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CECM: Adding Pairwise Constraints To
Evidential Clustering
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Abstract— Fuzzy or hard partitioning methods aim at group- a penalty term in the objective function [9], [10] or by

ing objects according to their similarity. Recently, a new altering the distances between objects with respect to the
concept of partition based on belief function theory, called constraints [11], [5].

credal partition, has been proposed and has been shown to
generate mganingful description of ?he data}. Hard, fuzzy or In the FCM algorithm, each object may belong to one or
credal partitions are generally obtained using unsupervised 406 clysters with different degrees of membership. These

learning methods, using only the numeric description between dear f membershi re stored int f rition
two objects to compute their similarity. However, in some J€Qr€€S O membership are stored Into a fuzzy partitio

applications, some kind of background knowledge about the MatrixU = (u;) and are calculated by minimizing a suitable
objects or about the clusters is available. To integrate this objective function subject to the constraits, u, =1 Vi.
auxiliary information, constraint-based (or semi-supervised) Each numben;, < [0,1] is interpreted as the degree of
meth_(f)_ds hz;vihbeetn prog_os<ted. A poptlr.l]lar type 0{ C?”St(ra'mts membership of object to clusterk. The FCM algorithm is
specifies whether two objects are in the same cluster (must- . o

link) or in different clusters (cannot-link). We propose here known to produce sometlm.es couptermtwuve .results, and to
a new algorithm, called CECM, which computes a credal have poor robustness against noise and outliers. Therefore,
partition using a constrained clustering method. We show how possibilistic methods [12], [13], and more recently algorithms
to translate the available information into constraints, and how  ysing the theoretical framework of belief functions [14], [15],

to integrate them in the search of the credal partition. The [16], have been proposed. These latter are based on a new

paper ends with some experimental results. Results of CECM t of titi f dt dal it hich
are compared to other constrained clustering algorithms. Then concept of partition, reterred 1o ascaedal partiion, whic

an application in image segmentation is described. extends the existing concepts of hard, fuzzy and possibilistic
partitions. A credal partition consists in allocating, for each
I. INTRODUCTION object, a mass of belief to any subset of the set of clus-

Clustering is a classical data analysis method that aims S ¢ = {w1,...,wc}. Experiments have shown that this
grouping a set of objects into clusters. Classically, clusterir@ditional flexibility allows us to gain a deeper insight into
proceeds from unsupervised leaming: indeed, the clustéf€ data and to improve robustness with respect to outliers.
are based on the similarity between the descriptors of tHd'e Evidential C-Means (ECM) algorithm [15], that derives
objects only. However, there are some situations in which credal partition from data, can be considered as a direct
some background knowledge about the problem is availabfxtension of FCM.

This extra-information may be used to guide the clustering |n this paper, we propose to introduce pairwise constraints
algorithm towards a desired solution, and thus to improve thg ECM. The resulting algorithm, called CECM, thus com-
classification accuracy. Prior information can be exploited &fines the advantages of adding background knowledge and
diﬁ:erent IeVels Of the C|aSSificati0n SUCh as. ﬁ‘i&Ster|eve| using belief functions. Besidesy we present a formulation of
with, for instance, a minimum distance neighbourhood [1leCM that adapts the metric using a Mahalanobis distance,
themodellevel with the requirement of balanced clusters [2kg that the constraints may be more easily satisfied. The
or the specification of non desired solutions [3], or at th?emaining of this paper is organized as follows. In Section
instancelevel. Wagstaff [4] proposed to introduce two types), the main fuzzy partitioning algorithms from which ECM

of instance-level constraints. Aust-linkconstraint specifies s derived are presented. Then, a brief overview of the theory
that two objects have to be in the same clustegaanot-  of pelief functions is provided, and particularly the notion of
link constraint, that they should not be put in the samgredal partition. Section Il introduces the CECM algorithm.
cluster. Such pairwise constraints have been considered gtigkt, we show how to translate in a natural way the available
integrated in many unsupervised algorithms such as the hafflormation in terms of constraints on belief masses. Then
or the fuzzy c-means (FCM), and have recently become\ge explain how to integrate these constraints in the search
topic of great interest [5], [6], [7], [1], [8]. They have beenof the credal partition. In Section 1V, we also describe
incorporated in many different ways, generally by including version of CECM allowing to automatically modify the

