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Abstract

A category of learning problems is considered, in which the class membership of train-
ing patterns is assessed by an expert and encoded in the form of a possibility dis-
tribution. Each example i thus consists in a feature vector x' and a possibilistic
label (u},...,ul), where uj, denotes the possibility of that example belonging to class
k. This problem is tackled in the framework of Evidence Theory. The evidential
distance-based classifier previously introduced by one of the authors is extended to
handle possibilistic labeling of training data. Two approaches are proposed, based
either on the transformation of each possibility distribution into a consonant belief
function, or on the use of generalized belief structures with fuzzy focal elements. In
each case, a belief function modeling the expert’s beliefs concerning the class member-
ship of each new pattern is obtained. This information may then be either interpreted
by a human operator to support decision-making, or automatically processed to yield a
final class assignment through the computation of pignistic probabilities. Experiments
with synthetic and real data demonstrate the ability of both classification schemes to
make effective use of possibilistic labels as training information.

Keywords: Evidence Theory, Belief Functions, Pattern Recognition, Fuzzy Statistics
and Data Analysis, Possibility Theory.



1 Introduction

In the conventional approach to pattern classification, a decision rule, or classifier,
is typically generated from a set of training samples whose membership to each of ¢
classes is unambiguously defined by hard class labels of the form:

u' £ (ul, ... ug) € {0, 1)

where u}c = 1 if pattern ¢ belongs to class k and u}g = 0 otherwise.

In certain applications, however, such hard labels do not accurately reflect the
nature of the available information. For example, it sometimes occurs that pattern
categories are ill-defined and best represented as fuzzy sets of patterns [2]. Each
training vector x° is then assigned a fuzzy label u’ € [0,1]¢, whose components are
the grades of membership of that pattern to each class. Each membership value u}g is
generally interpreted as reflecting the typicality of pattern x* with regard to class k,
as measured by its similarity to certain prototypes. Such labels are often assumed to
define a fuzzy partition [1, 14] of the training set, i.e., it is assumed that

d up=1 Vi (1)
k=1

In particular, the above property naturally arises when class labels are generated by
some clustering algorithm such as the fuzzy c-means [2].

The problem considered in this paper is related to, but different from the previ-
ous one. In the type of applications envisaged here, classes are well-defined and each
training pattern has full membership to a single class. However, this true classification
1s only partially known, for lack of complete and accurate information regarding the
training set. Such a situation typically arises when learning examples are labeled a
posteriori by one or several experts, whose subjective evaluation of pattern categories
may be tainted with imprecision and uncertainty. Consider, for instance, the prob-
lem of recognizing certain transient phenomena (such as, e.g., K-complexes or delta
waves) in electroencephalogram (EEG) data [15, 16]. Such phenomena are usually
very difficult to detect because they may have a variety of shapes and are not always
distinct from EEG background activity. For that reason, even a trained physician
may not always be able to recognize certain classes of patterns with full certainty.
He or she may, however, be able to assess the “likelihood”, or “possibility”, that a
certain phenomenon is present in the data. An alternative approach to obtain such an
assessment is to collect the opinions of several experts, and consider for each example
the empirical distribution of expert opinions about the its class membership.

In this paper, we propose to adopt the formalism of Possibility Theory to represent
such uncertainty about the class membership of training patterns. Each pattern will
then be assumed to be assigned a possibilistic labels of the form

u' & (ul,. .., ul) € 0,1 (2)

where u}C represents the degree of possibility that pattern ¢ belongs to class k. Vector
u’ thus defines a possibility distribution over the set €2 of classes or, equivalently,
the fuzzy subset of “possible” classes for pattern i. In most cases, it is reasonable



to assume that the membership of each pattern to at least one class is completely
possible, which translates to the condition

m]?xu}; =1 ,Vi.

However, this condition may be relaxed under the open-world assumption, i.e., when

it is recognized that some classes may have been omitted from the reference set €2, so

that a pattern may actually belong to none of the enumerated categories.
Possibilistic labels may be obtained in several different ways, including:

e direct elicitation from an expert, who is asked to quantify by a real number
between 0 and 1 the degree of possibility that case ¢ belongs to each of the ¢
classes, or

e from an empirical distribution of expert opinions, using possibilistic histograms
[7]. If ¢} denotes the number of experts (out of q) who assigned pattern i to
class k, we have, according to Ref. [7] :

A
uj, = gzmm(q}m q;)- 3)
j=1

A simpler, but related problem was addressed in [3, 4, 40], in which each training
pattern was assumed to be labeled by a crisp set of categories. A solution to this
problem was proposed based on the Dempster-Shafer theory of evidence [17, 27]. A
classification scheme was described, in which each training pattern (with crisp set-
valued class label) is treated as a piece of evidence and, as such, induces a belief
function regarding the class membership of each new pattern x to be classified. The
evidence of training patterns in a neighborhood of x is then pooled by means of the
conjunctive sum operation, resulting in a final belief function which can be used to
support decision making based on arbitrary utilities.

