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Abstract

Nonparametric rank-based statistics depending only on linear orderings of the
observations are extended to fuzzy data. The approach relies on the definition of
a fuzzy partial order based on the necessity index of strict dominance between
fuzzy numbers, which is shown to contain, in a well defined sense, all the ordinal
information present in the original data. A concept of fuzzy set of linear exten-
sions of a fuzzy partial order is introduced, allowing the approximate computation
of fuzzy statistics alpha-cutwise using a Markov Chain Monte Carlo simulation
approach. The usual notions underlying significance tests are also extended, lead-
ing to the concepts of fuzzy p-value, and graded rejection of the null hypothesis
(quantified by a degree of possibility and a degree of necessity) at a given signifi-
cance level. This general approach is demonstrated in two special cases: Kendall’s
rank correlation coefficient, and Wilcoxon’s two-sample rank sum statistic.

Keywords: Nonparametric Statistics, Hypothesis Testing, Fuzzy Order, Rank
correlation coefficient, Fuzzy Data Analysis.

1 Introduction

The nonparametric approach to statistics provides inferential procedures which rely on
weaker assumptions about the underlying distributions than do standard parametric
procedures for similar problems [8]. A particular class of nonparametric, distribution-
free procedures is composed of hypothesis tests based on a statistic depending only
on the rank order of observations in one or several samples. Examples of methods in
this category are Kendall’s test of independence using the rank correlation coefficient
τ , Kendall’s coefficient of concordance for measuring the agreement among several
orderings of n objects and the associated significance test [18], the Wilcoxon two-
sample rank test for comparing two distributions, etc. Nonparametric procedures are
typically adapted to situations in which little is known regarding the distributions of
the data, such as small sample problems.

In recent years, the need to abandon the assumption of absolute precision of the
observations in statistics and data analysis has gained increasing recognition. Descrip-
tive statistics as well as inferential procedures for point estimation, confidence interval
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estimation and hypothesis testing have been extended to fuzzy data [17, 3, 29, 11, 4].
In particular, procedures for testing fuzzy hypotheses from crisp data [25, 2, 26], or
crisp hypotheses from fuzzy data [12, 13, 20] have been proposed. However, few ef-
forts, if any, have been devoted to applying nonparametric techniques to fuzzy data.
In this paper, an attempt is made to partially fill this gap by proposing extensions of
nonparametric statistics and associated significance tests to fuzzy data.

The class of nonparametric procedures investigated in this paper relies only on
the ordering of observations in the sample. For instance, Kendall’s rank correlation
coefficient between two series of observations x1, . . . , xn and y1, . . . , yn only depends
on the ranks of observations in both samples [18]. It is therefore actually a measure of
comparison between two linear orders. If the observations are fuzzy, it is not possible,
in general, to rank them without introducing arbitrary assumptions. It is natural,
however, to derive a fuzzy partial ordering of the observations. As will be shown,
fuzzy extensions of nonparameric statistical procedures can be rigorously constructed
by replacing linear orders with fuzzy partial orders in the definition of test statistics.
This can be achieved by viewing a fuzzy partial order as a fuzzy set of compatible
linear orders, and applying Zadeh’s extension principle. To avoid complex discrete
optimization problems, a Monte-Carlo approach will be adopted to compute numerical
approximations of the fuzzy test statistics and associated p-values.

The rest of this paper is organized as follows. Section 2 recalls some classical
background material on linear orders, as well as on Kendall’s tau coefficient and the
associated test of independence between two samples, which will be used in the rest
of the paper as an example to illustrate our approach. The relationship between our
work and both censorship models in classical statistics, and previous work in fuzzy
statistics, is also clarified in that section.

Section 3 then proceeds by recalling more results on crisp partial orders, and
presenting their applications to the extension of the tau coefficient and the associated
significance test to interval data. The concepts and results introduced in this Section
are useful per se, as interval data constitute an important class of imprecise data
frequently encountered in practice. They also constitute an intermediate step on the
way to the introduction of methods for fuzzy data, which are essentially based on the
same approach extended to the level sets of fuzzy ordering relations.

The fuzzy case is thus subsequently handled in Section 4, where basic defini-
tions regarding fuzzy orders are recalled, new definitions and results regarding linear
extensions of fuzzy partial orders are introduced, and their applications to the non-
parametric statistical analysis of fuzzy data are described. To show the generality of
our approach, the fuzzy extension of another nonparametric procedure: the Mann-
Whitney-Wilcoxon two-sample test, is finally presented in Section 5, and Section 6
concludes the paper.

2 Background

2.1 Crisp Ordering Relations

A crisp binary relation on a set U is a crisp subset R ⊆ U2. In the sequel, U will
always be assumed to be finite. The notation uRv will be used as a shortcut for
(u, v) ∈ R.
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A relation R is a partial order if it is antisymmetric and transitive. An irreflexive
partial order is said to be strict. By default, all partial orders considered in this paper
will be assumed to be strict. A linear order is a complete partial order. In the sequel,
PU and LU will denote, respectively, the sets of partial and linear orders on U .

A linear order L is a linear extension of a partial order P if and only if P ⊆ L.
A theorem due to Szpilrajn (cited in [9]) states that every partial order has at least
one linear extension. The set of linear extensions of a partial order P will be noted
Λ(P ) ⊆ LU .

In many situations U = {u1, . . . , un} is a set of n objects of a population Ω,
described by a continuous variable X : Ω → R. Let xi = X(ui), i = 1, . . . , n.
Assuming that xi 6= xj for all i 6= j, the n values x1, . . . , xn induce a strict linear order
L on U such that uiLuj iff xi < xj . We shall denote by λ the mapping from Rn to
LU such that L = λ(x1, . . . , xn).

2.2 Kendall’s tau

Let (x1, y1), . . . , (xn, yn) denote the values taken by two continuous variables (X,Y ) for
n members U = {u1, . . . , un} of a population. A measure of association between vari-
ables X and Y may be obtained by counting the number of pairs of observations {i, j}
which are ordered consistently by X and Y . More precisely, let LX = λ(x1, . . . , xn)
and LY = λ(y1, . . . , yn) denote, respectively, the linear orders on U induced by the
X and Y samples (since X and Y are assumed to be continuous, such linear orders
always exist). The number of pairs ordered in the same way by LX and LY is the
cardinality of their intersection |LX ∩LY |. Since there are n(n− 1)/2 distinct pairs of
observations, the minimum and maximum values of |LX ∩LY | are, respectively, 0 and
n(n− 1)/2. If we require a correlation coefficient to be +1 when there is perfect posi-
tive agreement and −1 when there is perfect negative agreement, we obtain Kendall’s
tau coefficient [16]:

τ =
4|LX ∩ LY |
n(n− 1)

− 1. (1)

Note that τ depends only on the two linear orders LX and LY , and can actually be
seen as a measure of agreement between linear orders. In the sequel, the notation
τ(LX , LY ) will sometimes be used to emphasize this fact.

