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Abstract

This paper describes an extension of principal component analysis (PCA)
allowing the extraction of a limited number of relevant features from high di-
mensional fuzzy data. Our approach exploits the ability of linear autoassociative
neural networks to perform information compression in just the same way as
PCA, without explicit matrix diagonalization. Fuzzy input values are propa-
gated through the network using fuzzy arithmetics, and the weights are adjusted
to minimize a suitable error criterion, the inputs being taken as target outputs.
The concept of correlation coefficient is extended to fuzzy numbers, allowing the
interpretation of the new features in terms of the original variables. Experiments
with artificial and real sensory evaluation data demonstrate the ability of our
method to provide concise representations of complex fuzzy data.

Keywords: Fuzzy data analysis, Feature extraction, Neural networks, Pattern
recognition.

1 Introduction

Data compression and feature extraction are among the main problems addressed in
exploratory data analysis and pattern recognition. Given a collection x1, . . . ,xn of n
d-dimensional real vectors describing n objects according to d attributes, it is often
desirable, for data visualization or efficient classification, to compress this information
into lower-dimensional data y1, . . . ,yn, while preserving as much as possible of the
original information. One of the simplest and most widely used methods for feature
extraction is known as principal component analysis (PCA). Viewing the n data points
as a cloud in Rd, PCA captures the main features of the data set by searching for
directions along which the dispersion, or variance, of the cloud is maximal. If q such
directions are found (with q < d), they define a q-dimensional linear subspace L
of Rd, such that the projections along L of the xp (p = 1, . . . , n), having maximal
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dispersion, constitute, in some sense, an optimal q-dimensional picture of the original
data. PCA is used extensively as a tool for discovering the underlying structure of
data sets through two-dimensional displays (allowing, e.g., to find groups of similar
observations or correlations between variables), or as a preprocessing step prior to
other operations such as clustering, regression, or classifier design (see, e.g., [17]).

In this paper, it is proposed to extend PCA to a wider class of data comprising
real numbers, real intervals and, more generally, fuzzy numbers. Fuzzy numbers are
defined as fuzzy sets of the real line whose α-cuts are closed intervals [16]. They may be
viewed as generalized intervals with possibly ill-defined boundaries (real numbers and
real intervals are recovered as special cases). In data analysis, fuzzy numbers may be
used to model imprecise observations (derived, e.g., from uncertain measurements or
linguistic assessments), as well as distributions of values taken by an attribute during
repeated measurements, or related to different entities forming a class of interest. Here
are three examples (adapted from [31]) illustrating these different situations.

Example 1 Let x denote the speed of a vehicle at some time, and assume that a
human observer reports that “x is high”. This information may be modeled by a
fuzzy set x̃, the membership function µx̃ of which is agreed to represent the linguistic
label “high”. For example, it may be a triangular membership function with modal
value 100 and support [90, 110].

Example 2 As before, let x be the speed of a vehicle, but let us now assume that
x is measured by k sensors. We thus have an empirical distribution ξ1, . . . , ξk of k
numerical observations, ξi denoting the value returned by sensor i. This information
may, again, be conveniently represented by a fuzzy set x̃ with unimodal membership
function defined using simple statistics of the distribution, such as the sample average
and standard deviation, or other indicators of central tendency and dispersion.

Example 3 A third situation is one in which the objects in the database under study
consist of collections of entities. For instance, in a study about different categories
of cars, an object of interest may consist of “sports cars”. Such an object may be
described by attributes such as “maximal speed” denoted by x. The value taken by x
for the object “sports car” may be a crisp set (e.g., the interval [200,300]), or a fuzzy
set x̃ (e.g., a triangular fuzzy set with modal value 250 and support [200,300]).

Note that the situation illustrated by example 3 is clearly distinct from the previous
ones. In examples 1 and 2, the value taken by variable x is unique and well defined,
but it is only partially known. The membership function µx̃ of x̃ is then seen as
a possibility distribution quantifying our partial knowledge of x. In example 3, x
is a multi-valued attribute, which is known with complete certainty to be equal to
the fuzzy set x̃ for the object under consideration. Because of the formal equivalence
between possibility distributions and membership functions of fuzzy sets [37, 15], both
situations are amenable to the same formal analysis.

In the rest of this paper, it will be assumed that we have a collection x̃1, . . . , x̃n of
n d-dimensional vectors of fuzzy numbers, and our goal will be to define a “generalized
PCA” of these data in order to obtain a synthetic representation as n q-dimensional
vectors of fuzzy numbers ỹ1, . . . , ỹn, with q < d, carrying most of the relevant infor-
mation present in the original data.
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Although considerable work has been devoted to the development of fuzzy algo-
rithms for analyzing crisp data (see, e.g., [5]), comparatively less attention has been
paid, until recently, to the analysis of fuzzy data. References [18] [36] [4] describe
recent developments from an inferential statistics perspective, and a review of linear
regression analysis of fuzzy data may be found in [13]. In [19, 31], a general approach
to the handling of fuzzy data is proposed, in which fuzzy data are mapped onto a crisp
representation space where classical algorithms (e.g., clustering procedures) can be ap-
plied. This approach, however, is not oriented towards visualizing high dimensional
fuzzy data, which is our main concern here. Multidimensional scaling, a technique to
map objects to a multidimensional feature space based on observed dissimilarities be-
tween objects, has recently been extended to interval-valued and fuzzy dissimilarities
[12, 30].

In the framework of symbolic data analysis (SDA) [7], several extensions of PCA
to interval or histogram data have been proposed [10] [27] [32]. These approaches
generalize classical principles of PCA to hypercube data by applying the standard
analysis to the centers or to the vertices of the hypercubes [7, chapter 9]. The simplicity
of both approaches has intuitive appeal. However, the “centers method” does not
take into account the imprecision of the data in the feature extraction process and,
consequently, builds only suboptimal low-dimensional representations of the data, as
will be shown experimentally in Section 4.1. The other approach, dubbed the “vertices
method” in [7], is not adapted to large high-dimensional data sets, since the analysis
is carried out with n2d input vectors.