In this paper, the above classification scheme is extended to allow one’s knowledge
regarding the class of training patterns to be described by possibilistic class labels
such as (2). Two directions will be successively investigated. In the first approach,
the close connection between fuzzy sets, possibility distributions and consonant belief
structures [6] is exploited to transform each fuzzy set

Eié{ﬁ...,%} (4)

containing the “possible classes” for training pattern x’ into a consonant belief struc-
ture whose focal elements are the a-cuts of Li. The second approach uses a generaliza-
tion of the Dempster-Shafer theory to fuzzy sets [39, 30, 35], allowing to manipulate
belief structures with fuzzy focal elements.

The rest of this paper is organized as follows. First of all, the background on
standard (crisp) Evidence Theory, as well as our approach to evidential pattern clas-
sification are briefly recalled in Section 2. Sections 3 and 4 then present the two
extensions of this method to possibilistic class labels. Numerical examples are then
presented in Section 5, and Section 6 concludes the paper.



2 Background

2.1 Evidence theory

This aim of this section is to clarify the notation and terminology of Evidence Theory,
as used in the rest of the paper. The interested reader is referred to, e.g., [17, 22, 27, 26,
33] for mathematical developments and in-depth discussion on possible interpretations
of the theory. The subjectivist, non probabilistic view of Smets’ Transferable Belief
Model (TBM) [27, 26] will be adopted here.

Let € denote a finite set of possible answers to a certain question, and y a variable
describing the correct (but unknown) answer. The beliefs held at a certain time by a
rational agent, regarding the value taken by y, are assumed to be properly described
by a belief structure (BS), also called a basic belief assignment or a mass function,
defined as a function m from 2 to [0, 1], verifying:

> m(A) =1 (5)

ACQ

The subsets A of Q such that m(A) > 0 are called the focal elements of m. A belief
structure m such that m(@) = 0 is said to be normal. This condition need not be
imposed if one interprets the mass m(()) as quantifying one’s belief that y & Q (open-
world assumption, [20]). However, if €2 is assumed to be exhaustive (closed-world
assumption), then this condition should be imposed, which is the situation initially
considered by Shafer [17].

Assuming one’s state of belief to be represented by m, it is possible to measure
one’s total belief in the proposition w € A, for any A C €2, by a number, called the
credibility of A, and defined as:

bel(4) £ >~ m(B). (6)

P#ABCA

Mathematically, function bel : 2 — [0, 1], called a belief function, may be shown to
be a Choquet capacity of order infinite [17]. The use of such non additive measures for
representing subjective degrees of belief has recently received an axiomatic justification
[24]. Closely related to the notion of belief function is that of plausibility function,
defined for each A C () as:

pl(4) & ) m(B) (7)

BNA#D
= bel(Q) — bel(A) (8)

where A denotes the complement of A. The quantity pl(4) may be interpreted as
the degree of belief that could potentially be given to A, if further evidence became
available [27]. The three functions m, bel and pl are in one-to-one correspondence,
and actually constitute three facets of the same information [17].

The dynamic part of the Dempster-Shafer model indicates how pieces of evidence
coming from two distinct sources should be combined. Let m; and ms denote the
BSs induced by each of these pieces of evidence considered individually. Then, if



both sources are known to be reliable, m; and ms may be combined conjunctively by
defining a new BS m1 N'my as:

(minmg)(A) 2 Y my(B)my(C) VACQ. (9)
BNC=A

Note that this operation may produce a subnormal BS, i.e., it is possible to have
(m1Nmg)(0) > 0. Under the closed-world assumption, some kind of normalization thus
has to be performed. The Dempster normalization procedure converts a subnormal
BS m into a normal BS m* defined by:

m(A)

m) 2 Tom@ TA70
0 if A=90.

(10)

The conjunctive sum operation followed by Dempster normalization is the orthogo-
nal sum operation (also called Demspter’s rule of combination) initially studied by
Shafer [17]. Note that other operations on BS’s may be defined, based on different
assumptions regarding the reliability of the information sources [23].

A final issue of fundamental importance for pattern recognition applications of
Evidence Theory is that of decision analysis [4]. Several approaches to this problem
have been proposed, based, e.g., on upper and lower expected utilities [4] or on a
“pessimism index” such as the Hurwicz criterion [13, 28]. Following the TBM, the
approach adopted in this paper is based on the concept of pignistic transformation
[21]: for decision making purposes, a belief function (representing the agent’s beliefs)
is transformed into a pignistic probability function, defined for all A C ) as:

BetP(4) 2 3 m*(B) ’AQ‘B’, (11)
BCQ,B#£0

where m* is the normalized form of m according to the Dempster procedure (10). In
a decision problem involving a set of actions whose consequences are quantified by
utilities, the model then prescribes the action entailing the maximum expected utility,
relative to the pignistic probability function.