Example 1 Let us consider the data in Table 1. We have

LX = {(u1, u3), (u1, u4), (u2, u3), (u2, u1), (u2, u4), (u3, u4)},

LY = {(u1, u2), (u1, u4), (u3, u1), (u3, u2), (u3, u4), (u4, u2)},
LX ∩ LY = {(u1, u4), (u3, u4)}.

Hence, τ = (4× 2)/(4× 3)− 1 = −1/3.

In addition to being used as correlation coefficient, τ may also be used as a test
statistic [16]. Consider the problem of testing hypothesis H0 of independence between
X and Y in the population, against the alternative hypothesisH1 of non-independence.
Under H0, τ may be shown to have expected value zero, variance equal to

V ar(τ) =
2(2n+ 5)

9n(n− 1)
,
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and to tend to the normal form very quickly as n → ∞. The normal approximation
is usually considered to be valid as long as n ≥ 8. Independence may thus be rejected
at the α level if the following condition holds:

|τ | > Φ−1
(

1− α

2

)√ 2(2n+ 5)

9n(n− 1)
, (2)

where Φ denotes the distribution function of the standard normal distribution. Such
a test may be formally represented by a function ϕα : R2n → {0, 1} such that
ϕα[(x1, y1), . . . , (xn, yn)] equals 1 if H0 is rejected at the α level, and 0 otherwise.
Here, ϕα is thus defined as:

ϕα[(x1, y1), . . . , (xn, yn)] =

{
1 if |τ | > Φ−1

(
1− α

2

)√ 2(2n+5)
9n(n−1)

0 otherwise.
(3)

Since the significance level is often somewhat arbitrary [19, page 70], it is often
interesting to determine the smallest significant level at which the null hypothesis
would be rejected for the given observation, which is called the significance probability,
or p-value. By definition, H0 is thus rejected at a given significance level α if and only
if the p-value is smaller than α. For fixed τ , the condition for H0 to be rejected in our
case can be found from Eq. (2) to be α > p(τ) with

p(τ) = 2

[
1− Φ

(
|τ |

√
9n(n− 1)

2(2n+ 5)

)]
, (4)

which is thus the expression of the significance probability. Equation (3) can be
written as:

ϕα[(x1, y1), . . . , (xn, yn)] =

{
1 if p(τ) < α
0 otherwise. (5)

Example 2 A simple data set of n = 10 observations (xi, yi) is shown in Figure
1. We have for this data τ = 0.69 and p = 0.0056. Hence, the null hypothesis of
independence between X and Y is rejected at any significance level α > 0.0056.

2.3 Censored data analysis and fuzzy statistics

The problem addressed in this paper is, to some extent, related to the issue of censored
data as encountered in classical statistics, in the context of survival analysis. Such
data typically arise when an event of interest, such as a disease or a failure, is only
partially observed, because information is gathered at certain examination times. Two
usual models are random right-censorship and random interval-censorship. In the first
case, the observations are assumed to be of the form Yi = min(Xi,Wi), i = 1, . . . , n,
where the Xi are the (partially observed) survival times, and the Wi are the censoring
times. In this model, both survival and censoring times are assumed to be random,
and mutually independent. Rank tests for such data have been proposed by several
authors (see, e.g. [1][21]). In the case of so-called random interval censored data,
the event is only known to happen between two random examination times. The
observations are thus of the form (Ui, Vi), i = 1, . . . , n, and it is only known that
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Ui ≤ Xi ≤ Vi for all i. Here again it is customary to assume independence between
survival times Xi and censoring interval endpoints. Nonparametric tests for interval
censored data have been developped by Pan [23], [24], among others.

Although the interval data considered in this paper have the same form as interval
censored data, the problem addressed here is different. We are not concerned with
imprecision arising from random inspection times, but with the situation in which
the result of a random experiment is reported from the observer to the statistician
with some imprecision, arising from its limited perception or recollection of the precise
numerical values [11, page 314]. Linguistic data such as “moderately expensive” to
describe the price of an item, “around 20 degrees” or “warm” to report a temperature
then arise, which cannot easily be modeled using classical subsets, but lend themselves
quite naturally to a description using fuzzy sets. The relevance of a fuzzy set-theoretic
approach to data analysis is particularly obvious in sensory studies, in which human
subjects are asked to assess products according to their perception of attributes related
to the color, smell, taste or texture of the objects [27]. The motivation for the present
study actually comes from the authors’ work in this application domain.

The use of fuzzy set-theoretic methods in statistics has been well studied in the
past twenty years, as indicated by the existence of several monographs on this topic
[17, 3, 29, 4]. As remarked by Gebhardt et al. [11, page 317], two main directions
have been followed.

The first one is based on the concept of fuzzy random variable, defined as a function
from the set Ω of all possible outcomes of a random experiment, to the set of fuzzy
subsets of the real line, verifying certain properties making it a valid generalization
of a real random variable. This approach is well founded mathematically as it allows
to extend important limit theorems in the field of fuzzy statistics [17]. However, the
corresponding mathematical apparatus is not always needed, or even relevant. As
noted by Gebhardt et al. [11, page 317]: “Fuzzy random variables describe situations
where the uncertainty and imprecision of observing a random value (...) is functionally
dependent of the respective outcome ω. If observation conditions are not influenced by
the random experiment (...), then theoretical considerations in fuzzy statistics become
much simpler, since in this case we do not need anymore a concept of a fuzzy random
variable. It suffices to generalize operations of traditional statistical inference for
crisp data to operations on possibility distributions using the well-known extension
principle”. Our work is clearly in line with this second approach. We thus consider
fuzzy data x̃1, . . . , x̃n (where each x̃i is a fuzzy number) as an imperfect specification of
a partially observed realization x1, . . . , xn of an i.i.d. sample X1, . . . , Xn with parent
distribution FX . This approach has been used to extend several parametric tests such
as the test on the variance of a normal distribution with known mean [11, page 321].
The goal of this paper is to extend this approach to nonparametric rank tests, a task
which, to our knowledge, had not been undertaken before.