The new approach presented in this paper attempts to overcome these limitations
by finding iteratively linear features from which the original fuzzy data may be recov-
ered with minimum error using a linear transformation. The proposed method builds
upon two groups of results available in the literature. The first one concerns the im-
plementation of standard PCA for crisp data using a neural network [8, 2, 3]. The
architecture is that of a three-layer autoassociative linear neural network composed of
an input layer and an output layer of d neurons each, and a hidden layer of q linear
units. By minimizing a suitable error criterion, such a network has been shown to
develop in its hidden layer insightful representations, the visualization of which reveals
the most salient features of the original data. The second research direction that has
inspired our approach is related to the fuzzification of neural networks. Many different
models have been proposed, including multilayered networks with fuzzy inputs, real
weights and fuzzy outputs [22], multilayered networks with crisp inputs, fuzzy weights
and fuzzy outputs [20] and multilayered networks with fuzzy inputs, fuzzy weights
and fuzzy outputs [23] [24] [28]. In this paper, only the first kind of model will be
considered, as explained in Section 3.

The rest of the paper is organized as follows. Section 2 recalls the necessary back-
ground about PCA and its implementation in autoassociative neural networks (ANN).
Section 3 presents the extension of PCA to fuzzy data based on the “fuzzification”
of ANN’s. Lastly, experimental results with artificial and real data are presented in
Section 4.
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2 PCA and autoassociative neural networks

2.1 Principal component analysis

The purpose of this section is to summarize some basic mathematical facts about
PCA. More details may be found in standard textbooks on multivariate analysis such
as [1].

Let x1, . . . ,xn be the n d-dimensional real vectors constituting the data set. With-
out loss of generality, we shall assume the data to be centered, i.e.

1

n

n∑
p=1

xp = 0.

With this assumption, we can think of the n data points as a cloud in d-dimensional
Euclidean space, with center of gravity located at the origin. As mentioned in Section
1, PCA attempts to find a q-dimensional subspace L of Rd, such that the orthogonal
projections PLx

p of the n points on L have maximal variance.
If L is the line spanned by unit vector u, the projection of x ∈ Rd on L is

PLx = (u′x)u,

where prime denotes transposition. The variance of the data in the direction of L is
therefore

1

n

n∑
p=1

(u′xp)2 =
1

n

n∑
p=1

u′xpxp′u

= u′

 1

n

n∑
p=1

xpxp′

u

= u′Su

where S is the sample covariance matrix of the data. PCA thus looks for the vector
u∗ which maximizes u′Su, under the constraint ‖u‖ = 1. It is easy to show that the
solution is the normalized eigenvector u1 of S associated to its largest eigenvalue λ1,
and

u′1Su1 = λ1u
′
1u1 = λ1.

There is hardly any difficulty in extending this argument to find the q-dimensional sub-
space L on which the projected points PLx

p have maximal variance. For mathematical
simplicity, let us assume that S is of full rank and has no multiple eigenvalues1, so
that its eigenvalues may be noted λ1 > λ2 > . . . > λd, with corresponding normalized
eigenvectors u1, . . . ,ud. Then the following proposition holds:

Proposition 1
Among all q-dimensional subspaces L of Rd, the one spanned by the first q normalized
eigenvectors u1, . . . ,uq of S is such that 1

n

∑n
p=1 ‖PLxp‖2 is maximal. Equivalently, it

1This condition is almost always observed with real data. Anyway, it could always be enforced by
perturbing the data by small amounts.
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is also the subspace L such that the average projection error

1

n

n∑
p=1

‖xp − PLxp‖2

is minimized.

The lines spanned by the eigenvectors uj are called the principal axes of the data,
and the q new features yj = u′jx defined by the coordinates of x along the principal
axes are called the principal components. The vector yp of principal components for
each initial pattern vector xp (p = 1, . . . , n) may easily be computed in matrix form
as yp = U ′qx

p, where Uq = [u1, . . . ,uq] is the d × q matrix having the q normalized
eigenvectors of S as its columns. The variance of the j-th component is

1

n

n∑
p=1

u′jx
pxp′uj = u′jSuj = λj .

2.2 Autoassociative linear networks

As first noticed by Bourlard and Kamp [8], there is an interesting connection between
PCA and autoassociative multilayer perceptrons.

Let us consider a feedforward three-layer neural network with an input layer of
d units, a hidden layer of size q, and an output layer of d units (Figure 1). Let A
be the q × d matrix of input-to-hidden weights, and let B be the d × q matrix of
hidden-to-output weights. The hidden and output units are assumed to have identity
transfer functions, so that the network output z is computed from the input vector x
as

z = BAx. (1)

Let us assume that this network is trained in autoassociative mode, i.e., using
the inputs as target outputs. The network then learns to approximate the identity
mapping. If q < d, such a task will force the system to find efficient ways of com-
pressing the information contained in the input patterns: the network will work as an
unsupervised feature extractor.

The use of such a scheme for information compression and dimensionality reduction
was first suggested by Rumelhart et al. [34]. It was analyzed formally by Bourlard
and Kamp [8] using the concept of singular value decomposition of matrices. Further
results were obtained by Baldi and Hornik [2, 3], who provided a complete description
of the error surfaces of multilayer linear networks (of which autoassociative networks
with one hidden layer are a special case). A review of applications to the problem of
face recognition in images can be found in [35].

The findings of Baldi and Hornik for the autoassociative case may be briefly sum-
marized as follows. Let E(A,B) denote the quadratic error function, defined as:

E(A,B) =

n∑
p=1

e(xp, zp), (2)
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where e(xp, zp) denotes the reconstruction error for pattern p:

e(xp, zp) = ‖xp − zp‖2 =
d∑

k=1

(xpk − z
p
k)2, p = 1, . . . , n. (3)

The total error may also be expressed as a function of the global map W = BA, which
is constrained to be at most of rank q. It is clear that E(A,B) = E(CA,BC−1) for
any invertible q × q matrix C, so that any global map W corresponds to an infinite
family of weight matrices (A,B).