: ) _— , metric according to the constraints. Section V describes some
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Il. BACKGROUND own norm-inducing matrixs, defined as its fuzzy covariance

. matrix:
A. Fuzzy C-Means And Variants

. . Sor Ll (% = Vi) (xi — vi)! .
Let {x1,...,x,} be a set of vectors ifR? describingn S = == P k=1c i=1n.
objects to classify in the sé? = {w; ...w.}. Each cluster i1 Uik ©)

wg, k = 1,c is represented by a prototype (or centroid)l.h : . : .
’ . e distance between an objegtand a centewy, is then:
vi € RP, Let V' denote the matrix composed of the cluster e b

centroids, and leU = (u;,) define a fuzzy partition matrix d2, = det(Sy) 7 (x; — Vi)' Sy (% — V). )
that contains the degrees of membership of each object to
each cluster. The FCM algorithm [17] computésandU so Equation (6) can be obtained by imposing a constant
as to minimize the following objective function: volume to each cluster and using Lagrange multipliers,
except for the normalization by the factdr!” , u” (which
L 5 could be omitted). Additionally, Gustafson and Kessel show
Jeen(U, V) = Zzuikdik’ @) that the adaptation formulas of FCM for the membership

=lk=l degrees and the centers remain valid as they do not depend

In the objective function (1)d;;. represents the Euclideanon the metric.
distance between the object and the centroidr;,. Parame-
ter 5 > 1 is a weighting exponent that controls the fuzzines
of the partition. The objective function is minimized usiag The Dempster-Shafer theory of evidence [20], [21] (or
iterative algorithm, which alternatively optimizes thaister belief function theory) is a theoretical framework for rep-
centers and the membership degrees. The update formulasenting partial and unreliable information. In this et

of the parameters are obtained by computing the Lagrangianly the main concepts are recalled.

formulation of the optimization problem and writing its Let w be a variable taking values in a finite s@t =
Karush-Kuhn-Tucker (KKT) optimality conditions [17]. We {w1,...,w.} called the frame of discernment. Partial know!-

?- Belief Functions

obtain: edge regarding the actual value wfcan be represented by
n B a basic belief assignment (bbaj), which is an application
v, = D i1 Ui k=1,c ) from the power set of2 in the interval[0, 1] such that
S U,
2/(5-1) > m(4) =1. 8)
uj = gy i=Ln j=Le (3) Ace
k=1 ik Any subsetA C Q such thatm(A) > 0 is called a focal set

The algorithm starts from an initial guess for either th&f 7. The quantitym(A) can be interpreted as a fraction of

partitioning matrix or the cluster centers and iteratesiunt® Unit mass of belief that is allocated to A and that cannot

convergence. be allocated to any subset of. A bbam expresses total
To detect noisy data or outliers, Davé [18] proposed ignorance ifm($2) =1, apd full certglnty whenever;(A) R

variant of FCM called the “noise-clustering” algorithm (NC 1ffo”r sk(])m;aA Ig f (mf Is then _Sa'? to be a_tertgln_lbba).

It consists in adding to theinitial clusters a “noise” cluster. It all 1 e focal se_ts ofm-are sing etonsyn IS simrar o

A parameterp defines the distance of this cluster to thé® probability distribution: it is then called Bayesianbba.

others, and thus controls the amount of data considered Ashba m such thatm() = 0 is said to be nqrmalized.
outliers. The membership,, of an objecti to the noise Otherwise,m(()) may be interpreted as the belief that the
cluster is given by: actual value ofv does not belong té [22].