3 Analysis of interval data

3.1 Partial Order Induced by Crisp Real Intervals

As in Section 2.2, let us consider again a set U = {u1, . . . , un} of n objects described
by a variable X. As before, xi denotes the value taken by X for object ui, i = 1, . . . , n.
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However, we now assume that we only have partial knowledge of the xi’s, in the form of
lower and upper bounds. Each object ui is thus described by a nonempty real interval
xi such that xi ∈ xi (xi may be closed, semi-closed or open). Let LX = λ(x1, . . . , xn)
denote the linear order among the n objects induced by X. As a consequence of
partial ignorance of the xi’s, LX is, in general, partially unknown. It may then be
wondered how to represent the partial knowledge of LX induced by the n intervals xi,
i = 1, . . . , n.

To answer this question, let us consider the following partial order on U :

P = {(ui, uj) ∈ U2 | supxi ≤ inf xj}. (6)

Such a partial order, denoted P = π(x1, . . . , xn), is called an interval order [9]. The
following theorem states that the set Λ(P ) is exactly the set of possible values of LX .
Hence, all the ordinal information induced by the intervals xi, i = 1, . . . , n is contained
in P .

Theorem 1 Let P = π(x1, . . . , xn) be the partial order on a set U of n objects,
induced by n intervals xi, i = 1, . . . , n, such that ∃ (x1, . . . , xn) ∈ x1 × . . . × xn with
xi 6= xj, ∀i 6= j. Let Λ(P ) denote the set of linear extensions of P . We have:

Λ(P ) = {L ∈ LU , | ∃(x1, . . . , xn) ∈ x1 × . . .× xn, L = λ(x1, . . . , xn)}
= λ(x1 × . . .× xn).

Proof. See Appendix A.
As a consequence of the above theorem, P may be seen as a representation of the

available knowledge concerning the unknown true linear order LX . The relationship
between mappings λ, π and Λ is illustrated in Figure 2.

3.2 Rank correlation coefficient for interval data

Definition

In this section, we present the definition of the Kendall’s tau coefficient between
interval-valued data samples, as recently introduced by the authors [15]. Let us assume
that the available data takes the form of n pairs of intervals (xi, yi), i = 1, . . . , n, where
each interval xi (respectively, yi) is known to contain the value taken by variable X
(respectively, Y ) for object ui. As shown above, all the ordinal information regarding
both samples is contained in the induced partial orders PX = π(x1, . . . , xn) and PY =
π(y1, . . . , yn). Consequently, the set T (PX , PY ) of possible values for the Kendall’s
correlation coefficient between the two samples must depend only on PX and PY .
Indeed, this set contains all possible values for the tau coefficient τ(LX , LY ) for all
linear extensions LX of PX and all linear extensions LY of PY . This set, however, does
not admit a simple representation. For that reason, we prefer to define the Kendall’s
tau coefficient between interval-valued samples x1, . . . , xn and y1, . . . , yn as the convex
hull of T (PX , PY ), i.e., the smallest closed interval τ(PX , PY ) containing T (PX , PY ):

τ(PX , PY ) =

[
min

LX∈Λ(PX),LY ∈Λ(PY )
τ(LX , LY ), max

LX∈Λ(PX),LY ∈Λ(PY )
τ(LX , LY )

]
(7)
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Example 3 Let us consider the data set in Table 2, which is an imprecise version of
the data used in Example 1.

The induced partial orders are:

PX = {(u1, u3), (u1, u4), (u2, u3), (u2, u4)}

PY = {(u1, u2), (u1, u4), (u3, u2), (u3, u4), (u4, u2)}.

To simplify the notations, let us denote a linear order by the corresponding permuta-
tion of indices. For instance, the linear order < such that u2 < u1 < u3 < u4 will be
noted (2, 1, 3, 4). We can see that PX has four linear extensions:

PX ∪ {(1, 2), (3, 4)} = (1, 2, 3, 4) PX ∪ {(2, 1), (3, 4)} = (2, 1, 3, 4)

PX ∪ {(1, 2), (4, 3)} = (1, 2, 4, 3) PX ∪ {(2, 1), (4, 3)} = (2, 1, 4, 3),

and PY has two linear extensions:

PY ∪ {(1, 3)} = (1, 3, 4, 2) PY ∪ {(3, 1)} = (3, 1, 4, 2).

The tau coefficients for the 4 × 2 = 8 possible combinations of a linear extension of
PX and a linear extension of PY are given in Table 3.

We can see that there are four possible values of τ :

T = {−2/3,−1/3, 0, 1/3}.

Hence, τ = [−2/3, 1/3].

Significance test

As a consequence of the tau statistics being imprecise, the result of a significance test
(with the same hypotheses as in Section 2.2) may become indeterminate. To see this,
let us consider the p-value for the significance test given by (4). Denoting by τ− and
τ+ the lower and upper bounds of τ , we have

min
τ−≤τ≤τ+

|τ | = max(0, τ−,−τ+) (8)

and
max

τ−≤τ≤τ+
|τ | = max(τ+,−τ−). (9)

Consequently, the range of p(τ) is the interval p(τ) = [p−(τ), p+(τ)] with

p−(τ) = 2

[
1− Φ

(
max(τ+,−τ−)

√
9n(n− 1)

2(2n+ 5)

)]
(10)

p+(τ) = 2

[
1− Φ

(
max(0, τ−,−τ+)

√
9n(n− 1)

2(2n+ 5)

)]
. (11)

As shown in Section 2.2, the result of the test at a given significance level α may be
deduced by comparing the p-value to α. Since the p-value is now only known to lie in
the interval p(τ), three cases arise:
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1. if p+(τ) < α, then p(τ) is surely less than α, and H0 is rejected;

2. if p−(τ) > α, then p(τ) is surely greater than α, and H0 is not rejected;

3. if p−(τ) < α < p+(τ), then the position of p(τ) relative to α is unknown, and
the result of the test is indeterminate.

This may be expressed formally using the ϕα function:

ϕα[(x1, y1) . . . , (xn, yn)] =

{
1 if p+(τ) < α
0 if p−(τ) > α
{0, 1} otherwise.

(12)

The fact that the test result may be indeterminate may be found troublesome by
readers accustomed to standard statistical procedures. However, this indeterminacy
is merely a consequence of the ambiguity of the observation (or perception) process,
which is propagated in the calculations. This ambiguity cannot be resolved without
making additional assumptions, and no such assumptions are made in the conservative
approach described in this paper. When the final imprecision is too high, no conclusion
can be drawn, which in practice may be resolved by acquiring more information, either
as additional observations, or in the form of more accurate information regarding the
cases already collected.