2.2 FEvidential classification

This section presents the principles of the evidential distance-based classifier (EDC)
introduced in [3] and refined in [4, 40]. The generalization of this method to possi-
bilistic class labels, which is the main topic of this paper, will be considered at length
in Section 3 and 4.

We consider a classification problem involving ¢ classes. The set of classes is
denoted 2 = {1,...,c}. The available information is assumed to consist in a training
set 7 composed of n examples of the form e! £ (x,u’), where x’ denotes a vector
in R¢ describing some entity of interest, and u’ a vector of binary indicator variables
indicating possible classes for that entity, i.e., “2; = 1 if it is possible that entity ¢
belongs to class k, and “2 = 0 otherwise. We denote by L’ the set of possible classes
for pattern ¢, i.e.,

L' ={k e Qui =1}.



It is a crisp subset of £ known to contain the true class of pattern x’.

Let us now consider a new vector x, which we wish to classify, based on the
training set information. Each of the stored examples e’ may be regarded as a piece
of evidence inducing certain beliefs regarding the class of x. Obviously, if one learns
that x* is close to x in feature space, and L' = A, it becomes more likely that the
class of x is also contained in A. In the framework of evidence theory, such a belief
may be modeled by a BS m(-|e?), focused on A and € (and on no other subset, since
the closeness of x to x* does not point to any other hypothesis). Furthermore, the
mass of belief assigned to A can reasonably be assumed to be a decreasing function of
the dissimilarity (according to some relevant measure §) between x and x*. We then
arrive at the following expression for m(-|e):

Po[6(x,x*)] if A= 1Lt
m(Ale’) £ { 1—gp[d(x,x")] if A=Q (12)
0 otherwise

where ¢y is a decreasing function, depending on some parameter 6, verifying ¢y(0) < 1
and lims_,o () = 0 [3]. When 6 denotes the Euclidean distance, a rational choice
for ¢y was shown in [5] to be:

¢9(8) = 010702 (13)

where 0 = (04, 02)t is a two-dimensional parameter vector verifying 0 < 6; < 1 and
0y > 0.

Regarding the n learning examples as “distinct” items of evidence, in the sense of
Shafer [17], the corresponding BSs should be combined conjunctively, leading to the
following global BS:

m2m(-le)n...0m(-|e"). (14)

Function m thus provides a description of one’s belief regarding the class of x, after
considering the whole training set. Note that, for an example e’ with unknown classifi-
cation, m(-|e’) is the vacuous BS, and has therefore no influence of m, as it should be.
The computational efficiency of this procedure may be significantly improved by tak-
ing into account only the K nearest neighbors of x in feature space (or, alternatively,
the training patterns situated within a certain distance from x) [3].

Finally, a decision regarding the assignment of x to a class, or its rejection, may
be made by considering the pignistic probability function BetP induced by m, and
applying Bayes decision theory. In one of the simplest cases, the ¢ + 1 actions to
be considered are the assignment oy to class k, k = 1,...,¢, and rejection «ag [4].
Assuming {0, 1} losses, and denoting by Ao the fixed rejection loss, the risks are then:

R(ag) = 1-—BetP({k}), k=1,...,c
R(O[o) = )\0,
leading to the assignment to the class with highest pignistic probability, provided this

probability exceeds 1 — Ag. This classification scheme is illustrated by the following
example.



ExAMPLE 1 To illustrate the above classification scheme, let us consider the follow-
ing simple three-class problem, in which the training set consists of only three one-
dimensional patterns 2! = 0, 22 = 2 and 2% = 3 with class labels:

ut = (1,1,0)
w? = (0,1,1)
wd = (0,0,1).

Therefore, example 1 is known to belong to class 1 or 2, example 2 belongs to class
2 or 3, whereas example 3 belongs for sure to class 3. Leaving aside the parameter
determination problem for the moment, let us assume that parameter 6 has been set
to the following value

9 =(0.9,1).

What is our belief concerning the class membership of a new sample x = 1.2, and
what would be our decision regarding the assignment of that pattern to a class 7 The
answers to these questions are shown in Table 1. Belief structures m(:|e?),i = 1,2,3
induced by each of the three learning samples are computed using (12) and (13); the
conjunctive sum (14) of these BS results in a global BS m, which after normalization
yields a pignistic probability function BetP computed from (11). Assuming {0,1}
losses [4], a decision rule without rejection would therefore assign that pattern to class
2. The pignistic probabilities computed for the three classes are shown as a function
of x in Figure 1. O

The whole classification scheme described above depends on parameter 6. In [40],
it was proposed to learn this parameter from the data by minimizing an error function.
In the special case where all class labels are singletons (i.e., the class membership of
all training patterns is known with certainty), this error function was defined as the
mean squared error the between pignistic probabilities and the 0-1 class membership
indicator variables :

Ews(6) £ 33 [BerPO((k) ~ ] (15)

i=1 k=1

where u} € {0,1} (ul = 1 if example i belongs to class k, and ui = 0 otherwise), and
BetP® is the pignistic probability function computed for example 7, using all other
training patterns. Detailed numerical experiments, presented in [40], demonstrated
the very good performance of the optimized evidential classification rule, as compared
to several other methods such as the voting, distance-weighted and fuzzy k-NN rules.