Given a bbam, the plausibility functionpl : 2% — [0, 1]

¢ and the belief functioel : 2 — [0, 1] are defined by:
ui*:]-_zuik i:]-;n7 (4)

P pl(A)= > m(B) VACQ, )

The objective function to be minimized thus becomes: Bna#0
n e c bel(A)= Y m(B) VACQ. (10)

Jue(U, V) = Z Z ufjd?j + Z p2uf*. (5) BCA,B#£(

=1=1 =n Functionsbel andpl are linked by the following relation:
As in FCM, writing the KKT conditions of the Lagrangian HA) = 1 — —bel(A 11
leads to direct adaptation formulas for the memberships and pl(4) m(0) - bel(4), (11)
the cluster centers. where A denotes the complement df. The quantitybel(A)

The Gustafson and Kessel algorithm [19] extends FCN& interpreted as a degree of justified support giveni tby
by using an adaptive distance. Thus, clusters of differetite available evidence, and(A) measures to what extent
geometrical shapes may be detected. Each cluster hasdte fails to believe in hypotheses incompatible with
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In order to make a decision regarding the valuewgf barycenter of the centers associated to the classés:in
a bbam may be transformed into a pignistic probability

distribution [21] Bet P. For a normal bba, we have: V= ‘j_| Z S1; V1, (13)
m(A) Ih=1
BetP(w) =)  —r WweQ, 12)  with _
weA | | 1 ifw € Aj,
- LT\ 0 else (14)
where|A| denotes the cardinality of C Q. If m() #0, a

normalization step must precede the pignistic transfaonat The distancel;; betweenx; and the focal setl; may then
Various methods may be applied. In particular, Dempsterise defined by:

normalization consists in dividing all the masseslbym(0),

whereas Yager's normalization transfens() to Q [23]. dij = ||xi — 95| (15)

C. ECM Algorithm The ECM algorithm searches for thi¢ and V' matrices that

R . minimize a criterion similar to that of the NC algorithm:
Masson and Denceux proposed a credibilistic version of

Davé’s algorithm [15], where the fuzzy partition matfixis _ a, B 52 2, f
replaced with a more general kind of partitidd, called TewM. V) =3 > Al midi +;p My, (16)
a credal partition. Partial knowledge regarding the class -
membership of an objectis represented by a bba; on Subject to:
the s_etQ of possible_z classes. Thl_Js, any subdeof 2 may _ Z mis +mig =1 Vi=1n, (17)
receive support. This representation enables to model @ wid
variety of situations ranging from complete ignorance tib fu
certainty, as illustrated in Example 1.

i=1 Ay #£0

k/ARCQ,ALAD
wherem;y denotes the mass of the objegtallocated to the

Example 1:Let us consider a collection of four objectsempty_ s_et. The e_mpty set is interpreted as a noise cluster,
that need to be classified into two classes. A credal pattiti hus, it is dealt with separately. The parameierepresents

is presented in Table I. The class of the first object is knov\/‘ili]e distance of all the objects to the empty set. An additiona

with certainty, whereas the class of the second object Ygeighting coefficient| A,|* is introduced to penalize the

completely unknown. We have probabilistic knowledge of thé/location of belief to subsets with high cardinality, the
actual class of the third object. The last object is consider €XPonentx allowing us to control the degree of penalization.

to be an outlier, what is represented by allocating the whole AS_ in FC_:M_ or NC'_ the credal partition is found by
unit mass to the empty set. iterative optimization with the alternate update of the sess

and the centroids. The KKT conditions gives the following

TABLE | adaptation rule for the masses: foe 1,...,n andA; # 0,
EXAMPLE OF A CREDAL PARTITION |A_‘,a/(571)di2/(ﬁ71)
L S ST eyl )
0 0 0 1 Ay |-/ (B-1) g2/ (B —2/(8-1
{w1} 1 0 0.3 0 ZAH&@ Al ik e
{wa} 0 0 0.7 0 and
2 0 1 0 0 mip =1— Z mi;  Vi=1,n. (19)