The following simple example will serve to further illustrate this important point.
Consider the problem of testing hypotheses about the mean of a Gaussian distribution
with unknown variance, based on a sample of size n, using the well known Student-t
test. Assume that, instead of observing the sample data or the exact value of the t
statistic, you are only given an interval in which this statistic surely lies, and you have
no idea how this interval was constructed, i.e., you have no model for the degradation
of the data in the observation process. All you know is that the given interval contains
the true value of the test statistic. Obviously, there are cases where you will be able
to give the result of the test, while in other cases the result will be indeterminate.
Refusing to consider the interval data on the ground that it will not allow to make a
decision in all cases would surely be a very radical view. On the other hand, assuming
a model of the observation process without any evidence to support this model would
not be good statistical practice. The approach adopted in this paper is both pragmatic
and cautious, in that it merely propagates imprecision in the calculations, and accepts
that the decision may, in some cases, be indeterminate.

Example 4 Figures 3 and 4 show two data sets generated from the data of Example
2 by the transformation xi = [xi − r, xi + r] and yi = [yi − r, yi + r] (i = 1, . . . , 10),
with r = 0.1 and r = 0.2, respectively. In the first case we have τ = [0.51, 0.87] and
p = [0.0005, 0.0397]. The null hypothesis is thus still rejected at the 5% significance
level. In the second case, we have: τ = [0.29, 0.96] and p = [0.0001, 0.2449]: the result
of the test is indeterminate.

Computational procedure

Until now, we have left aside the important practical issue of computing τ− and τ+. A
simplistic approach for solving the optimization problems in (7) might be to generate
all the linear extensions of PX and PY . However, this approach is impractical due to
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the potentially exponential number of linear extensions of a partial order, which can
reach n! in the limit case of an empty partial order. An algorithm for computing τ
directly without generating linear extensions has been proposed by Hébert et al. [15].
However, this algorithm (the complexity analysis of which remains to be done) is only
applicable to very small problems.

A more general approach is to compute approximations of τ− and τ+ using a Monte
Carlo simulation method. This is made possible by the availability of efficient Markov
chain Monte Carlo techniques for generating uniformly randomly linear extensions of
a partial order [5, 14]. The most efficient algorithm to date seems to be that proposed
by Bubley and Dyer [5] which has a running time of O(n3 log nε−1), where ε is the
desired accuracy. This algorithm is described in Appendix B. It may be used to
repeatedly generate LX ∈ Λ(PX), LY ∈ Λ(PY ), compute τ(LX , LY ), and store this
value if it is smaller than the current minimum, or larger than the current maximum.
The algorithm may be stopped when the minimum and maximum have not changed
in the last η iterations. It may be noticed that the resulting approximations τ̂−

and τ̂+ are biased estimates of τ− and τ+, since we can only have τ̂− ≥ τ− and
τ̂+ ≤ τ+. However, this bias can be made arbitrarily small by increasing the number
of iterations. In practice, very good approximations have been obtained for medium
size problems (n ≈ 30) with only a few thousand iterations.

4 Analysis of fuzzy data

4.1 Fuzzy Orderings

Fuzzy counterparts to some of the relational concepts recalled in Section 2.1 were
introduced by Zadeh [30]. A recent overview of fuzzy relations is presented in [22].
A thorough treatment with emphasis on preference modeling is provided in [10]. A
fuzzy relation R̃ on a set U is a fuzzy subset of U2. The degree of membership of a
pair (u, v) in R̃ will be noted µ

R̃
(u, v) ∈ [0, 1]. The (max-min) composition of two

fuzzy relations R̃ and Q̃ is noted R̃ ◦ Q̃ and is defined by:

(R̃ ◦ Q̃)(u,w) =
∨
v

µ
R̃

(u, v) ∧ µ
Q̃

(v, w), ∀(u,w) ∈ U2, (13)

where ∨ and ∧ denote the maximum and minimum operators, respectively. The
inverse of a fuzzy relation R̃ is defined by µ

R̃−1(u, v) = µ
R̃

(v, u), for all (u, v) ∈ U2.
The above definitions regarding properties of crisp relations can easily be extended

to fuzzy relations using the classical definition of the inclusion of fuzzy sets:

R̃ ⊆ Q̃⇔ ∀(u, v) ∈ U2, µ
R̃

(u, v) ≤ µ
Q̃

(u, v),

and the natural fuzzy set connectives:

µ
R̃∩Q̃(u, v) = µ

R̃
(u, v) ∧ µ

Q̃
(u, v)

and
µ
R̃∪Q̃(u, v) = µ

R̃
(u, v) ∨ µ

Q̃
(u, v).

More precisely, a fuzzy relation R̃ on U is:
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• reflexive if I ⊆ R̃ (∀u ∈ U, µ
R̃

(u, u) = 1);

• irreflexive if I ∩ R̃ = ∅ (∀u ∈ U, µ
R̃

(u, u) = 0);

• symmetric if R̃−1 = R̃ (∀(u, v) ∈ U2, µ
R̃

(u, v) = µ
R̃

(v, u));

• antisymmetric if R̃ ∩ R̃−1 ⊆ I (∀(u, v) ∈ U2, µ
R̃

(u, v) > 0 and µ
R̃

(v, u) > 0 ⇒
u = v);

• (max-min) transitive if R̃2 ⊆ R̃ (∀(u,w) ∈ U2, µ
R̃

(u,w) ≥
∨
v µR̃(u, v)∧µ

R̃
(v, w)).

Zadeh [30] defines a fuzzy partial order as an antisymmetric and transitive fuzzy
relation. The following theorem [30] expresses a relationship between crisp and fuzzy
orders.

Theorem 2 Let R̃ be a fuzzy partial order on U . For all β ∈ (0, 1], the β-cut of R̃,
defined as R̃β = {(u, v) ∈ U2 | µ

R̃
(u, v) ≥ β} is a crisp partial order.

Note that we use the notation β as an index for the level sets of a fuzzy set
instead of the more usual notation α, to avoid confusion with the significance level of
a hypotheses test, a concept that will be used later in this paper.