In the more general case of arbitrary crisp class labels, however, the above error
criterion cannot be blindly generalized for the following reason. Assume that we have
initially a training set of size n, and a new example e"t! = (x"*1 L"*1) is added, with
L™ = Q, and consequently qu =1 for all k£ € {1,...,c}. Its class membership
being totally unknown, such a pattern obviously contains no useful information for
the classification of other patterns. However, its addition to the training set modifies
the error function (15), and hence the optimal parameter value.



To correct this defect of the mean squared error in the case of arbitrary class labels,
we introduce the following new error function:

E(0) 2 n— zn: BetP®) (LY. (16)
i=1

This criterion has the following two desirable properties:

e the addition of a new pattern e"*! with unknown class label (L"T! = ) leaves
E(0) unchanged, and therefore does not affect the optimal parameter value;

e F(0) is equal to the number of misclassifications if the class labels L are single-
tons and BetP® ({k}) € {0,1} for all i and k; E(A)/n is then the leave-one-out
error rate, which makes F() easy to interpret in the general case.

3 Generalization based on consonant BS’s

In this and the following section, we tackle a more general class of learning problems,
in which training patterns are assigned possibilistic class labels. Each training example
will be assumed to be of the form

e 2 (x'u) (17)

where u’ is a vector of continuous variables in [0, 1], indicating the degrees of possibility
(measured on a continuous scale) that pattern i belongs to each of ¢ classes. The
corresponding set of possible classes for pattern i is therefore a fuzzy subset L? of (,
defined by (4). As explained in Section 1, possibilistic class labels may be obtained
by direct elicitation from experts (e.g., by asking such questions as: “What is the
degree of possibility that pattern i belongs to class k£7”), or they may be computed
from multiple expert opinions using (3).

In this section, it is proposed to transform each possibilistic label u’ into a BS m?,
and to generalize (12) accordingly. This approach is based on the connection between
the concepts of possibility and belief measures, as explained in the sequel.

3.1 BS induced by a fuzzy set

Let I be a fuzzy subset of a referential 2, and 7 the corresponding possibility distri-
bution [38]. These two entities are related by the following equalities:

(W) = F(w) YweQ

where F (w) denotes the degree of membership of w to F. FEach number 7(w) is
interpreted as a degree of possibility that y (the variable of interest) is equal w, based
on fuzzy proposition “y is F”. The associated possibility measure II is then defined
for any arbitrary crisp subset A of €2 as:

I(A) = max m(w),



while the corresponding necessity measure N is given by [10, 9]:
N(A) =T1(Q) — II(A).

As pointed out by Dubois and Prade [6], N is formally identical to what Shafer [17]
called a consonant belief function, i.e., it is a belief function with nested focal elements,
II being the associated plausibility measure. The focal elements of N are the a-cuts of
F, and the corresponding belief structure mp is defined as follows. Let 71 > ... > 7,
be the distinct values taken by 7, arranged in decreasing order, and w41 = 0 by
convention. Let A; denote the m;-cut of F'. Then, we have, for any non-empty subset

A of :

_ . T — Ti+1 ifA:Ai,izl,...,T
mp(A) = { 0 otherwise (18)

Note that

Z mz(A) = m1.

ACQ,A#D

Hence, a subnormal fuzzy set F induces a subnormal BS m 7» with

mg(@) =1 — 7.

EXAMPLE 2 Let Q ={1,2,3,4}, and F= {OTI, %, %, %}. Application of the above
formula leads to:
mz({3}) = 0.9-05=04
mz({2,3}) = 05-02=0.3

mz({2,3,4}) = 02-01=0.1
mﬁ(Q) = 0.1
mz) = 1-09=0.1
Note that a subnormal BS is obtained (mz() > 0), as a result of the subnormality
of F. O

3.2 Application

The above approach to the construction of a consonant BS from a fuzzy set allows to
reformulate each learning example of the form & = (x',L') as & = (x',m"), where
mi = my; is the consonant BS induced by Li. This BS may be interpreted as quan-
tifying one’s belief regarding the class of the entity described by vector x*. This
method of handling possibilistic labels will later be referred to as EDCP-I (evidential
distance-based classifier with possibilistic class labels, method I).

