3)

where A denotes the complement of A. The degree of belief bel(A) (also called the credibil-
ity of A) quantifies the amount of specific support given to A. It is obtained by adding the
masses allocated to subsets of A. The degree of plausibility pl(A) quantifies the amount
of potential support given to A, obtained by adding the masses given to propositions B
compatible with A (B ∩ A 6= ∅). Eq. (3) reflects the complementarity of these two func-
tions: the more A is plausible, the less A is credible; conversely, the more A is credible,
the less A is plausible.

Let us now assume that we have two bba’s m1 and m2 representing distinct items of
evidence. The standard way of combining them is through the conjunctive sum operation
∩© (also called unnormalized Dempster’s rule of combination), defined as:

(m1 ∩©m2)(A) ,
∑

B∩C=A

m1(B)m2(C) , (4)
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for all A ⊆ Ω. The quantity

K , (m1 ∩©m2)(∅) =
∑

B∩C=∅

m1(B)m2(C) (5)

is called the degree of conflict between m1 and m2. It may be seen as a degree of disagree-
ment between the two information sources.

Let us now consider two bba’s mΩ1 and mΩ2 defined on two different frames of dis-
cernement Ω1 and Ω2 (from now on, the frame of a bba will be indicated as a superscript
when necessary). To combine these two bba’s, it is necessary to extend their respective
frame of discernment to the Cartesian product Ω = Ω1 × Ω2. This extension, referred to
as the vacuous extension [19, 21], can be seen as the reverse operation of marginalization.
The vacuous extension of mΩ1 on Ω is defined for all B ⊆ Ω as:

mΩ1↑Ω(B) ,

{
mΩ1(A) if B = A× Ω2 for some A ⊆ Ω1,
0 otherwise.

(6)

This definition of the vacuous extension results from the Principle of Minimal Commitment
[21], which formalizes the idea that one should never give more support than justified to
any proposition. A similar expression can be easily obtained for the vacuous extension of
mΩ2 on Ω. The conjunctive sum of mΩ1 and mΩ2 may be then obtained by combining
their vacuous extensions on Ω, using (4). We thus obtain:

(mΩ1 ∩©mΩ2)(A×B) = mΩ1(A)mΩ2(B) , (7)

for all non empty subsets A ⊆ Ω1 and B ⊆ Ω2, the remaining mass being assigned to ∅.

3 Proposed method

3.1 Preliminaries

In this section it is proposed to use the concepts of belief functions theory to derive a
partition of a collection O = {o1, o2, ..., on} of n objects into c classes from interval-valued
dissimilarities. The frame of discernment Ω = {ω1, ..., ωc} is composed of the c classes.

Let us assume that we have partial information concerning the class membership of
each object oi, and this information is represented by a bba mi with focal sets in F =
{{ω1}, ..., {ωc}, ∅,Ω} (this restriction is imposed for the sake of simplicity, but it could
easily be relaxed). Let mik, miΩ and mi∅ denote, respectively, the masses allocated to
the singleton {ωk}, Ω and the empty set. The interpretation of the different masses will
be given below. The problem is to find a way to infer the mi on the basis on the input
dissimilarities.

Consider two object oi and oj and two bba’s mi and mj quantifying one’s belief re-
garding their respective class. Let S denote the proposition “oi and oj belong to the same
class”. This proposition is not defined on Ω but on the product space Ω2 = Ω× Ω by:

S = {(ω1, ω1), (ω2, ω2), . . . , (ωc, ωc)}.