As before, let S denote the sample covariance matrix of the data, assumed to be of
full rank, with eigenvalues λ1 > . . . , λd and corresponding orthonormal eigenvectors
u1, . . . ,ud. The following proposition of Baldi and Hornik [2] may be expressed as
follows:

Proposition 2
The error E expressed as a function of the global map W has a unique local and global
minimum of the form W = BA with

A = CU ′q (4)

B = UqC
−1, (5)

where Uq denotes, as before, the matrix [u1, . . . ,uq], and C is an arbitrary invertible
q × q matrix.

The optimal map W = UqU
′
q is thus the orthogonal projection PL onto the sub-

space L spanned by the first eigenvectors of the data covariance matrix S. PCA is
recovered as a special case when C is the identity matrix: in that case, the activities
in the hidden layer are exactly identical to the principal components of the data. If
the error function is minimized by an iterative algorithm such as backpropagation,
this particular solution is, however, generally not obtained, and matrix C is arbitrary.
The vector of hidden unit activities is then

Ax = CU ′qx = Cy

where y is the vector of principal components for input x. Therefore, the hidden
unit activities are identical to the principal components, up to an arbitrary linear
transformation. Although such a general solution may have some advantages in terms
of robustness from the information compression viewpoint [3], the internal represen-
tations produced are not directly usable in data analysis because the scaling of the
hidden layer activities is completely arbitrary. A way to resolve this ambiguity is to
introduce the constraint A′ = B, which given Eqs (4) and (5) translates to

UqC
′ = UqC

−1. (6)

Since the (u1, . . . ,uq) form an orthonormal basis, we have U ′qUq = Iq, where Iq is
the identity matrix of size q. By left-multiplying both sides of Eq. (6) by U ′q, we see
that C verifies C ′ = C−1 or, equivalently, C ′C = Id. Hence, C is now an orthogonal
matrix, which implies that the hidden unit activities and the principal components
are related by an isometric transformation (the group of isometric transformations
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includes rotations and reflections). A simple way to impose the constraint A′ = B is
to re-write the propagation equation (1) as

z = BB′x (7)

which translates in scalar notation to

zk =

q∑
j=1

Bkj

d∑
i=1

Bijxi k = 1, . . . , d. (8)

3 Extension to fuzzy data

3.1 Principle

Let us now assume that we have a collection of n objects described by d attributes
taking values in the set F(R) of real fuzzy numbers. The data thus takes the form
x̃1, . . . , x̃n, where each x̃p ∈ F(R)d is a vector of d fuzzy numbers noted (x̃pi )1≤i≤d.

We want to compress this data into lower dimensional fuzzy data ỹ1, . . . , ỹn, with
ỹp ∈ F(R)q, p = 1, . . . , n, and q < d. In the case of real data, this problem is usually
solved by PCA. How can this approach be generalized to the case of fuzzy data ?

A possible answer to this question may be found using the neural network imple-
mentation of PCA described in the previous section. Let us consider again the three
layer network depicted in Figure 1, with linear hidden and output units, and assume
that a vector x̃ of d fuzzy numbers is fed into the input layer. The network output may
be computed by applying Zadeh’s extension principle to Eq. (8). The k-th component
z̃k of the fuzzy output vector z̃ for the fuzzy input x̃ is then defined as

∀u ∈ R µz̃k(u) = sup
v1,...,vd

min
1≤i≤d

µx̃i(vi), (9)

the supremum being taken under the constraint

u =

q∑
j=1

Bkj

d∑
i=1

Bijvi.

We may write in more compact form

z̃k =

q∑
j=1

Bkj

d∑
i=1

Bij x̃i k = 1, . . . , d, (10)

where addition and multiplication by a real are now the usual operations of fuzzy
arithmetics [16]. The practical calculation of the z̃k in the special case of trapezoidal
fuzzy numbers will be addressed in the next section. Using matrix notation, Eq. (10)
translates naturally to

z̃ = BB′x̃,

which is the fuzzy counterpart of Eq. (7).
Let us denote by ỹ the vector of fuzzy hidden unit activities, defined as ỹ =

B′x̃. This vector constitutes an internal representation of input pattern x̃. The
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internal representations of the n training vectors x̃p may be globally optimized by
generalizing the quadratic error criterion given by Eqs (2-3) to fuzzy outputs and
fuzzy target values. This may be achieved by defining some measure of discrepancy or
dissimilarity between membership functions (see, e.g., Refs. [21] and [14, page 496] for
developments on this topic). Let e(x̃, z̃) denote such a dissimilarity measure between
real fuzzy numbers x̃ and z̃ (an explicit expression of e(x̃, z̃) in the special case of
trapezoidal fuzzy numbers is given in the next section). Then, the reconstruction
error for pattern p can be defined as:

e(x̃, z̃) =
d∑

k=1

e(x̃k, z̃k), (11)

and the total error over the training set becomes:

E(B) =
n∑
p=1

e(x̃p, z̃p) =

n∑
p=1

d∑
k=1

e(x̃pk, z̃
p
k). (12)

Adopting a suitable parameterization of the fuzzy numbers (see Section 3.2 for de-
tails on the practical implementation), it appears that E(B) is nonlinear with respect
to the elements of B. Let B∗ be a solution of the non-linear optimization problem

min
B

E(B).

This problem can be solved using a standard iterative gradient-based procedure. The
hidden layer output vectors ỹp = B∗x̃p constitute “optimal” q-dimensional represen-
tations of the original input vectors x̃p, in the sense that they allow the original vectors
to be recovered with minimal error by a linear transformation.