4.2 Linear Extensions of a Fuzzy Partial Order

The concept of linear extension can be extended to fuzzy partial orders. Let P̃ be
a fuzzy partial order on U . A crisp linear order L may be considered to be a linear
extension of P̃ to the extent that it includes P̃ (we recall that L and P̃ are, respectively,
crisp and fuzzy subsets of U2). The fuzzy set Λ(P̃ ) ∈ [0, 1]LU of linear extensions of
P̃ may thus be defined by:

µ
Λ(P̃ )

(L) = I(P̃ , L) ∀L ∈ LU

where I is an inclusion index. A general family of inclusion measures is:

I(F,G) = inf
u
i(µF (u), µG(u))

where F and G are two fuzzy subsets of a common domain, and i is a fuzzy implication
operator [6, page 59]. A common choice of implication operator is i(a, b) = max(1 −
a, b). This leads to

I(F,G) = inf
u

(1− µF (u)) ∨ µG(u)

= 1− sup
u
µF (u) ∧ (1− µG(u))

= 1− h(F ∩G)

where h denotes the height of a fuzzy set. We thus arrive at

µ
Λ(P̃ )

(L) = 1− h(P̃ ∩ L)

= 1−
∨
u,v

µ
P̃

(u, v) ∧ (1− µL(u, v)),

where the supremum has been replaced by the maximum, since we are dealing with a
finite domain U2.
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Theorem 3 Let P̃ be a fuzzy partial order on U , and Λ(P̃ ) ∈ [0, 1]LU the fuzzy set of
linear extensions of P̃ . We have

1. Λ(P̃ )β = Λ(P̃ (1−β)+), ∀β ∈ (0, 1];

2. Λ(P̃ )β+ = Λ(P̃ (1−β)), ∀β ∈ [0, 1),

where the superscript β+ denotes the strong β-cut.

Proof. Let β ∈ (0, 1]. For all L ∈ LU ,

L ∈ Λ(P̃ )β ⇔ 1− sup
u,v

µ
P̃

(u, v) ∧ (1− µL(u, v)) ≥ β

⇔ sup
u,v

µ
P̃

(u, v) ∧ (1− µL(u, v)) ≤ 1− β

⇔ ∀(u, v) ∈ U2, µ
P̃

(u, v) ∧ (1− µL(u, v)) ≤ 1− β
⇔ ∀(u, v) ∈ U2, µ

P̃
(u, v) > 1− β ⇒ 1− µL(u, v) = 0

⇔ ∀(u, v) ∈ P̃ (1−β)+, (u, v) ∈ L
⇔ L ∈ Λ(P̃ (1−β)+).

A similar line of reasoning may be applied to prove that Λ(P̃ )β+ = Λ(P̃ 1−β) for all
β ∈ [0, 1). �

Example 5 Let us consider the fuzzy partial order P̃ described by Table 4. It has
three distinct strong β-cuts:

P̃ 0+ = {(u1, u3), (u1, u4), (u2, u3), (u2, u1), (u2, u4), (u3, u4)}

P̃ 1/3+ = {(u1, u3), (u1, u4), (u2, u3), (u2, u1), (u2, u4)}

P̃ 2/3+ = {(u1, u3), (u1, u4), (u2, u3), (u2, u4)}

We can see that P̃ 0+ is a linear order. Hence

Λ(P̃ 0+) = Λ(P̃ )1 = {(2, 1, 3, 4)}.

We then have:
Λ(P̃ 1/3+) = Λ(P̃ )2/3 = {(2, 1, 3, 4), (2, 1, 4, 3)}

and
Λ(P̃ 2/3+) = Λ(P̃ )1/3 = {(2, 1, 3, 4), (2, 1, 4, 3), (1, 2, 3, 4), (1, 2, 4, 3)}.

The fuzzy set of linear extensions is, consequently:

Λ(P̃ ) =

{
(2, 1, 3, 4)

1
,
(2, 1, 4, 3)

2/3
,
(1, 2, 3, 4)

1/3
,
(1, 2, 4, 3)

1/3

}
, (14)

where the classical notation {u/µF (u)} is used to denote a fuzzy set F .
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4.3 Fuzzy Partial Order Induced by Fuzzy Intervals

Let us now assume that the unknown values xi, i = 1, . . . , n are constrained by fuzzy
intervals x̃i, i = 1, . . . , n. The membership function µx̃i is a possibility distribution
related to the unknown value of xi. Let x̃i and x̃j be two fuzzy intervals related to two
values xi and xj . Assuming x̃i and x̃j to be noninteractive, the possibility distribution
concerning the joint values (xi, xj) is given by:

µ(x̃i,x̃j)(xi, xj) = µx̃i(xi) ∧ µx̃j (xj).

According to this possibility distribution, the necessity of the event xi ≤ xj is given
by:

N(xi ≤ xj) = 1−Π(xi > xj) (15)

= 1− sup
xi>xj

µx̃i(xi) ∧ µx̃j (xj). (16)

This quantity, sometimes referred to as the necessity index of strict dominance (NSD),
is classically used to compare fuzzy numbers [7]. Let µ

P̃
(ui, uj) = N(xi ≤ xj). This

fuzzy relation is antisymmetric and transitive: it is a fuzzy partial order on U [22].
Note that this relation is dual to the fuzzy relation µ

R̃
(ui, uj) = Π(xi < xj), i.e.,

we have µ
P̃

(ui, uj) = 1 − µ
R̃

(uj , ui) for all ui and uj . However, R̃ is not transitive.

Hence, P̃ , and not R̃, is the fuzzy counterpart of P in (6). The previous notation
will be extended as follows: P̃ = π(x̃1, . . . , x̃n) ∈ P̃U , where P̃U denotes the set of
fuzzy partial orders on U . The relationship between P̃ and P is given by the following
theorem.

Theorem 4 Let P̃ = π(x̃1, . . . , x̃n) be the fuzzy partial order on U induced by the
fuzzy numbers x̃1, . . . , x̃n. We have

1. P̃ β = π(x̃
(1−β)+
1 , . . . , x̃

(1−β)+
n ), for all β ∈ (0, 1];

2. P̃ β+ = π(x̃
(1−β)
1 , . . . , x̃

(1−β)
n ), for all β ∈ [0, 1).

Proof. For all (i, j) ∈ {1, . . . , n},

(ui, uj) ∈ P̃ β ⇔ 1− sup
xi>xj

µx̃i(xi) ∧ µx̃j (xj) ≥ β

⇔ sup
xi>xj

µx̃i(xi) ∧ µx̃j (xj) ≤ 1− β

⇔ ∀(xi, xj) ∈ R2, xi > xj ⇒ (µx̃i(xi) ∧ µx̃j (xj) ≤ 1− β)

⇔ ∀(xi, xj) ∈ R2, xi > xj ⇒ (µx̃i(xi) ≤ 1− β or µx̃j (xj) ≤ 1− β)

⇔ ∀(xi, xj) ∈ R2, (µx̃i(xi) > 1− β and µx̃j (xj) > 1− β)⇒ xi ≤ xj
⇔ x̃

(1−β)+
i < x̃

(1−β)+
j .