The plausibility and the credibility of S may be determined from mi and mj . For that
purpose, it is necessary to compute the vacuous extensions of mi and mj using (6), and
combine them in Ω2 using (7). Let mi×j denote the result of this combination. We have:

mi×j(A×B) = mi(A) ·mj(B), ∀A,B ⊆ Ω, A 6= ∅, B 6= ∅ . (8)
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Let pli×j and beli×j be, respectively, the plausibility and the belief function associated to
mi×j . We have:

beli×j(S) =
∑

{A×B⊆Ω2 | ∅6=(A×B)⊆S}

mi×j(A×B)

=

c∑
k=1

mikmjk , (9)

and

pli×j(S) =
∑

{A×B⊆Ω2 | (A×B)∩S 6=∅}

mi×j(A×B)

=
∑

A∩B 6=∅

mi(A) ·mj(B)

= beli×j(S) +miΩ

c∑
k=1

mjk +mjΩ

c∑
k=1

mik +miΩmjΩ . (10)

Remembering that all the masses sum up to 1, pli×j(S) can more conveniently be
written in the following way:

pli×j(S) = 1−
∑

A∩B=∅

mi(A) ·mj(B)

= 1−K−ij , (11)

where K−ij is the degree of conflict between mi and mj (see Eq. 5). By analogy, we can
write, from Eq. (10) and Eq. (11):

beli×j(S) = 1−K+
ij , (12)

with K+
ij defined as:

K+
ij = K−ij +miΩ

c∑
k=1

mjk +mjΩ

c∑
k=1

mik +miΩmjΩ,

= 1−
c∑

k=1

mikmjk. (13)

Remark 1 K−ij represents the degree of conflict between mi and mj as defined classically

in evidence theory. K+
ij reveals, not only the part of conflict that is certain (K−ij ), but also

a part of “potential” conflict due to the uncertainty represented by the mass allocated to
Ω. In this sense, K−ij and K+

ij may be considered, respectively, as the minimum and the
maximum bounds of the conflict between mi and mj .

3.2 Fundamental principle

Let δ−i,j and δ+
i,j denote the lower and upper bounds for the unknown true dissimilarity

between any two objects oi and oj . As already remarked in Section 1, objects within a
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group are more likely to be close to each other than objects of different groups. Two
pieces of information about the proximity between the objects are available, namely δ−ij
and δ+

ij , which have a completely different meaning: if δ−ij is near 0, it is possible for the
two objects to be very close from each other, which makes the membership to the same
cluster plausible. But, at the same time, if δ+

ij is large, it is also plausible that they do
not belong to the same cluster, or equivalently, because of the duality bel-pl (see Eq (3)),
it is not very credible that they belong to the same cluster. This fundamental and rather
intuitive principle may be summarized as follows:

• the smaller δ−ij , the more plausible is the proposition “object oi and oj belong to the
same cluster”;

• the greater δ+
ij , the less credible is the proposition “object oi and oj belong to the

same cluster”.

Given any two pairs of objects (oi, oj) and (oi′ , oj′), it is then natural to impose the
following conditions: {

δ−ij > δ−i′j′ ⇒ pli×j(S) ≤ pli′×j′(S)

δ+
ij > δ+

i′j′ ⇒ beli×j(S) ≤ beli′×j′(S)
(14)

or, equivalently: {
δ−ij > δ−i′j′ ⇒ K−ij ≥ K

−
i′j′

δ+
ij > δ+

i′j′ ⇒ K+
ij ≥ K

+
i′j′

(15)

Remark 2 In the former version of the algorithm where dissimilarities were assumed to
be crisp numbers [11], only one condition was required:

δij > δi′j′ ⇒ pli×j(S) ≤ pli′×j′(S).

3.3 Inferring bba’s from dissimilarities

Let M = (m1,m2, ...,mn) denote the n-tuple of bba’s related to the n objects. Such
a structure is called a credal partition in [11]. The fundamental principle introduced in
the previous section provides a basis for inferring M from the input data ∆ = ([δ−ij ; δ

+
ij ]).