A geometric view of the operations performed by the autoassociative network
described above is provided by Figure 2, for the special case of two-dimensional inputs
(d = 2) and one hidden unit (q = 1). In that case, the weight matrix B is of size
2× 1 and may be seen as vector of R2. Let us consider the operations performed for a
fuzzy input vector x̃ = (x̃1, x̃2)

′ with trapezoidal fuzzy components. The hidden unit
computes the scalar product between B and x̃, which amounts to projecting x̃ onto
the line L spanned by B. The hidden unit activity is a fuzzy number ỹ, whose α-cut
for any α ∈]0, 1] is the projection on L of the set (x̃1)α× (x̃2)α, where (x̃1)α and (x̃2)α
denote, respectively, the α-cut of x̃1 and x̃2. The computation of the network outputs
then amounts to projecting back ỹ onto the two initial axes x1 and x2, yielding a
vector z̃ = (z̃1, z̃2)

′ of reconstructed outputs. The learning process consists in the
determination of the weight vector B minimizing a measure of discrepancy E(B)
between the original patterns x̃p and the reconstructed vectors z̃p.

Remark 1 It could be tempting to further generalize the autoassociative network de-
scribed in Section 2.2 by allowing the weights to be fuzzy. Such fuzzy neural networks
have been proposed by various authors in a classification or regression context (see,
e.g., [9, 23, 24]). However, for such networks, the hidden unit activities can no longer
be understood in terms of projection on linear subspaces, and the interpretation of
the representations produced seems extremely difficult, which reduces the interest of
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such an approach for exploratory data analysis. For the same reason, the inclusion of
additional hidden layers and non-linearities, which is, of course, possible and useful
for data compression purposes, has not been considered in this study.

Remark 2 An alternative, and perhaps simpler approach to extending PCA to fuzzy
data could be to (1) defuzzify the data (e.g., by reducing each fuzzy number to its
expected value [21]), (2) perform standard PCA on the real data, and (3) project
the fuzzy data onto the subspace spanned by the first q eigenvectors obtained in the
previous step. This is, indeed, the idea behind the “Centers method” proposed by
Cazes et al. [10] in the case of interval-valued data. This approach, however, will be
shown in Section 4.1 to overestimate the ambiguity in the input data by producing
overly imprecise representations.

Remark 3 In the expression of the error function given by Eq. (12), each error term
e(x̃pk, z̃

p
k) is given the same weight. This convention may be questioned in the case of

highly heterogeneous data, some inputs x̃pk having much more imprecision than others.
In such a case, it might be reasonable to decrease the relative influence of the most
imprecise data items. This may be easily achieved as follows. Let x̃ be a fuzzy number
whose α-cuts are closed intervals denoted by [(x̃)−α ; (x̃)+α ]. Following Delgado [11], let
us define the ambiguity of x̃ as

Amb(x̃) =

∫ 1

0
[(x̃)+α − (x̃)−α ] dα,

and let ϕ : R 7→ [0, 1] be a decreasing function. Then the error function E(B) in Eq.
(12) may be modified as:

Ea(B) =
n∑
p=1

d∑
k=1

ϕ[Amb(x̃pk)]e(x̃
p
k, z̃

p
k). (13)

Note that other measures of the imprecision of a fuzzy number, such as nonspecificity
[26, page 67] could also be used.

3.2 Practical implementation

Let us now assume the components x̃i of each input vector x̃ ∈ F(R)d to be trapezoidal

fuzzy numbers x̃i = (x
(1)
i , x

(2)
i , x

(3)
i , x

(4)
i ) (see Appendix A for a reminder on trapezoidal

fuzzy numbers). This class of fuzzy numbers is known to be closed under the operations
of addition, subtraction, and multiplication by a real number. Consequently, the
outputs z̃k of the network are also trapezoidal fuzzy numbers. The calculation of the
network outputs and the error function in that special case is detailed in the sequel.

Let us first compute the output ỹj of the j-th hidden unit. By definition

ỹj =

d∑
i=1

Bij x̃i = (y
(1)
j , y

(2)
j , y

(3)
j , y

(4)
j ) j = 1, . . . , q. (14)

Using the properties described by Eqs (34-36) in Appendix A, we have

y
(1)
j =

d∑
i=1

Bij>0

Bijx
(1)
i +

d∑
i=1

Bij<0

Bijx
(4)
i , (15)
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y
(2)
j =

d∑
i=1

Bij>0

Bijx
(2)
i +

d∑
i=1

Bij<0

Bijx
(3)
i , (16)

y
(3)
j =

d∑
i=1

Bij>0

Bijx
(3)
i +

d∑
i=1

Bij<0

Bijx
(2)
i , (17)

y
(4)
j =

d∑
i=1

Bij>0

Bijx
(4)
i +

d∑
i=1

Bij<0

Bijx
(1)
i . (18)

Similarly, the k-th output is, by definition:

z̃k =

q∑
j=1

Bkj ỹj = (z
(1)
k , z

(2)
k , z

(3)
k , z

(4)
k ) k = 1, . . . , d, (19)

and we have

z
(1)
k =

q∑
j=1

Bkj>0

Bkjy
(1)
j +

q∑
j=1

Bkj<0

Bkjy
(4)
j , (20)

z
(2)
k =

q∑
j=1

Bkj>0

Bkjy
(2)
j +

q∑
j=1

Bkj<0

Bkjy
(3)
j , (21)

z
(3)
k =

q∑
j=1

Bkj>0

Bkjy
(3)
j +

q∑
j=1

Bkj<0

Bkjy
(2)
j , (22)

z
(4)
k =

q∑
j=1

Bkj>0

Bkjy
(4)
j +

q∑
j=1

Bkj<0

Bkjy
(1)
j . (23)

The above equations can be also formulated using simple matrix algebra. Let B+

and B− denote the positive and negative parts of matrix B:

B+
ij =

{
Bij if Bij > 0
0 otherwise,

(24)

B−ij =

{
Bij if Bij < 0
0 otherwise.