Let x be a feature vector describing a new entity to be classified, and let us first
assume that x = x*. Then, if one is asked to quantity one’s belief regarding the class

of x, based on information €* alone, it is natural to write:

m(:[e’) = m’,

i.e., one should hold the same beliefs regarding the class membership of two entities
with exactly the same description. In the more general situation in which x # x°,



the information brought by €' should be regarded as less relevant as the dissimilarity
between vectors x and x’ increases. This may be modeled by discounting m', the
discount rate « being an increasing function of the distance between the two vectors.
Setting

a=1-—¢gld(x,x")],

where, as before, § is a dissimilarity measure and ¢y a decreasing function taking
valued between 0 and 1, we than have:

Pp[0(x, x")|m’ (A) if A#Q

m(Ale') £ { (1= o6 (x,x)]) Y prgmi(B) if A=Q ° (19)

which may be regarded as a generalization of (12) if the set-valued class label L? with
L' = A is interpreted as a BS m® such that m*(A) = 1.

EXAMPLE 3 Let us return to the simple classification problem of Example 1, but let
us now assume the class labels of patterns z!, 22 and 23 to be

u' = (1,0.8,0.1)
w? = (0.1,1,0.8)
w? = (0,0.2,1).

These labels are interpreted as describing possibility distributions: for instance, it is
completely possible that pattern x! belongs to class 1 (uj = 1), whereas the degrees
of possibility that it belongs to classes 2 and 3 are 0.8 and 0.1, respectively. Table 2
shows

e the corresponding BS’s m*,i =1,2,3,
e the induced BS’s m(:|¢%) computed from (19) for z = 1.2,
e the conjunctive sum m = (o_, m(-|¢"),
e the final pignistic probability function BetP.
The pignistic probabilities are represented as a function of = in Figure 2. [l

As before, parameter 6 should be determined by minimizing an error function. For
that purpose, the criterion defined by (16) may be generalized as:

E() 2 n— f: BetP® (m?), (20)
=1

where BetP®)(m/) is defined as

BetP@(m') £ 3 " m’(A)BetP™(A).

10



Note that we have

BetP@(m) = Y mi(A)) BetP?(w)

ACQ weA

= > BetPO(w) > m(A)
weN Asw

= Z BetP® (w)pl({w})
weN

= Z BetP® (w) L (w),
we

which shows that BetP® (m?) is equal to BetP® (L), the pignistic probability of fuzzy
event L, defined as the expectation of its membership function [37]. Note also that
(16) is recovered as a special case when each m® has a single focal element.

4 Generalization based on fuzzy BS’s

This section presents an alternative approach to the above problem, based on a gen-
eralization of Evidence theory allowing to assign degrees of belief to fuzzy events.
The underlying concepts will first be recalled, and then applied to the classification
problem.

4.1 Fuzzy belief structures

An alternative method for handling pieces of evidence of the form given by (17) is
based on the concept of fuzzy belief structure first introduced by Zadeh [39], and
subsequently investigated and developed by several authors [18, 30, 12, 8, 35, 32].

Basically, a fuzzy BS defines the assignment of a unit mass of belief to a finite
number of fuzzy focal elements. Formally, it is a mapping m from [0,1]%, the set of
fuzzy subsets of 2, to [0, 1], verifying the following two conditions:

m(F)>0«e FeF(m)={F,...,F,} c[0,1]* (21)

Zm(ﬁi) =1 (22)

If, furthermore, the E are normal fuzzy sets, then m is said to be normal (this
generalizes the normality condition m(()) = 0 defined for crisp BS’s).

For any focal element E and any crisp or fuzzy subset A of 2, the conditional
possibility measure A given that y is F; is [39]:

II(A|F;) £ max A(w) A Fy(w). (23)

The expected possibility of A may then be defined as:

Zm A|F (24)

11



In the special case where both A and the ﬁz are crisp, the above quantity is equal to
the plausibility of A, which allowed Zadeh [39] to propose (24) as a general definition
for the plausibility of a fuzzy event A, induced by a fuzzy BS. Note that II(A|F;) may
also be interpreted as a degree of intersection between fuzzy sets A and Fj;, which
clarifies the relationship with (7). When the focal elements of m are crisp but A is
fuzzy, then the expected possibility of A defined by (24) may also be viewed as the
upper expectation E¥ (A) of the membership function of A with respect to m:

EII(A) = Z m(F;) max A(w) = EZ, (A), (25)

wekF;

which was proposed by Smets as the definition of the plausibility of a fuzzy event
induced by a crisp belief structure [18]. Note that this definition generalizes Zadeh’s
definition of the probability of a fuzzy event proposed in [37].