Given observed interval-valued dissimilarities ∆, we want to find a credal partition M such
that constraints (15) are at least approximately satisfied. As explained in [11], a similar
problem is addressed by multidimensional scaling methods. Such methods attempt to find
a d-dimensional configuration of points (with d � n) such that the interpoint distances
match as well as possible the input dissimilarities. For that purpose, a suitable criterion
(also called stress function) is introduced to measure the discrepancy between the distances
and the dissimilarities. This criterion is then minimized with respect to the configuration
of points. Among various existing methods, one can distinguish between the non metric
and the metric approaches. In the first one, only the rank order of the dissimilarities
are considered, and one identifies the relationship between dissimilarities and distances
using isotonic regression, an ordinal regression method. In the metric ones, a linear,
parameterized relationship is assumed. The first method is more general but may be quite
heavy computationally. The interested reader may refer to [3] for a complete description
of various existing MDS methods.
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In our problem, the masses of the different objects can be seen as the coordinates of
the objects in a (c + 2)-dimensional space, and the quantities K−ij and K+

ij may be seen
as minimum and maximum “pseudo-distances” between objects. Condition (15) defines
an ordinal relation between dissimilarities and pseudo-distances, a relation that can be
determined through isotonic regression. However, for computational reasons, the simplest
and more restrictive metric approach was chosen in this paper. We assume an affine
relationship and we propose to minimize the following criterion:

J1(M,a, b) ,
1

C1

∑
i<j

(aK−ij + b− δ−ij)
2 +

1

C2

∑
i<j

(aK+
ij + b− δ+

ij)
2 (16)

where C1 and C2 are two normalizing constants defined as:

C1 =
∑
i<j

δ−ij
2
, (17)

and
C2 =

∑
i<j

δ+
ij

2
. (18)

Alternatively, if one wishes to give a smaller weight to imprecise input data (i.e., large
δ+
ij − δ

−
ij), one may minimize the following criterion:

J2(M,a, b) ,
1

C

∑
i<j

(aK−ij + b− δ−ij)2

(δ+
ij − δ

−
ij + ∆δ)

+
1

C

∑
i<j

(aK+
ij + b− δ+

ij)
2

(d+
ij − δ

−
ij + ∆δ)

, (19)

C is a normalizing constant defined as:

C ,
∑
i<j

(δ+
ij − δ

−
ij) . (20)

The constant ∆δ, fixed arbitrarily to a small value, is used to avoid a division by zero in
case of crisp input data.

The minimization of J1 or J2 with respect to M , a and b can be performed using any
standard unconstrained non linear programming package.

Remark 3 Each bba mi must take values in [0, 1] and satisfy Eq.(1). Hence, the opti-
mization of J1 or J2 with respect to M is a constrained optimization problem. However,
the constraints vanish if one uses the following parameterization:

mik =
exp(αik)∑
l exp(αil)

, (21)

where the αik for i ∈ {1, . . . , n} and k ∈ {1, . . . , c,Ω, ∅} are n(c+ 2) real parameters.

4 Example

4.1 Synthetic dataset

In order to illustrate the proposed approach, a two-dimensional artificial data set was
generated. It is composed of 24 vectors x̃i, each component of which is an interval

6



[x−i`, x
+
i`] ` = 1, 2. The data is given in Table 1. Each vector can be represented as

a rectangle in the plane as shown in Figure 5. An interval-valued dissimilarity matrix
D = ([δ−ij , δ

+
ij ]) was computed in the following way: δ−ij and δ+

ij are defined, respectively,
as the minimum and maximum of:

d(xi,xj) =

√√√√ p∑
`=1

|xi` − xj`|2,

under the constraints
x−i` ≤ xi` ≤ x

+
i` ` = 1, 2

x−j` ≤ xj` ≤ x
+
j` ` = 1, 2.

The range of xi` − xj` under the above constraints is the interval

[x−i` − x
+
j`, x

+
i` − x

−
j`].