(25)

Let x(`) = (x
(`)
1 , ..., x

(`)
d )

′
denote the d-dimensional vector of the `-th parameters of

the fuzzy numbers in the input layer. In the same way, let y(`) = (y
(`)
1 , ..., y

(`)
d )

′
and

z(`) = (z
(`)
1 , ..., z

(`)
d )

′
denote the d-dimensional vectors of the `-th parameters of the

fuzzy numbers in the hidden layer and the ouput layer. Then, Eqs (15)-(18) can be
written in more compact form as:

y(`) = B+′x(`) +B−
′
x(4−`+1), ` ∈ {1, 2, 3, 4}. (26)
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Similarly, Eqs (20)-(23) can be written as:

z(`) = B+y(`) +B−y(4−`+1), ` ∈ {1, 2, 3, 4}. (27)

The analytical expression of the error function in (12) can be derived by choosing
a suitable metric. Considering each trapezoidal fuzzy number as a point in a four-
dimensional Euclidean space as proposed in [21] and [13], we define the reconstruction
error of the k-th component x̃k by:

e(x̃k, z̃k) =
4∑
`=1

(z
(`)
k − x

(`)
k )2, k = 1, . . . , d, (28)

and

E(B) =
n∑
p=1

d∑
k=1

e(x̃pk, z̃
p
k).

The minimization of E with respect to the weights is done using a gradient descent
procedure. The algorithm for evaluating the derivatives of E with respect to B is
similar to standard backpropagation [34] and is described in Appendix B.

Remark 4 Concerning the complexity of the method, Eqs. (15) to (23) and details
given in Appendix B show that both one propagation through the network and one
iteration of the gradient calculation (backpropagation) can be performed in O(ndq)
operations. This is much less than the standard way of computing PCA (which costs
O(nd2) operations for the computation of the covariance matrix, and O(d3) operations
for diagonalization [6]). Hence, our method seems suitable for processing very large
data sets (alternative efficient procedures are based, e.g. on the EM algorithm [33],
but they have not been extended to fuzzy data). As an indication, for the sensory
data set described in Section 4.2, which involves 252 observations in a five-dimensional
space, a complete run of our algorithm implemented in Matlab takes about 5 seconds
on a PC equipped with a Pentium II processor.

3.3 Correlation between principal components and initial variables

The interpretation of principal components in terms of the original variables is a
fundamental step in the application of PCA to exploratory data analysis. This is
usually achieved by computing the linear correlation coefficients between the initial
variables xi and the principal components yj [25, page 14]. Each principal component
is then interpreted as an aggregation of those original variables with which it has
strong positive or negative correlation. In our case, both the original variables x̃i and
the principal components ỹj are fuzzy, and the notion of correlation coefficient needs
to be extended in this context. A fuzzy correlation coefficient, whose computation is
based on Zadeh’s extension principle, has been recently proposed [29]. Its principle is
given below. Let (xp, yp), p = 1, n denote n pairs of crisp observations. The classical
crisp correlation coefficient between the two series of observations x and y is defined
as

rxy =

∑n
p=1(x

p − x̄)(yp − ȳ)√∑n
p=1(x

p − x̄)2
∑n

p=1(y
p − ȳ)2

. (29)
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Let us now assume that observations consist of n pairs (x̃p, ỹp) of fuzzy numbers,
characterized by their respective membership functions µx̃p and µỹp . Let r̃ denote the
fuzzy correlation between x̃ and ỹ. The extension principle states that

∀r ∈ R µr̃(r) = sup
{x1,...,xn,y1,...,yn/r=rxy}

min
p

(µx̃p(xp) ∧ µỹp(yp)) , (30)

where µr̃ denotes the membership function of r̃, and ∧ denotes the minimum operator.
More precisely, let [(x̃p)−α ; (x̃p)+α ] and [(ỹp)−α ; (ỹp)+α ] denote the closed intervals result-
ing from an α-cut of x̃p and ỹp. Then, each α-cut of r̃ is a closed interval [(r̃)−α ; (r̃)+α ]
whose bounds are respectively found by solving the following pair of non-linear pro-
grams:

(r̃)−α = min
x1,...,xn,y1,...,yn

∑n
p=1(x

p − x̄)(yp − ȳ)√∑n
p=1(x

p − x̄)2
∑n

p=1(y
p − ȳ)2

s.t. (x̃p)−α ≤ xp ≤ (x̃p)+α ∀p,
(ỹp)−α ≤ yp ≤ (ỹp)+α ∀p, (31)

(r̃)+α = max
x1,...,xn,y1,...,yn

∑n
p=1(x

p − x̄)(yp − ȳ)√∑n
p=1(x

p − x̄)2
∑n

p=1(y
p − ȳ)2

s.t. (x̃p)−α ≤ xp ≤ (x̃p)+α ∀p,
(ỹp)−α ≤ yp ≤ (ỹp)+α ∀p. (32)

For a given α-cut, the resolution of (31) and (32) can be done using standard non-
linear programming solvers. Note that, due to the nonlinear relationship between the
observations and the correlation coefficient, even if x̃ and ỹ are trapezoidal fuzzy num-
bers, the fuzzy correlation coefficient is not a trapezoidal fuzzy number. In practice,
the two non-linear programs are solved for a small finite number of α-cuts, providing
a reasonable approximation of r̃.

4 Results

4.1 Simulated data

To illustrate the ability of the proposed method to provide a condensed view of multi-
dimensional data, let us consider the hypothetical data set shown in Table 1, adapted
from [16, page 237]. The data consist in marks obtained by 6 students in mathematics
(M1 and M2) and physics (P1 and P2) during two consecutive terms. Some of these
marks are not precisely known and are represented by intervals or linguistic labels,
resulting in highly heterogeneous data. By associating a membership function to each
linguistic label (see Figure 3), each mark may be represented as a trapezoidal fuzzy
number.