Similarly, the conditional necessity measure of A given F may be defined (taking
into account the possible subnormality of F}) as [9]:

N(A|F) £ T(Q|F) — TI(A|F).
The expected necessity:

Zm N(A|E) (26)

is then a generalization of (6) for the belief in fuzzy event A, based on fuzzy BS m
[39]. In the special case where the focal elements of m are crisp and A is fuzzy, EN(A)
defined by (26) can be interpreted as the lower expectation E,,,(A) of the membership
function of A with respect to m:

Z m(F;) min A(w) = By (A), (27)

weF;

which is Smets’ definition for the belief in a fuzzy event induced by a crisp belief
structure [18].

The extensions of the concepts of plausibility and belief provided by (24) and (26)
seem “natural” but they are by no means unique. For instance, the min and max
operations occurring in (23) may be replaced by any other pair of a t-norm and a
t-conorm, as suggested by Yager [30]. Following a different path, Dubois and Prade
[8] proposed to treat each fuzzy focal element F; of a fuzzy BS m as a possibility
distribution associated with a crisp consonant BS m;. This leads to the following
alternative definitions for the plausibility and degree of belief of a fuzzy event A
relative to a fuzzy BS m:

pIs(4) £ 3o m(F)E;, (4 (28)

bels(A) £ Zm Em, (A), (29)

12



where E . (A) and E,p, (A) denote, respectively, the upper and lower expectations of
the memebership function of A, with respect to BS m;. Some properties of these ex-
tensions are discussed in Ref. [8]. The same expressions were independently obtained
by Yen [35, 36], starting from the concept of a fuzzy compatibility relation between
an evidence space and the hypothesis space ).

As proposed by Yen [35] and Yager [31, 34], the conjunctive sum operation defined
by (9) may also be extended to fuzzy BS’s by replacing crisp intersection by its fuzzy
counterpart:

(m1 Nmy)(A) 2 S mi(F)ma(F') VAe€[0,1]%  (30)
{FeF(m1),F'eF(my)|FNF'=A}

where N now denotes standard fuzzy intersection.
Note that the possible subnormality of m = mj; Nmg may be corrected (if needed)
by applying Yager’s soft normalization procedure [32]:

m*(A) L Zﬁ*:A hﬁm(FZ (31)

2 Fer(m) hEm(F)

where hz = suva denotes the height of F , F* is the normal fuzzy set defined by
F*(w) = F(w)/hg for all w € Q, and F(m) is the set of focal elements of m.

4.2 Application

The possibility provided by fuzzy BS’s to assign degrees of support to fuzzy proposi-
tions leads to a very simple generalization of (12), in which the consideration of each
learning example ¢ = (x’, L) induces a fuzzy BS m(-|e') defined for all A € [0, 1] by

. do[d(x,x)] if A= L
m(Ale") £ ¢ 1—¢pld(x,x)] ifA=0Q . (32)
0 otherwise

The fuzzy BS’s m(:|¢!) induced by each of the n learning examples may then be
combined using the generalized conjunctive sum operation (30). This leads to an
alternative approach of handling possibilistic labels, later referred to as the EDCP-II
method.

Having summarized the whole evidence in the form of a fuzzy BS

m=m(-|e)n...nm(-e"),

some decision strategy has to be applied. To be consistent with the crisp case, such
a strategy must rely on some generalization of the pignistic probability measure. We
propose to generalize (11) as:

|ANF|
||

BetP(d) 2 Y~ m*(F)

FeF(m*)

; (33)

13



where A is an arbitrary crisp or fuzzy subset of €, | - | denotes scalar cardinality
(sigma-count), N represents standard fuzzy set intersection, and m* is the normalized
form of m according to (31). The above equation reduces in the case of a singleton to

(k)

BetP({k}) = ) m*@)ﬁ. (34)

FeF(m*)

Note that we have obviously BetP(€2) = 1. Furthermore, given two fuzzy events A
and B such that AN B = (), we have:

BetP(AUB) = % s () (AU B) N F|
FeF(im*) 1]
o ~|(ANF)U(BNF)|
— m F P~
> (F) 7

FeF(m»)

= > m*(ﬁ)‘AmF|‘;’|BmF’ — BetP(A) + BetP(B),

FeF(m*)

which proves the additivity of BetP.

For the optimization of # in (32), the error function given by Eq. (20) may again
be used, with the pignistic probabilities BetP®) now defined from the fuzzy BS’s using
(33).

EXAMPLE 4 Let us consider again the data and classification problem of Example 3.
Each training sample z° is now assumed to induce a fuzzy BS m(-|e!) according to
(32). These fuzzy BSs, together with their conjunctive sum m are shown in Table 3.
The pignistic probabilities of each class computed from (33) are

BetP({1}) = 0.22 BetP({2}) = 0.45 BetP({3}) = 0.33.