Using the following properties:

min
a≤x≤b

|x| = max(0, a,−b)

max
a≤x≤b

|x| = max(b,−a),

we get:

δ−ij =

√√√√ 2∑
`=1

max(0, x−i` − x
+
j`, x

−
j` − x

+
i`)

2, (22)

δ+
ij =

√√√√ 2∑
`=1

max(x+
i` − x

−
j`, x

+
j` − x

−
i`)

2. (23)

We applied the algorithm with c = 2 classes with the two criteria J1 and J2. The
quality of the resulting partitions can be judged from scatterplots, usually referred to as
the Shepard diagrams, given in Figure 2. These diagrams provide, for each criterion, a
representation of the dissimilarities vs. the degrees of conflict between bba’s. It can be
seen that a best linear fit is obtained with J2. This criterion was thus retained to derive a
partition. Figure 3 shows this partition, in which each point is assigned either to a class
or to the empty set according to the highest mass. The masses are shown in Table 1. The
partition is consistent with what was expected. The two main classes are well recovered.
The method is thus able to provide meaningful partitions of data expressed as interval
values. A second interest of the method is its ability to detect atypical observations, such
as points 23 and 24 for which the greatest mass is allocated to the empty set. The empty
set plays the role of a “noise” cluster (as proposed in [8]) allowing the detection of outliers
in the data set. Finally, the algorithm provides additional information via the analysis
of the mass allocated to Ω. It is represented in Figure 4 by shaded discs, the diameters
of which reflect the masses allocating to Ω for each point. It can be seen that there is a
close relationship between the mass of Ω and the imprecision of the data. For instance,
points 22 and 23, whose components are crisp numbers, are given a mass equal to zero,
whereas point 21, which is the most imprecise object of the data set, is given the highest
mass to Ω. By offering an additional degree of freedom, the mass of Ω allows to manage
the imprecision in the data in a very natural and efficient way. It can be used to assess
the validity of hard assignments to the clusters.
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4.2 Sensory data set

This real data set comes from a sensory tasting experiment reported in [18]. Ten colas
were presented to 10 subjects, who were asked to rate the perceived dissimilarity between
each pair of beverages on a scale ranging from 0 to 100 (the values of the 45 dissimilarities
for the ten subjects may be found in [18]). The dissimilarity between each pair of objects is
thus characterized by an empirical distribution gathering the answers of the ten subjects.
To test our approach, we chose to define the interval-valued dissimilarity between two colas
as the interquartile range of the empirical distribution. The colas used in the experiment
are known to fall into two categories: the normal colas (Pepsi, Coca, Pepper, Shasta, RC-
cola, Yukon) and the diet colas (D-pepper, D-pepsi, D-rite, Tab). It was thus of interest to
see if this partition could be recovered from the dissimilarities. We applied our algorithm
with c = 2 classes. The Shepard diagrams are shown in Figure 6. First, it can be seen that
the fit is not as good as in the case of the synthetic data set. This fact can be explained by
inconsistencies in the input data, due to erroneous evaluations by the subjects on the one
hand, and to the construction of the dissimilarity matrix on the other hand. Secondly, the
best fit seems to be obtained using the criterion J1 and is thus retained to compute the
partition. A multidimensional scaling method for interval-valued dissimilarities [9] was
used to find a two-dimensional representation of the colas. It is given in Figure 5, together
with the partition obtained with the clustering method. The hard assignment of the colas
is done according to the maximum allocated mass (see Table 2). The size of the symbols
used in the representation are proportional to the mass of the class of the different colas.
One can see that the dichotomy diet/non diet beverages is well-recovered. Additionally,
two colas (Yukon, Pepper) are detected as atypical beverages.

5 Conclusion

The problem of clustering interval-valued dissimilarities has been addressed. In the pro-
posed approach, based on evidence theory, each object is assigned a bba over a given set
of classes. The set of bba’s allows to derive a partition of the objects. The allocation
of a mass to the empty set can be viewed as a means to improve the robustness of the
algorithm with respect to atypical data (outliers). On the other hand, the mass allocated
to the whole set of hypothesis gives to the method the flexibility needed to manage the
imprecision and the inconsistencies in the data. The interpretability of the resulting belief
masses has been demonstrated experimentally.
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Table 1: Artificial data set and masses allocated by the clustering algorithm
i [x−i1,x+

i1] [x−i2,x+
i2] mi({ω1}) mi({ω2}) mi(∅) mi(Ω)