Aj#D

A credal partition can thus be seen as a general modﬁ 5
of partitioning. When eachn; is a certain bba, which
corresponds to a situation of complete knowledge, thén

defines a conventional, crisp partition of the set of object
If all the m, are Bayesian) specifies a fuzzy partition.
With focal elements being singletons Qfor the empty set,

a partition with a noise cluster as in the NC algorithm i

Iote that these update equations are very similar to those
of the NC algorithm except that there &a2e valuesm,; to
gompute instead of + 1 fuzzy membership degrees;. A
more complex update rule is found for the centroids, sinee th
optimality conditions lead to the resolution of a lineartsys

Sat each step of the optimization process. Bebe a matrix

of size (¢ x p) defined forl =1,...,candg=1,...,p by:

recovered.

The ECM algorithm derives a credal partition from data. Z a1 B
Let m;; denote the degree of belief that objegt belongs By, = ZTW Z A% my; (20)
to the subsetd; C Q. Deriving a credal partition im- =1 43w
plies computing, for each objest;, the quantitiesn;; = andH a matrix of size(c x ¢) given ,l =1,...,¢) by:
mi(A;) VA; # 0,A; C Qin such a way that a low (resp., a2 B
high) value ofm,; is found when the distancé;; between Hy = Z Z A1 i 1)

x; and A; is high (resp., low). The distaneg; between an i Aj2{wk,wi}

object and a set of classe; is defined as follows. Each With these notations} is solution of the following linear
classw; is represented by a center € RP. Then, for each system:
subsetd; C Q, 4; # (), a centroidv; is calculated as the HV =B, (22)
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which can be solved using a standard linear system solver.

Details on the calculation of Equations (18) to (22) are

provided in [15]. Note that, in practice, the resolution &) Plix;(0) = Zm" (A4) m;(B), (29)
is performed columnwise: each column Wfis the solution ANB#D

of a linear system of equations and unknowns. As FCM BN 1y ~ _

and its variants, the algorithm starts with an initial gufess Plij(0) =1 =mix; () ;ml({wk})mf({wk})' (26)
either the credal partitiod/ or the cluster center¥ and -

alternates the optimization df/ and V' until convergence. ~~ Example 3:Let us consider a new collection of four
objects to be classified into two classes. A credal partition
D. Interpreting A Credal Partition expressing certain knowledge about the membership of the
As underlined in [15], a credal partition is a rich represenobjects is given in Table Ill. Table IV gives the mass

tation that carries a lot of information about the data. [5][1 functions of the joint membership of; with the three other
various tools helping the user to interpret the results ofEEC Objects. The associated plausibilitigs(0) and pl(0) are
were suggested. First, a credal partition can be converted i 9iven in Table V.

classical clustering structures. For example, a fuzzyitpart
can be recovered by computing the pignistic probability

BetP;({wy}) induced by each bbar; and interpreting this

TABLE Il
CREDAL PARTITION TO EXPRESS CONSTRAINTS
A mi1(A)  ma(A)  mz(A) ma(A)

value as the degree of membership of objedb cluster 7 5 0 5 0
k. Another interesting way of synthesizing the information {w1} 1 1 0 0
is to assign each object to the subset of classes with the {%2} 8 g (1) 2

highest mass. In this way, one obtains a partition in at most
2¢ groups, which is referred to astard credal partition

This hard credal partition allows us to detect, on the one
hand, the objects that can be assigned without ambiguity to
a single cluster and, on the other hand, the objects lying at