The second part of the theorem can be proved in the same way, starting from a strict
inequality in the first line. �

Finally, the following theorem shows that the fuzzy set Λ(P̃ ) of linear extensions of
the fuzzy partial order P̃ = π(x̃1, . . . , x̃n) can be obtained by applying the extension
principle to the mapping λ from Rn to LU .
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Theorem 5 Let P̃ = π(x̃1, . . . , x̃n) be the fuzzy partial order induced by n fuzzy in-
tervals x̃1, . . . , x̃n. Let Λ(P̃ ) ∈ [0, 1]LU be the fuzzy set of linear extensions of P̃ . We
have, for all L ∈ LU :

µ
Λ(P̃ )

(L) = sup
L=λ(x1,...,xn)

µx̃1(x1) ∧ . . . ∧ µx̃n(xn)

Proof. From Theorem 4 we have, for all β ∈ (0, 1], π(x̃β1 , . . . , x̃
β
n) = P̃ (1−β)+ and, from

Theorem 3, Λ(P̃ (1−β)+) = λ(P̃ )β. Hence, from Theorem 1,

λ(P̃ )β = Λ ◦ π(x̃β1 , . . . , x̃
β
n) = λ(x̃β1 × . . .× x̃

β
n).

Let F the fuzzy subset of LU defined by

µF (L) = sup
L=λ(x1,...,xn)

µx̃1(x1) ∧ . . . ∧ µx̃n(xn).

Since LU is finite, we have F β = λ(x̃β1 × . . .× x̃
β
n) (see, e.g., [6, page 50]). Since λ(P̃ )

and F have the same β-cuts for all β ∈ (0, 1], they are equal, which completes the
proof. �

4.4 Fuzzy rank correlation between two fuzzy partial orders

Definition

As before, let us denote by (x1, y1), . . . , (xn, yn) the values taken by two continuous
variables (X,Y ) for n members of a population. We now assume that, because of
the imperfectness of the observation process, these values are only partially known,
and are constrained by possibility distributions. The available data thus consists of
n pairs of fuzzy numbers (x̃1, ỹ1), . . . , (x̃n, ỹn). Let T̃ denote the fuzzy set of possible
values for the Kendall’s tau coefficient, defined by applying the extension principle to
the function:

(x1, y1), . . . , (xn, yn)→ τ(λ(x1, . . . , xn), λ(y1, . . . , yn)).

Its membership function is thus defined as:

µ
T̃

(t) = sup
t=τ(λ(x1,...,xn),λ(y1,...,yn))

(
n∧
i=1

µx̃i(xi)

)
∧

(
n∧
i=1

µỹi(yi)

)

= sup
t=τ(LX ,LY )

(
sup

LX=λ(x1,...,xn)

n∧
i=1

µx̃i(xi)

)
∧

(
sup

LY =λ(y1,...,yn)

n∧
i=1

µỹi(yi)

)

Using Theorem 5, this expression can be simplified as:

µ
T̃

(t) = sup
t=τ(LX ,LY )

µ
Λ(P̃X)

(LX) ∧ µ
Λ(P̃Y )

(LY ), (17)

with P̃X = π(x̃1, . . . , x̃n) and P̃Y = π(ỹ1, . . . , ỹn). The β-cut of T̃ is therefore:

T̃ β = {τ(LX , LY ), LX ∈ Λ(P̃X)β, LY ∈ Λ(P̃Y )β}.

13



From Theorem 3, this is equal to:

T̃ β = {τ(LX , LY ), LX ∈ Λ(P̃
(1−β)+
X ), LY ∈ Λ(P̃

(1−β)+
Y )}.

To facilitate the computations, we propose to approximate T̃ by the “fuzzy convex
hull” of µ

T̃
, i.e., the most precise fuzzy interval τ̃ such that µτ̃ ≥ µT̃ . The β-cut of τ̃ ,

for any β ∈ (0, 1] is thus the convex hull of T̃ β. We have

τ̃β =

[
min

LX∈Λ(P̃
(1−β)+
X ),LY ∈Λ(P̃

(1−β)+
Y )

τ(LX , LY ),

max
LX∈Λ(P̃

(1−β)+
X ),LY ∈Λ(P̃

(1−β)+
Y )

τ(LX , LY )

]
(18)

From (7), this can be written as:

τ̃β = τ
(
P̃

(1−β)+
X , P̃

(1−β)+
Y )

)
, (19)

or, equivalently using Theorem 4:

τ̃β = τ
(
π(x̃β1 , . . . , x̃

β
n), π(ỹβ1 , . . . , ỹ

β
n)
)
. (20)

Equations (19) and (20) show that τ̃ can be computed β-cutwise in two ways, either
from the β-cuts of the x̃i’s and the ỹi’s, or from the strong (1−β)-cuts of the induced
fuzzy partial orders. This confirms the fact that the fuzzy relations P̃X and P̃Y capture
all the ordinal information in the data.

From a computational point of view, τ̃ can be approximated by estimating the
lower and upper bounds of a few of its β-cuts in (19) using the Monte-Carlo approach

described in Section 3.2, i.e., by sampling from Λ(P̃
(1−β)+
X ) and Λ(P̃

(1−β)+
Y ) according

to a uniform distribution. An alternative approach might be to sample from the x̃βi
and ỹβi intervals and use (20). The former approach, which consists in sampling from
a finite space, is obviously much more efficient computationally than the latter, which
deals with a continuous space, as will be shown in Example 7.

Example 6 Let us consider the data in Table 5, in which each observed value is a
triangular fuzzy number. The data in Tables 1 and 2 are, respectively, the cores and
the supports of these fuzzy numbers.

The fuzzy partial order P̃X induced by the x̃i’s is the one studied in Example 5
and shown in Table 4. Its fuzzy set of linear extensions is given by (14). The fuzzy
partial order P̃Y induced by the ỹi’s is shown in Table 6.

By reproducing the same line of reasoning as in Example 5, we can easily see that
the fuzzy set of linear extensions of P̃Y is:

Λ(P̃Y ) =

{
(3, 1, 4, 2)

1
,
(1, 3, 4, 2)

1/2

}
.