These quantities are shown as a function of z in Figure 3. As can be seen from this
figure, both methods of handling possibilistic labels yield very close results. O

5 Numerical experiments

In the type of learning problems considered in this paper, the class membership of
training patterns is only partially known, and described by a possibility distribution
over the set of classes. Our approach will now be illustrated by the following two
experiments based on synthetic and real data.

5.1 Synthetic data

Let us consider a c-class problem, in which each class k has a conditional probability
density f(x|k). Let {x!,...,x"} be a set of vectors with unknown class membership.
The “expert” does not know the true class label of any of these vectors, but he has

14



seen (infinitely) many examples and is able to assess the likelihood of each class for
each of the examples, through:

L(k[x") = f(x'|k).

As argued by Smets [19] [25, p. 289] and Walley and Moral [29], among others, the
likelihood L(k|x") may be interpreted, after normalization, as the degree of possibility
that the actual class is k. This closeness between the concepts of likelihood and
possibility allows us to define a possibility distribution (ut,...,u%) from the relative
likelihoods: 4

L(k[x")
max;—1 . L(j|x*)

up, =

The “most possible” class for pattern 4 is then the maximum likelihood (ML) estimate
k* verifying o '
L(k*|x") > L(k|z") VEk # k"

It is therefore possible to associate to each training pattern three different class labels:
the true class k*, the most possible class (ML estimate) k*, and the whole possibility
distribution u’ = (u?, ..., ul).

The performances of various classification algorithms may then be compared, based
on the corresponding three different kinds of training information:

e “conventional” classification methods with crisp labeling of training data (either
based on true labels or estimated ones);

e the EDCP-I and EDCP-II methods applied to data with possibilistic labels.

Note that, when the number n of training samples tends to infinity, all three types
of labeling fully determine the class-conditional probability distributions and, conse-
quently, essentially carry the same information. Therefore, any significant difference
between them is more likely to be observed for small sample size.

As an example of such an approach, we considered three Gaussian classes with
following means py and variance matrices Y:

n1 = (_172)t M2 = (070)t Hn3 = (37 1)t
2 0 4 0 1 0
m=(02) ==(01) ==(os)

For each trial, a training data sets of 6 vectors (2 per class) and a test set of 500
vectors (with equal prior probabilities) were generated. Five classification procedures
were tested: (a) Dudani’s distance-weighted 5-nearest neighbor rule [11], (b) Keller’s
fuzzy 5-nearest neighbor rule [14], (¢) our EDC method with optimized parameters
[40] and (d) methods EDCP-I and II introduced in this paper. For methods (a), (b)
and (c), both kinds of crisp labeling (real and estimated) were considered. A typical
training set with possibilistic class labels is shown in Figure 4.

Results from 20 trials are summarized in Table 4 and in Figure 5. For this problem,
all three methods based on crisp class labels (either real, or estimated) happen to be
more or less equivalent, whereas methods I and II appear to make effective use of the
additional information provided by possibilistic labels.
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5.2 Real data

The methods introduced in this paper were applied to the problem of detecting K-
complexes in sleep EEG, using the data described in [15, 16]. The K-complex is a
transient EEG pattern which plays a major role in sleep stages assessment. It has a
duration of between 500 and 1500 ms, and is characterized by a sharp upward wave
followed by a downward one. Its amplitude is three times background activity [16].
The discrimination of K-complexes from background activity is generally recognized
as a very complex pattern recognition problem.

The data used in this experiment consisted of EEG signals encoded as 64-dimensional
patterns. Some of these signals were negative examples containing paroxysmal delta
bursts, a phenomenon bearing some resemblance to K-complexes. The other signals
consisted of patterns which, after visual inspection by 5 physicians, had been clas-
sified as containing a K-complex by at least one of them. Among these examples,
those categorized in the K-complex class by a majority of experts were considered as
positive examples, the others as negative ones. Each example (positive or negative)
was then assigned a possibilistic label u’ = (u},u}) based on the number of experts
(between 0 and 5) who recognized it as containing a K-complex, using (3). Figure 6
shows four examples of patterns together with their possibilistic labels.

A training set of 200 patterns and a test set of 300 patterns were considered,
each one containing an equal number of positive and negative examples. Table 5
shows the test error rates obtained by 5 methods: the voting K-NN rule, Dudani’s
distance-weighted K-NN rule, the EDC method with optimized parameters [40] and
the EDCP-I and II methods introduced in this paper, for K € {9,11, 13} neighbors.
These results clearly show a consistent decrease in error rate due to the consideration
of the uncertainty in class labels.

6 Conclusions

When applying the pattern classification methodology in such domains as medical
diagnosis or process monitoring, the situation often occurs where the class membership
of training patterns is not given a priori and has to be derived from subjective expert
assessments. One of the forms in which expert knowledge may be encoded is that
of a possibility distribution, consisting of real numbers in the range [0,1] indicating
the degree of possibility with which each pattern belongs to each class. The resulting
training information may then be given as a set of training patterns with associated
possibilistic class labels.