TABLE IV
MASSES OF JOINT MEMBERSHIP
F=AxB mix2(F) mixs(F) mixa(F)

the boundary of two or more clusters. To1} % {w1] 1 0
Example 2:Let us consider the credal partition presented {w1} x {wa} 0 1 0
in Table I. The corresponding pignistic probabilities (igsi %:S i ?m} 8 8 (l)
Yager's normalization) are given in Table II. {wa} x {wa} 0 0 0
{w2} x Q 0 0 0
TABLE I Q x {wi} 0 0 0
PIGNISTIC PROBABILITIES FOR THE CREDAL PARTITION OFTABLE | Q2 x {wz} 0 0 0
QxQ 0 0 0
X1 X9 X3 X4
BetP({w1}) 1 05 03 05
BetP({ws}) 0 05 07 05
TABLE V
PLAUSIBILITIES FOR THE EVENTSO AND 0
I1l. ECM WITH CONSTRAINTS F phixe(F)  phixs(F)  plixa(F)
) . g 1 0 1
A. Expression Of The Constraints 7 0 1 1

Let x; and x; be two objects associated with mass

functionsm,; andm;. A mass function regarding the joint This simple example shows how the joint membership
class membership of both objects may be computed froof two objects may be represented using the plausibilities
m; andm; in the Cartesian produ€?? = Q x Q. This mass pl(#) andpl(6). In simple terms, the relevant information in
function, denotedn; ;, is the combination of the vacuous Table V is contained in the zeros of these plausibilities. Fo
extensions ofn; andm; [21]. As shown in [14], we have, example, nothing can be said about the joint membership of
for A BCQ, A#0, B+#(: objectx; andxy, as both of these plausibilities are equal to
1. On the contrary, the fact thati);*(9) = 0 indicates that

Mixj(A x B) = mi(A) m;(B), (23) (x; andxs) are certainly in the same cluster. Equivalently,
hili QxQ
Masj (0) = ma(0) + m; (0) — ma(0) m;(0). (24) the null value of the plausibilitypli*5°(6) expresses the

impossibility thatx; andxs belong to the same class. These

Fromm;y;, we can compute the plausibility that the tworelationships will be used in the next section to propose a
objectsx; and x; belong or not to the same class. ¥, new formulation of ECM integrating pairwise constraints on
the event “Objectst; andx; belong to the same class” cor-instances.
responds to the subsét= {(w1,w1), (w2,w2), ... (Weywe)}y o )
whereas the event “Objects andx; do not belong to the B- Objective Function Of CECM
same class” corresponds to its compleménfThe corre- Let us now assume that the credal partition is unknown and
sponding plausibilities are the following: that we are given some pairwise constraints. As explained in
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the introduction, we consider that these constraints argt-muAlgorithm 1 CECM with an Euclidean metric

link or cannot-link constraints. Let denote the set of pairs  Input: Numberc of desired clusters; objectsxy, ..., x,,

of objects constrained by a must-link adidhe set of pairs  set of cannot-linkC, set of must-link M

of objects constrained by a cannot-link. One has to seek for Output: Credal partition matrix\/, centroid matrix}’

a credal partition that reflects both the similarities cotedu  Initialization of V'

from the data and the constraints. A natural requirement is repeat

that pl; ;(¢) be as low as possible ffx;,x;) € C. In the 1) Calculate the new masses by solving the quadratic
same way,(x;, x;) € M implies thatpl; ;(6) should be as programming problem defined by (28) subject to (17).
low as possible. To achieve this goal, we suggest to integrat  2) Calculate the new centroids by solving the linear
penalty terms into the ECM criterion and we propose to  System defined by Equations (20) to (22).

minimize the following objective function: until No significant change iV’ between two successive
iterations
_ 2 )
Jeeew(M V) = Jeeu M. V) + 130 > plixs(0)
(X,,Xj)EM

* % > plixs(0), (27) highly desirable when using constraints, in particular whe
C| these constraints contradict a spherical model. To motidy t

) previous algorithm, we follow an approach inspired from

such that the constraints (17) are respected. The second @\¢kiafson and Kessel [19], [25]. L& denote a(p x p)

third terms represent, respectively, the cost of violating ,5irix associated to cluster; (I = 1,¢) inducing a norm

must-link the cannot-link constraints. The coefficiemtand Ix||2 = x'S;x. Using the same approach as for the