Table 7 illustrates the computation of T̃ from (17). Each column in this table shows a
linear extension LX with its membership degree µ

Λ(P̃X)
(LX) to Λ(P̃X), and each row
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shows a linear extension LY with its membership degree µ
Λ(P̃Y )

(LY ) to Λ(P̃Y ). The

corresponding cell in the table contains τ(LX , LY ) and µ
Λ(P̃X)

(LX)∧µ
Λ(P̃Y )

(LY ). We

can easily deduce from this table the expression of T̃ :

T̃ =

{
−2/3

2/3
,
−1/3

1
,

0

1/2
,
1/3

1/3

}
.

The β-cuts of T̃ for the different values of β ∈ (0, 1] are:

T̃ β =


{−2/3,−1/3, 0, 1/3} if 0 < β ≤ 1/3
{−2/3,−1/3, 0} if 1/3 < β ≤ 1/2
{−2/3,−1/3} if 1/2 < β ≤ 2/3
{−1/3} if 2/3 < β ≤ 1.

We thus have:

τ̃β =


[−2/3, 1/3] if 0 < β ≤ 1/3
[−2/3, 0] if 1/3 < β ≤ 1/2
[−2/3,−1/3] if 1/2 < β ≤ 2/3
{−1/3} if 2/3 < β ≤ 1.

The membership function of τ̃ is, consequently,

µτ̃ (t) =


0 if t ∈ (−∞,−2/3) ∪ (1/3,+∞)
2/3 if t ∈ [−2/3,−1/3)
1 if t = −1/3
1/2 if t ∈ (−1/3, 0]
1/3 if t ∈ (0, 1/3].

Significance test

A fuzzy significance probability p̃(τ̃) (for the test problem described in Section 2.2)
can be defined by applying the extension principle to (4). Its β-cut is p̃(τ̃)β =
[p−(τ̃β), p+(τ̃β)], where p− and p+ are defined by (10) and (11).

Applying the extension principle to (3) or (5) results in the same possibility dis-
tribution µϕ̃α on {0, 1}:

µϕ̃α(1) = sup
p≤α

µp̃(p) (21)

µϕ̃α(0) = sup
p>α

µp̃(p). (22)

The quantity µϕ̃α(1) may be interpreted as the possibility of the event p ≤ α, according
to the possibility distribution p̃. It is thus the possibility that the null hypothesis would
be rejected, had the realizations of X and Y be precisely observed for the sample under
study. Note that this should not be interpreted as the possibility that H0 is false. The
possibility distribution µϕ̃α is defined on the set {0, 1} of decisions, and not on the
set of hypotheses. In the case of precise data, µϕ̃α(1) = 0 whenever H0 is rejected,
although H0 can obviously not be claimed to be impossible.

In a similiar fashion, the quantity µϕ̃α(0) may be interpreted as the possibility of
the event p > α, i.e., the possibility that H0 would not be rejected, had the data been
precisely oberved. Equivalently, it is equal to one minus the necessity of rejection of
the null hypothesis.
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The result of such a fuzzy test is actually contained in the two numbers µϕ̃α(1)
and µϕ̃α(0), which can also be seen as degrees of membership in a fuzzy subset of the
set {0, 1}, defining a “fuzzy decision”. In the case where a crisp decision is absolutely
needed, this fuzzy subset may be defuzzified, which will result in rejecting H0 whenever
the possibility of rejection is greater than the possibility of non-rejection, i.e. whenever
µϕ̃α(1) > µϕ̃α(0).

Note that this approach may easily be extended to the case where the significance
level α is itself fuzzy. In that case, the possibility and the necessity of the event p ≤ α
according to the joint possibility distribution of p̃ and α̃ are, respectively,

Π(p ≤ α) = sup
p≤α

µp̃(p) ∧ µα̃(α) (23)

and
N(p ≤ α) = 1− sup

p>α
µp̃(p) ∧ µα̃(α). (24)

Example 7 Figure 5 shows a fuzzy data set obtained by fuzzifying the data in Ex-
ample 2. The data consist of n = 10 pairs of triangular fuzzy numbers (x̃i, ỹi)
(i = 1, . . . , 10), whose cores, 1/2-cuts and supports are, respectively, the data in
Figures 1, 3 and 4. The fuzzy correlation coefficient τ̃ is shown in Figure 6, together
with the 5% critical values. The membership function of τ̃ was approximated from 10
equally spaced β-cuts using a piecewise cubic Hermite interpolation method.

An alternative view is provided by Figure 7, where the membership function of
the fuzzy p-value is plotted together with the 5% significance level. We have Π(p ≤
0.05) = µϕ̃0.05

(1) = 1 and Π(p > 0.05) = µϕ̃0.05
(0) ≈ 0.37. It is thus fully possible

that the independence hypothesis would be rejected at the 5% significance level if the
precise data were available, but there is also a possibility of 0.37 that H0 would not
be rejected.

The convergence of our Monte-Carlo approach, in which linear orders are sampled

from Λ(P̃
(1−β)+
X ) and Λ(P̃

(1−β)+
Y ) using the procedure described in Appendix B, was

compared to the naive approach that consists in sampling from x̃βi and ỹβi using a
uniform distribution. Results are shown in Figure 8, in which the absolute difference
∆τ̃β between the estimated bounds of τ̃β are plotted as a function of the number
of trials, for the two methods and different values of β. These results confirm that
sampling from the fuzzy sets of linear extensions of fuzzy partial orders P̃X and P̃Y
results in significantly faster convergence.

Example 8 To demonstrate the application of our method to real data, let us consider
the data set reported in Table 8. This data set consists of values of 5 perceptive
attributes related to 8 objects, recorded during a sensory analysis experiment. The
assessor was asked to to assess his perception of each attribute for each object on a
scale between 0 and 100, in the form of lower and upper bounds, as well as a point
estimate. In our approach, each triple is modeled by a triangular fuzzy number x̃i,
and is interpreted as a possibility distribution related to an unknown value xi, itself a
realization of a random variable Xi. Randomness arises from the selection of objects
(assumed to be sampled from a hypothetical population), as well as environmental
factors which influence the perception by the assessor. In contrast, fuzziness arises
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from the limited ability of the assessor to describe his perception using numbers, which
is not influenced by random factors.

The fuzzy tau coefficients between each pair of attributes are shown in Figure
9, together with the 5 % critical values. We observe that the attribute pairs (1,2),
(1,3), (2,3), (2,5) and (4,5) are certainly independent at the 5 % significance level (the
independence assumption would not be rejected at the significance level, whatever
the values of the data within the bounds provided by the assessor). The other cases
are more ambiguous. However, there is strong evidence of positive correlation for the
pair (1,3), and negative correlation for the pair (3,5); in both case, it is completely
possible (but not certain) that the independence assumption would be rejected at the
5 % significance level, if the precise attribute values were available.