1 [6.62,8.41] [0.24,0.79] 0.70 0.14 0.07 0.09
2 [6.10,6.35] [-1.69,-0.44] 0.66 0.28 0.02 0.04
3 [7.52,8.81] [-0.10,1.54] 0.72 0.08 0.11 0.09
4 [7.80,8.67] [1.61,2.27] 0.68 0.08 0.18 0.06
5 [5.96,7.69] [-0.83,0.13] 0.67 0.19 0.03 0.11
6 [8.43,9.69] [0.66,1.52] 0.71 0.00 0.20 0.09
7 [8.73,9.90] [1.06,1.60] 0.69 0.00 0.24 0.07
8 [7.94,8.39] [-2.20,-1.30] 0.69 0.11 0.16 0.04
9 [7.51,8.63] [-1.71,-1.10] 0.69 0.11 0.14 0.06
10 [7.73,8.36] [0.37,1.11] 0.75 0.11 0.10 0.03
11 [-0.80,0.01] [-0.42,0.33] 0.07 0.75 0.13 0.05
12 [-0.07,1.41] [-0.06,1.00] 0.14 0.71 0.06 0.09
13 [-1.51,-0.29] [0.37,1.65] 0.00 0.70 0.20 0.10
14 [1.44,2.72] [-0.22,1.28] 0.28 0.63 0.00 0.09
15 [-0.31,0.01] [0.82,1.66] 0.10 0.74 0.14 0.03
16 [-0.29,0.81] [0.25,1.37] 0.11 0.73 0.09 0.07
17 [0.13,1.45] [0.34,1.74] 0.15 0.69 0.07 0.09
18 [-0.86,0.92] [-1.73,-0.76] 0.09 0.66 0.14 0.11
19 [-0.51,0.76] [-0.22,0.67] 0.10 0.74 0.09 0.07
20 [-1.73,-0.24] [-0.83,0.46] 0.00 0.70 0.19 0.11
21 [3.00,6.00] [-2.00,2.00] 0.42 0.34 0.00 0.25
22 [4.00,4.00] [0.00,0.00] 0.50 0.50 0.00 0.00
23 [2.00,2.00] [-6.00,-6.00] 0.19 0.37 0.44 0.00
24 [4.00,6.00] [-6.00,-5.00] 0.30 0.21 0.35 0.14
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Table 2: Sensory data set. Masses allocated by the clustering algorithm
Drinks mi({ω1}) mi({ω2}) mi(∅) mi(Ω)
D-pepsi 0.22 0.60 0.11 0.07
RC-cola 0.67 0.33 0.00 0.00
Yukon 0.47 0.00 0.53 0.00
Pepper 0.00 0.08 0.63 0.29
Shasta 0.78 0.06 0.16 0.00
Coca 0.72 0.00 0.28 0.00

D-pepper 0.00 0.65 0.32 0.03
Tab 0.00 0.42 0.36 0.22

Pepsi 0.70 0.20 0.08 0.02
D-rite 0.23 0.68 0.00 0.09
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Figure 1: Two-dimensional data set
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Figure 2: Dissimilarities vs degrees of conflict for the synthetic data set (o: lower dissim-
ilarities; x: upper dissimilarities).
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Figure 3: Synthetic data set. Partition into two classes with outlier rejection. Each point
is either assigned to a class or to the empty set according to the maximum mass allocated.
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Figure 4: Synthetic data set. Mass allocated to Ω. This mass is proportional to the radius
of the grey disc centered on each point of the data set.
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Figure 5: Sensory data set. Partition into two classes with outlier rejection. Each point is
either assigned to a class or to the empty set according to the maximum mass allocated.
The size of the symbols is proportional to the mass of the class.
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Figure 6: Dissimilarities vs degrees of conflict for the sensory data set (o: lower dissimi-
larities; x: upper dissimilarities).
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