N ! s = 1X. 9 ar pp
7 control the tradeoff between the objective function of ECM,antroids. we compute the matr associated with a non

and t_he _constr_aints. Nc_)tt_a_ _that we choose t_o eXF’re_SS tQﬁgletonAj by averaging the matrices associated with the
penalization using plausibilities rather than beliefxsitthis classesuy, € A.:
j

quantities depends only on the mass given to singletons.
As in FCM, NC and ECM, we propose an alternate _ 1 <&

optimization scheme in order to fix the partition matfi% S5 = T4 > siiS, VA CQ A #£0. (29)
and the centroid matriX’. First, note that the two penalty =1
terms added to (27) do not depend on the cluster centroiGg,e distancai2.
The same update scheme for the centroids (Equations (20) to "
(22)) can thus be used in CECM. Suppose furthermore that d?j = ||x; — vj||2§‘ = (x; — ¥;)15;(x; — ¥j). (30)
we fix # = 2; using Equation (26), we get: !

TV V)= 32 5 (A + 3 gy
i=1

(x’i ,X]‘)EC

betweenx; and any set4; # 0 is then:

The new criterion to be minimized thus becomes:

JCECM(]Wa V7 Slv Tt Sc) =

i=1 Ay, #£0
v Y - _ -
- W Z mix;(0) — W Z belix;(0) Z Z | Ag|“m||x; — ij%j + Zme?@
(xi,x5)EM (xi,x5)EM i=1 A, #0 i=1
n _
i ST b0+, (28) 4 %‘ S Pl + % S plics(0). (31)
(i,%;)€C (xi,%x;)EM (x4,x5)€C

Note that the last term of Equation (28), which is constanjyote that the minimization of (31) with respect to the masses
will be omitted in the rest of the paper. It can be seef jhqenendent of the metric, so that the way of deriving the
that the objective function is, in that case, quadratic with,,sses by a constrained quadratic optimization is uncliange
respect to then;;. As we have linear constraints, a classica| e in [19], the determination of the centers takes here
optimization method [24] can be used and the convergenge, metric explicitly into account, as shown below.

is insured in a reasonable time. Note that the complexity 1) Optimization With Respect To The Cluster Centers:
of our approach is linear with the respect to the number % first consider that\/ and the matricesS; (I — 1,c)
samples and is exponential with the respect to the number rfe ’

I the algorith ins limited to a few hundréd e fixed. The minimization of/.ccy, with respect toV is
classes, so the aigonthm remains imited 1o atew hunareds 9, - constrained optimization problem. Computing partial
samples and a small number of classes (5). The overall

. . . . derivatives of.J.c With respect to the centerg, givesc
procedure is summarized in Algorithm 1. update equations for the centars:

IV. CECM WITH AN ADAPTIVE METRIC
a—1,.27Q
A. Model Z 141 my S xi =
The use of a Mahalanobis distance, instead of an Euclidean "o R —
distance like in the ECM algorithm, may be interesting in S0 > A4PTmESvie 1=1c. (32)
case of elliptical clusters. Using an adaptive metric can be ki Ao {wk.wi}
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Let F(t) denote the(p x p

)
FOO = N 14" 'm2 S, I=1,c i=1n, (33
Ajdw

matrix: is invertible since eaclix; — v;)(x; — v;)! is symmetric,

_ positive and semi-definite; hence, so is their weighted sum.
The overall CECM procedure with an adaptive metric is

summarized in Algorithm 2.

and G(-*) denote the(p x p) matrix:

_ Algorithm 2 CECM with an adaptive metric
(Lk) — Ja—=2,_.273q. o
G = Z Z |45 5mi Sk l=1,c. (34) Input: Numberc of desired clusters; objectsxy, ..., x,,,
¢ Ay 2Hwrnd set of cannot-linkC, set of must-link/ M
Next, we form, from these twap x p) matrices, two Output: Credal partition matrix\/, centroid matrixl’, set

new matricesF and G, of size (¢cp x np) and (¢p X ¢p), of matricesS; | = 1,¢
respectively: Initialization of V'
FOLD g2 ... gln) repeat _ _
1) Calculate the new masses by solving the quadratic
FELH F22 ... p@n) ) > -
F— (35) programming problem defined by (31) subject to (17).
: : : 2) Calculate the new centroids by solving the linear
Fll) F2) ... Fln) system defined by Equation (32).
Gl g2 ... gto 22“;:?3[%1)1Iate the new matriceS, [ = 1, ¢ using (40)
. G2l g2 ... Gg@9 (36) until No significant change iV between two successive
a : : - : iterations
Gl g2 ... @Gl
Let us stack all objectx; in a same vectoX of size V. EXPERIMENTAL RESULTS

(np x 1) and rearrange matrik” in the form of a vector of

size (cp x 1) such that: A. Methodology

We show here how adding pairwise constraints may im-

X1 Vi prove the classification accuracy. We use two real classical
X=1 : V=1 ! data sets for which a reference partition is known. Various
X Ve measures may be used to measure the degree to which the

predicted class labels match the actual ones. Since the labe
of each cluster is arbitrary and does not reflect any ground
truth (unlike in supervised classification), a practicalyvia
GV =FX. (37) . ) .
to check whether pairs of points are assigned to the same

2) Optimization With Respect To The Matric6s We cluster or not in the predicted and actual partitions. Among
now consider thad/ andV are fixed. To determine the matri- the criteria based on this principle, the F-measure is one
cesS;, we follow the same line of reasoning as Gustafson anaf the most popular. It is defined as the harmonic mean of
Kessel. Imposing that the clusters have a constant volungo quantities traditionally used in information retrigvéne
using the constrainiet(5;) = 1 foralll = 1, ¢, is necessary precision and recall. More precisely the pairwise F-measur
to avoid the degenerate solution consisting of matriSgs is defined as:

With all these notations, vectdf is solution of the following
linear system:

with zero entries. To solve the constrained minimization 2 % Precx Recall
problem with respect t81, - - - , S., we introduce: Lagrange F-measure= —g5 ol (41)
multipliers \; and write the Lagrangian: with
L(S1,-,Se, M, 3 Ae) = Jeeen(M, V) Prec— # pairs correctly predicted in the same cluster
c ~ # total pairs predicted in the same clustér
= Mk (det(Sk) — 1) (38) (42)
k=1 and
Applying the KKT conditions to this Lagrangian leads to the Recall— # pairs correctly predicted in the same cluster
following update equations for the covariance matriSgs ~ # total pairs actually in the same cluster
4
1
Sp=det(Z) 7 1=1,c, (39) The performances of CECM are compared to those of
with ¥, being defined, foi = 1,...,c, by: unsupervised clustering algorithms: FCM [17] and K-Means.

We also provide comparison with other classical algorithms
Si=> Y milA; | (xi — ;) (xi — ¥;)". (40) incorporating pairwise constraints:
i A o COP-KMeans [4], which introduces constraints in the
Note that; can be considered as the analog in the evidential K-Means algorithm and ensures that they are satisfied
framework of the fuzzy covariance matrix. Furthermare, at each iteration.
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Fig. 1. Results obtained by different clustering algorighriris. Fig. 2. Results obtained by different clustering algorighrhetters-1JL.

« MPCKM-S-D clustering [26], which utilizes constraints published in [26] suggest that MPCKM-S-D requires a high
for seeding the initial clusters and then apply a metriaumber of constraints to learn the metric. This is partidula
learning scheme by using a single (S) and diagonal (Qhe case for full matrices: indeed using diagonal matrices
parametrized matrix for all the clustets seems to give better results when the number of constraints

is low. Conversely to the other algorithms, COP-KMeans

requires that all the constraints be satisfied; this explain
Experiments were conducted on two data set from the UGty this method outperforms the others (except CECM-mah)

repository:lris andLetters Thelris data set is composed of for a high number of constraints. The drawback is that the

three classes of patterns in a four-dimensional space of g@nstraints may not be consistent with the initial pantigod

data each. For theettersdata set, we selected three classegerefore the optimisation problem may be infeasible [1].