A two-dimensional representation of the data was generated by a two-hidden-unit
autoassociative network (q = 2). The weights of the network are shown in Table 2.
They allow some interpretation of the new features: the first axis is linked positively
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to the attainments in mathematics and the second axis is linked essentially to P1.
This is confirmed by the fuzzy correlation coefficients shown in Figure 5. The first
axis is clearly correlated with M1 and M2. For the second axis, the correlations are
less clear, because of the large imprecision of Tom’s attainment in P1. Figure 4 shows
a plot of the data along the two axes. Several important characteristics of the original
data are recovered in this reduced representation space. For example, Jack, with crisp
and rather bad marks, is represented as a crisp object in the lower part of the figure.
The wide spread of Tom along the second dimension is explained by the fact that one
of its mark in physics is unknown. Bob is very precisely situated on the mathematics
axis and less precisely on the other.

A display of the input and reconstructed data is shown in Figure 6. Such a display
reveals which aspects of the original data are well preserved in the reduced represen-
tation space, and which are not: for instance, Bob’s P1 value is well reconstructed,
whereas Jack’s P2 value is not. The total reconstruction errors e(x̃p, z̃p) for the six
students are reported in Table 3. It may be seen that Tom has the highest reconstruc-
tion error, which means that it may not be well represented in the two-dimensional
display of Figure 4.

For comparison purpose, the projection of the fuzzy data on the two first axis of
a standard PCA performed on the defuzzified data (centroids), is shown in Figure 7.
Although some aspects of the initial information are also well recovered, one can see
that the representation is much more confused and that the discrimination between
the students is not as good as the one obtained with the autoassociative network.

The last experiment which is reported here aims at illustrating the advantages, in
some cases, of the modified error function Ea given in Eq. (13). Let us assume that the
marks of an additional student, Emma, are available in the following form: M1=10,
M2=“unknown”, P1=10, P2=“unknown”. As Emma seems to be an average student
and only partial information about her attainments is available, her inclusion in the
database can reasonably be required to have little influence on the representation.
Two representations were generated using both error functions E and Ea defined,
respectively, by Eqs (12) and (13). The weights between the principal axes and the
initial variables are shown in Table 4. As expected, the use of error function Ea
prevents the determination of the principal axes from being too much influenced by
Emma’s highly imprecise marks in P2 and M2. The projections of the students are
given in Figure 8, in which a greater stability of the second representation can be
observed. Criterion Ea therefore appears to be a good alternative to the standard
error function E when some items in the database have highly imprecise features and
are likely to have an excessive influence on the constructed representation.

4.2 Sensory evaluation data

The proposed method was applied to sensory evaluation data as part of a research
project performed in collaboration with a French car manufacturer. The entities under
study were noises recorded inside several vehicles. The data consisted in scores given
by 12 judges describing their perception of 21 sounds according to 5 attributes. Each
sound was presented three times to each subject, yielding a four-way data matrix:
sounds × attributes × subjects × replications. The aim of this work was to study
the variability of the responses among the panelists and the variability of each subject
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during repetitions.
To this end, each of the 21×12 pairs (sound, subject) was considered as an object

described by five fuzzy attributes. For each attribute, the three scores available from
replications were converted into a triangular fuzzy number (which is a special case of
trapezoidal fuzzy number with x(2) = x(3)) defined by the minimum, maximum and
median value. We thus obtained a set of 12 × 21 vectors composed of 5 triangular
fuzzy numbers. An autoassociative network with two hidden units (q = 2) was used
to visualize the data. As the imprecision was quite homogeneous in the data, the
standard error function E was chosen for the optimization process. The weights
obtained are presented in Table 5, and the fuzzy correlation coefficients are shown
in Figure 11. They show that the two axes are essentially linked to the second and
fourth attributes, respectively.

A first part of the results is shown in Figure 9. For clarity, the responses of the
twelve subjects are represented on separate figures for four different sounds. These
figures exhibit four typical behaviors of the panelist group. Sound 1 is perceived
in a similar way by all the panelists with a very low variability among replications.
Judgments for sound 5 are also in good agreement, with a somewhat larger variability
in replications. Sound 16 exhibits the same behavior, except for one judge who clearly
disagrees with the majority of the group. Sound 21 seems to be difficult to score
with a high variability of the responses among panelists and during the replications.
Note that the simultaneous representation of the cores and 0.5-cuts of the projections
provides useful information regarding the distribution of the assessor responses during
replications: for example, the representation will be very different for a judge having
answered (0,0,10) for a given sound and a given attribute and another one having
answered (0,5,10).

Figure 10 shows a display of the responses given by two assessors. Two extreme
cases of panelist behavior are presented. Assessor 4 seems to score the different sounds
with a low amplitude in his marks, and with a good repeatability. On the contrary,
assessor 12 uses a larger range of marks but with a higher variability among replica-
tions.

By carefully studying the different representations, it is thus possible to answer
some questions that typically arise in sensory analysis such as: Are the products well
discriminated by the attributes ? For which products is there an overall agreement
(or disagreement) among panelists ? Which assessors can be considered as reliable or
not ? etc.

5 Conclusions

Fuzzy data naturally arise in a variety of situations in which the uncertainty or im-
precision of observations cannot be ignored. For instance, in the sensory evaluation
application described in the previous section, the spread of the responses given by
each panelist is as important as their central value, and new exploratory data anal-
ysis techniques need to be developed to take into account this additional complexity
in observations. The technique presented in this paper is an extension of principal
component analysis allowing the extraction of a limited number of relevant features
from fuzzy data. This method exploits recent results regarding the ability of linear
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autoassociative neural networks to perform information compression in just the same
way as PCA, without explicit matrix diagonalization. Experiments with artificial and
real data have demonstrated the ability of our method to provide concise descriptions
of complex fuzzy data, reflecting not only their central tendency, but also their impre-
cision. This work is only a first step towards a more systematic application of neural
network and fuzzy logic techniques to the analysis of complex data.
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A Parametric representation of fuzzy data and interval
arithmetics