In this paper, this problem was tackled in the framework of Evidence Theory.
The evidential distance-based classifier previously introduced by one of the authors
was extended to handle possibilistic labeling of training data. Two approaches were
proposed based either on the transformation of each possibility distribution into a con-
sonant belief function, or on the use of generalized belief structures with fuzzy focal
elements. In each case, a belief function modeling the expert’s beliefs concerning the
class membership of each new pattern to be classified can be obtained. This informa-
tion may then be either interpreted by a human operator to support decision-making,
or automatically processed to yield a final class assignment through the computation
of pignistic probabilities. Numerical experiments demonstrated the ability of both
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classification schemes to make effective use of possibilistic labels as training informa-

tion.
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Tables and figures

Table 1: Belief structures and resulting pignistic probabilities for x = 1.2 (Example

1)
A m(Ale?) m(Ale’) m(A) BetP(A)
0 0 0 0 0.01 0
1 o 0 0 0 0.19
{2} 0 0 0 0.10  0.47
31 0 0 0.04 0.03  0.34
(1,2} 021 0 0 0.11  0.66
(1,31 0 0 0 0 0.53
(2,3} 0 0.47 0 0.36  0.81
{1,2,3} 0.79 0.53 0.96 0.40 1

Table 2: Belief structures and resulting pignistic probabilities for x = 1.2 (Example

3)
A mt m? m? m(Alel) m(A] m(Ale’) m(A) BetP(A)
0 0 0 0 0 0 0 0.03 0
{1y 02 0 0 004 0 0 0.02 022
{22 0 02 0 0 0.10 0 0.14  0.47
{3t 0 0 0.8 0 0 0.03 0.02  0.31
{1,2} 0.7 O 0 0.15 0 0 0.08 0.69
1,3 0 0 0 0 0 0 0 0.53
{2,3} 0 0.7 02 O 0.33 0.01 0.26  0.78
{1,231 01 01 0 081 0.57 0.96 045 1
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Table 3: Belief structures for x = 1.2 (Example 4)

A m(Aleh) m(Al2) m(Al®) m(A)
{1/1,0.8/2,0.1/3} 0.21 0 0 0.1
{0.1/1,1/2,0.8/3} 0 0.47 0 0.36

{0/1,0.2/2,1/3} 0 0 0.04 0.01
{0/1,0.2/2,0.1/3} 0 0 0 0.01
{0.1/1,0.8/2,0.1/3} 0 0 0 0.10
{0.1/1,0.2/2,0.8/3} 0 0 0 0.01
{1,2,3} 0.79 0.53 0.96 0.40

Table 4: Means and standard deviations (in parentheses) of test error rates for 20
trials. The methods are: the weighted 5-NN rule (w5-NN), the fuzzy 5-NN rule (f5-
NN), the evidential distance-based classifier (EDC) and the evidential distance based
classifiers with possibilistic labels (EDCP-I and II).

labels wb-NN  £5-NN  EDC EDCP-I EDCP-II

real 0.39 0.40 0.45 —
(0.08)  (0.10) (0.10)
ML 0.42 0.44 0.46 - —
(0.09) (0.12) (0.11)
possibilistic — — — 0.33 0.32

(0.09)  (0.08)

Table 5: Test error rates for the EEG data, using different values of K (number of
neighbors). The methods are: the voting K-NN rule, the weighted K-NN rule (w K-
NN), the evidential distance-based classifier (EDC) and the evidential distance based
classifiers with possibilistic labels (EDCP-I and II).

K K-NN wK-NN EDC EDCP-I EDCP-II

9 0.30 0.30 0.31 0.28 0.27
11 0.29 0.30 0.29 0.27 0.26
13 0.31 0.30 0.31 0.27 0.26
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Example: crisp class labels
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Example: fuzzy class labels, fuzzy BSs
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Figure 3: Pignistic probabilities as a function of x for the classification problem of
Example 4.
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Figure 4: A training data set of 6 patterns with possibilistic class labels. The means
of the three underlying distributions are shown as o (class 1), O (class 2) and ¢ (class
3).
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Figure 5: Box plots of misclassification error rates (1: weighted 5-NN rule with real
labels; 2: weighted 5-NN rule with ML labels; 3: fuzzy 5-NN rule with real labels;
4 : fuzzy 5-NN rule with ML labels; 5: EDC with real labels; 6 : EDC with ML
labels; 7: EDCP-I ; 8: EDCP-II). Boxes indicated the lower quartile, median and
upper quartiles of each distribution; whiskers show the extent of the rest of the data.
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Figure 6: Four examples of EEG patterns, with corresponding possibilistic class labels:
positive examples (upper two figures) and negative examples (lower two figures).
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