corresponding to the lettedd, J, L}. Then, following [26],

we randomly selected0’ of the data in each class, so thatc, |mage Segmentation

we obtained 227 data in a 16-dimensional space. The three ) ) ) )

classes are roughly balanced. The interest of CECM W|I_I now Ige illustrated using an
We used two clustering schemes for CECM: CECM__exar_ane in image segmentation. An image of a plane is given

eucl, which exploits the Euclidean distance, and the CECMP Figure 3. The aim was to isolate the plane from the rest

mah, which introduces the Mahalanobis distance. We us@f the image.
parameter values of = = 1 and p?> = 1000 for both In a first experiment we used ECM. We consider that there

schemes and both data sets. is no outlier in the image, so we force the mass on the empty

Figures 1 and 2 show the average F-Measure plott&®t to be as small as possible by setfiigo a high value. So
against a varying number of constraints. Averages wegdarting from the gray levels of the pixels (rescaled betwee
computed on 100 experiments using randomly selected cdh-2nd 1), ECM, withe = 2, a = 1, andp®> = 10 and V/
straints. Must-link and Cannot-link constraints are set udnitialized with FCM, finds a hard credal partition repretsh
ing the true known classes. Note that noisy or incohereft Figure 3. It may be seen that the ECM fails to isolate
constraints, especially if they are prevalent in the set difoperly the plane. In a second experiment, we introduced
constraints, are likely to deteriorate the solution predd Cconstraints on the partition as shown in Figure 4. The pixels
by CECM. The coherence of the constraints should thus t€longing to the region delimited by hand are mutually lthke
checked before running CECM (see e.g. [27]). by a must-link constraint. CECM with an adaptive metric

It may be seen that constraint-based approaches outp®@@s run using FCM for the initialization df and with the
form unsupervised clustering. Algorithms using a metri€ollowing parameterse = 2, a = 1, v = 1, p* = 10. The
learning (MPCKM-S-D and CECM-mah) give the best recredal partition is presented in the right part of Figuret4. |
sults. This was predictable since the data sets processed hgay be seen that the constraints made it possible to raise
non-spherical classes. CECM-mah produces better clngterithe indetermination concerning the pixels allocatetand
than MPCKM-S-D. Likely, the reason is that the formerthus to properly isolate the plane. Note that the remaining
method uses a full distance matrix for each class while tHixels allocated td2 are lying at the boundary between the

latter involves a single matrix for all the classes. The itesu Plane and the sky. As a matter of comparison, are also given
in Figure 5 the hard partitions obtained from the pignistic

1The code is available at http://www.cs.utexas.edu/uséfrigc/ probabilities computed from the results of ECM and CECM.

B. Results On Two Real Data Sets
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Fig. 3. (Left) Original image; (Right) Credal partition alrted with ECM
(white areaw1, grey areaws, black areax?).

8]

El

1
i w [10]
Fig. 4. (Left) Must-link constraints; (Right) Credal pdidn obtained with 11
CECM (white areaws, grey areaws, black areaf?).

[12]

VI. CONCLUSION

In this paper, we have presented a new clustering methgosl]
called CECM based on the belief functions theory. It is afi4]
extension of the evidential clustering algorithm ECM. The
contribution of the paper is twofold. First, we have prombseyis)
to add pairwise constraints. Second, we have introduced
an adaptive metric in the algorithm. This distance, morg .
general than the Euclidean distance, treats non spherical
classes and adjusts to the add of constraints. Experimefitd
have proved that these two extensions make it possible [t&]
guide the algorithm towards desired solutions. Moreovey th
showed that our algorithm gives good results compared witho]
other constraint-based methods since the former reqesss |

constraints to give satisfying solutions. [20]
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