A fuzzy number is defined as a normal fuzzy subset x̃ of R with compact support, and
whose α-cuts are closed intervals [16]. Dubois and Prade make a distinction between
fuzzy intervals and fuzzy numbers depending on the multiplicity or uniqueness of modal
values. We use the term “fuzzy number” in its most general sense in this paper. A
fuzzy number may be viewed as an elastic constraint acting on a certain variable
which is only known to lie “around” a certain value. It generalizes both concepts of
real number and closed interval. For the sake of computational efficiency and ease of
data manipulation, a special class of fuzzy numbers, called trapezoidal fuzzy numbers,
is one of the most commonly used. These numbers are defined as follows:

Definition 1
Let x(1), x(2), x(3) and x(4) be four real numbers such that x(1) < x(2) ≤ x(3) < x(4).
The fuzzy quantity x̃ defined by the following membership function:

µx̃(u) =



0 if u ≤ x(1) or u ≥ x(4)
u− x(1)

x(2) − x(1)
if x(1) ≤ u ≤ x(2)

1 if x(2) ≤ u ≤ x(3)
x(4) − u
x(4) − x(3)

if x(3) ≤ u ≤ x(4)

(33)

is called a trapezoidal fuzzy number and is denoted by x̃ = (x(1), x(2), x(3), x(4)).

Trapezoidal fuzzy numbers belong to a wider family of fuzzy numbers called LL-
fuzzy numbers [16] which will not be described here.

An attractive characteristic of the class of trapezoidal fuzzy numbers is that it is
closed with respect to the operations of addition, subtraction, and multiplication by
a real (this is also true for LL-numbers). More precisely, let x̃ = (x(1), x(2), x(3), x(4))
and ỹ = (y(1), y(2), y(3), y(4)) be two trapezoidal fuzzy numbers. Then, it can be shown
[16] that:

x̃+ ỹ = (x(1) + y(1), x(2) + y(2), x(3) + y(3), x(4) + y(4)) (34)

x̃− ỹ = (x(1) − y(4), x(2) − y(3), x(3) − y(2), x(4) − y(1)) (35)

∀a ∈ R, ax̃ =

{
(ax(1), ax(2), ax(3), ax(4)) if a ≥ 0

(ax(4), ax(3), ax(2), ax(1)) if a < 0
(36)

By convention, a real number x will be represented by (x, x, x, x) and a closed
interval [a, b] by (a, a, b, b), which allows manipulation of both imprecise and crisp
data in the same framework.
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B Evaluation of error function derivatives

Popularized by Rumelhart, Hinton and Williams [34], the backpropagation algorithm
is an efficient way to compute the derivatives of the error function of a multilayered
network with respect to the weights. We give in this appendix the details of the
computations involved when applied to fuzzy PCA. Let E denote the error function
defined as:

E =
n∑
p=1

e(x̃p, z̃p).

First, we note that the derivatives of E are simply the sum of the derivatives over
all input vectors in the data set. To keep clear notations, we omit the superscript
p from the input, hidden and output variables. Each input x̃ (resp. output z̃) is

a d-dimensional vector of trapezoidal fuzzy numbers x̃i = (x
(1)
i , x

(2)
i , x

(3)
i , x

(4)
i ) (resp.

z̃i = (z
(1)
k , z

(2)
k , z

(3)
k , z

(4)
k )). We concentrate on the derivatives of the error e(x̃, z̃),

defined as:

e(x̃, z̃) =
4∑
`=1

d∑
k=1

(z
(`)
k − x

(`)
k )2 =

4∑
`=1

e(`),

with

e(`) =
d∑

k=1

(z
(`)
k − x

(`)
k )2.

By construction, the first layer of weights in our model is equal to the second layer, so
that a weight appears twice in the network: in the first layer for connecting the input
unit i to the hidden unit j and in the second layer for connecting the hidden unit j to
the output unit i. A small modification of standard backpropagation is needed in order
to take into account the fact that same weights are common to several connections.
A classical way to deal with these so-called shared weights, is to compute individually
the derivatives for each weight in the two layers of the network, and then to sum up
the two derivatives [34, p. 355]. To compute independently the gradient in the first
and in the second layer, let us explicitely introduce two notations, Ḃ and B̈, according
to whether one considers the weights from the input layer to the hidden layer (Ḃ) and
the weights from the hidden layer to the output layer (B̈), keeping in mind that they
both refer to the same matrix B.

First, let us recall, with these notations, the equations of propagation in the net-
work:

y
(`)
j =

d∑
i=1

Ḃ+
ijx

(`)
i +

d∑
i=1

Ḃ−ijx
(4−`+1)
i j = 1, . . . , q, ` = 1, . . . , 4. (37)

z
(`)
k =

q∑
j=1

B̈+
kjy

(`)
j +

q∑
i=1

B̈−kjy
(4−`+1)
j k = 1, . . . , d, ` = 1, . . . , 4. (38)

Gradients in the output layer

∂e(x̃, z̃)

∂B̈kj
=

4∑
`=1

∂e(`)

∂B̈kj
k = 1, . . . , d, j = 1, . . . , q (39)
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∂e(`)

∂B̈kj
=
∂e(`)

∂z
(`)
k

∂z
(`)
k

∂B̈kj
k = 1, . . . , d, j = 1, . . . , q, ` = 1, . . . , 4. (40)

Let

δ
(`)
k ,

∂e(`)

∂z
(`)
k

= 2(z
(`)
k − x

(`)
k ) k = 1, . . . , d, ` = 1, . . . , 4. (41)

Using (41) and (38), one obtains the expressions of the partial derivatives with respect
to the second-layer weights in the following form:

∂e(`)

∂B̈kj
= δ

(`)
k

(
H(B̈kj)y

(`)
j + [1−H(B̈kj)]y

(4−`+1)
j

)
k = 1, . . . , d, j = 1, . . . , q, ` = 1, . . . , 4, (42)

where H is the Heaviside function defined as H(u) = 1 if u ≥ 0 and H(u) = 0
otherwise.

Gradients in the input layer

∂e(x̃, z̃)

∂Ḃij
=

4∑
`=1

∂e(`)

∂Ḃij
i = 1, . . . , d, j = 1, . . . , q. (43)

∂e(`)

∂Ḃij
=
∂e(`)

∂y
(`)
j

∂y
(`)
j

∂Ḃij
+

∂e(`)

∂y
(4−`+1)
j

∂y
(4−`+1)
j

∂Ḃij

i = 1, . . . , d, j = 1, . . . , q, ` = 1, . . . , 4. (44)

Let 
ζ
(`)
j ,

∂e(`)

∂y
(`)
j

η
(`)
j ,

∂e(`)

∂y
(4−`+1)
j

j = 1, . . . , q, ` = 1, . . . , 4. (45)

Using (37) and (45), Eq. (44) can thus be rewritten as:

∂e(`)

∂Ḃij
= ζ

(`)
j

(
H(Ḃij)x

(`)
i + [1−H(Ḃij)]x

(4−`+1)
i

)
+

η
(`)
j

(
H(Ḃij)x

(4−`+1)
i + [1−H(Ḃij)]x

(`)
i

)
. (46)

The quantities ζ
(`)
j and η

(`)
j , computed in the hidden layer, are similar in their

definition to the δ
(`)
k computed in the output layer. Their computation, which is not

as straigthforward, makes use of the chain rule for partial derivatives:

ζ
(`)
j =

d∑
k=1

∂e(`)

∂z
(`)
k

∂z
(`)
k

∂y
(`)
j

=

d∑
k=1

δ
(`)
k B̈+

kj j = 1, . . . , q, ` = 1, . . . , 4. (47)
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One can see that ζ
(`)
j is a weighted sum of the δ

(`)
k of the output units. Because

the δ
(`)
k ’s must be computed before the ζ

(`)
j , the process starts from the output layer

and works backward to the input layer, hence the name of backpropagation. Thanks
to this particular ordering of the computations, the complexity of the algorithm is
limited to O(dq), which makes the backpropagation very attractive.

Similarly, we can compute:

η
(`)
j =

d∑
k=1

∂e(`)

∂z
(`)
k

∂z
(`)
k

∂y
(4−`+1)
j

=

d∑
k=1

δ
(`)
k B̈−kj j = 1, . . . , q, ` = 1, . . . , 4. (48)

Finally, coming back to our first notation:

∂e(`)

∂Bij
=
∂e(`)

∂Ḃij
+
∂e(`)

∂B̈ij
i = 1, . . . , d, j = 1, . . . , q, ` = 1, . . . , 4. (49)
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Tables

Table 1: Student dataset.

M1 M2 P1 P2

Tom 15 fairly good unknown [14,16]
David 9 good fairly good 10
Bob 6 [10,11] [13,20] good
Jane fairly good very good 19 [10,12]
Joe very bad fairly bad [10,14] [14]
Jack 1 [4,6] 9 [6,9]

Table 2: Connection weights Bij between the two principal axes and the four original
variables, for the Student dataset.

axis 1 axis 2

M1 0.80 -0.07
M2 0.57 0.17
P1 0.00 0.95
P2 0.08 0.13

Table 3: Reconstruction errors for the artificial data.

Tom David Bob Jane Joe Jack

20.97 13.00 10.93 10.66 7.65 14.22
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Table 4: Connection weights Bij between the two principal axes and the four original
variables, for the augmented Student dataset, with error functions E (columns 1 and
2) and Ea (columns 3 and 4).

E Ea
axis 1 axis 2 axis 1 axis 2

M1 0.47 0.00 0.83 0.00
M2 0.73 0.06 0.45 0.19
P1 0.00 0.98 0.00 0.90
P2 0.46 -0.08 0.00 0.05

Table 5: Connection weights Bij between the two principal axes and the five original
variables, for the sensory evaluation dataset

axis 1 axis 2

x1 -0.17 -0.16
x2 0.92 0.00
x3 0.32 -0.17
x4 0.01 0.97
x5 -0.13 -0.01
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Figures

A B

d input units q hidden units d output units

Figure 1: Architecture of the autoassociative network.
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Figure 2: Geometric interpretation of fuzzy PCA in two dimensions (d = 2) with one
hidden unit (q = 1). A vector of fuzzy numbers x̃ = (x̃1, x̃2)

′ is projected onto the line
L directed by the vector B of weights connecting the hidden unit to the two output
units, yielding a fuzzy number ỹ = (y(1), y(2), y(3), y(4)) on L. This fuzzy number is
then projected back on the two initial axes x1 and x2, yielding a reconstructed output
vector z̃ = (z̃1, z̃2)

′. The weight vector B is determined to minimize a measure of
discrepancy between x̃ and z̃.
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Figure 3: Representation of fuzzy marks.
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Figure 4: Two-dimensional projection of students dataset using a neural network
(supports, cores, and 0.5-cuts).
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Figure 5: Fuzzy correlation coefficients between the two principal axes and the four
original variables for the Students dataset.
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Figure 6: Students dataset: input data (solid lines) and reconstructed data (dashed
lines).
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Figure 7: Two-dimensional projection of students dataset using Cazes’ centers method
[10] (supports, cores, and 0.5-cuts).
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Figure 8: Two-dimensional projection of students dataset (supports, cores, and 0.5-
cuts), using error functions E (top) and Ea (bottom).
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Figure 9: Examples of two-dimensional projections of sounds. Each picture shows
how a given sound is perceived by the twelve assessors. Solid lines and plain circles
represent, respectively, the 0.5-cuts and cores of the projections. Thin points represent
the centroid projections for the other pairs (sound,assessor).
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Figure 10: Examples of two-dimensional projections of sounds. Each picture shows
how a given assessor perceives the twenty one sounds. Solid lines and plain circles
represent, respectively, the 0.5-cuts and cores of the projections. Thin points represent
the centroid projections for the other pairs (sound,assessor).
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Figure 11: Fuzzy correlation coefficients between the two principal axes and the five
original variables (sensory evaluation data).
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