5 Mann-Whitney-Wilcoxon two-sample test

The purpose of this section is to show that the concepts introduced in this paper
can easily be applied to any nonparametric rank-based statistical procedure. The
Mann-Whitney-Wilcoxon two-sample test, a well known procedure for comparing two
distributions, will be used as an illustration.

5.1 Principle

The Mann-Whitney-Wilcoxon two-sample test is based on the Wilcoxon two-sample
rank sum statistic W defined as follows [18]. Let x1, . . . , xn and y1, . . . , ym be two
independent samples. Combine the two samples, and order the resulting sample of
size N = n+m. Let ri be the rank of xi in the combined sample. Then W =

∑n
i=1 ri,

the sum of ranks of the xi’s. Under the hypothesis H0 that the two samples have the
same distribution, the mean and variance of W are:

E(W ) =
n(N + 1)

2

V ar(W ) =
nm(N + 1)

12
,

and the distribution of W can be considered to be approximately normal whenever n
and m are greater than 10. The null hypothesis can then be rejected at the α level
(against the alternative hypothesis H1 that the two samples do not have the same
distribution) when∣∣∣∣W − n(N + 1)

2

∣∣∣∣ > Φ−1
(

1− α

2

)√nm(N + 1)

12
. (25)

The corresponding p-value p(W ) is:

p(W ) = 2

[
1− Φ

(∣∣∣∣W − n(N + 1)

2

∣∣∣∣
√

12

nm(N + 1)

)]
. (26)
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5.2 Extension to fuzzy data

Let z1, . . . , zN denote the combined sample, and L = λ(z1, . . . , zN ) the induced linear
order. The Wilcoxon statistics depends only on L and may be noted W (L). Let
z̃1, . . . , z̃N be N fuzzy intervals defining fuzzy constraints on the zi’s, et let P̃ =
π(z̃1, . . . , z̃N ) be the corresponding fuzzy partial order. The fuzzy Wilcoxon statistic
may be defined as the fuzzy interval with β-cut

W̃ β =

[
min

L∈Λ(P̃ (1−β)+)
W (L), max

L∈Λ(P̃ (1−β)+)
W (L)

]
(27)

for all β ∈ (0, 1]. As in the case of the Kendall’s tau coefficient, the bounds of W̃ β

may be approximated by randomly generating linear extensions of P̃ (1−β)+ using the
algorithm described in Appendix B.

A fuzzy p-value p̃(W̃ ) can be defined by applying the extension principle to (26).
Let U− and U+ denote the lower and upper bounds of W (L) − n(N + 1)/2 for all

L ∈ Λ(P̃ (1−β)+). The β-cut p̃(W̃ )β of p̃(W̃ ) is the closed interval [p−(W̃ β), p+(W̃ β)]
with

p−(W̃ β) = 2

[
1− Φ−1

(
max(U+,−U−)

√
12

nm(N + 1)

)]
(28)

p+(W̃ β) = 2

[
1− Φ−1

(
max(0, U−,−U+)

√
12

nm(N + 1)

)]
. (29)

The possibility of rejection and non-rejection of H0 are then defined by (21) and
(22), respectively.

Example 9 Figure 11 shows the fuzzy Wilcoxon statistic and associated 5% critical
values for the trapezoidal fuzzy data displayed in Figure 10. The corresponding p-
value is shown in Figure 12. As we can see, the null hypothesis is, in that case, both
rejected at the 5% significance level with possibility 1, and accepted with possibility
0.45.

6 Conclusions

We have shown that nonparametric statistical procedures based on orderings of obser-
vations can be easily extended to fuzzy data, using the concept of fuzzy partial order
induced by fuzzy numbers. This fuzzy order can be viewed as defining a fuzzy set of
linear orders compatible with the observations, which induces possibilistic constraints
on the statistic of interest, as well as on the p-value of an associated signifiance test.

The approach has been demonstrated using two special cases: the Kendall’s tau
coefficient and the Wilcoxon two-sample rank test. It can be applied without any
difficulty to other rank-based nonparametric procedures, such as the Wilcoxon one-
sample sign test, the Kruskal-Wallis test (a generalization of the Wilcoxon two-sample
test for more than two populations), Kendall’s coefficient of concordance between
several rankings, etc.
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In this paper, the variables under study have been assumed to be continuous,
so that ties could not occur. In terms of ordering relation, a consequence of this
assumption is that only linear orders have been considered. A generalization to weak
orders, allowing to deal effectively with the problem of ties, is left for further study.
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A Proof of Theorem 1

Our proof of Theorem 1 uses the concept of maximal antichains of an interval order.
We first introduce this notion and important related result, and then proceed with
the proof.

A subset M of U is an antichain of P if (u, v) 6∈ P and (v, u) 6∈ P for all u, v in M .
A maximal antichain is an antichain not properly contained in any other antichain.
Let MA(P ) denote the set of maximal antichains of P . The following lemma, proved
in [9] and cited in [28], states that there exists a natural linear ordering on MA(P ).

Lemma 1 Let MA(P ) be the set of maximal antichains of an interval order P on U .
Let < denote the relation on MA(P ) defined by

M < M ′ ⇔ (M \M ′)P (M ′ \M), ∀M,M ′ ∈MA(P ),

where the relation P is extended to subsets of U . Then < is a linear order.

Example 10 Let us consider the four intervals xi, i = 1, . . . , 4 shown in Figure 13.
These intervals are assumed to be related to four objects ui, i = 1, . . . , 4. The induced
partial order P has three maximal antichains M1 = {u1, u2}, M2 = {u2, u3} and
M3 = {u3, u4}. We have M1 \ M2 = {u1}, M2 \ M1 = {u3} and u1Pu3. Hence,
M1 < M2. Similarly, M2 \ M3 = {u2}, M3 \ M2 = {u4} and u2Pu4, therefore
M2 < M3. The linear order on MA(P ) is, consequently, M1 < M2 < M3.

We now proceed with the proof of Theorem 1.

Part 1: λ(x1 × . . . × xn) ⊆ Λ(P ). Let L = λ(x1, . . . , xn) ∈ λ(x1 × . . . × xn) with
xi 6= xj , ∀i 6= j. For all (ui, uj) ∈ P , we have:

supxi ≤ inf xj ⇒ xi < xj ⇒ (ui, uj) ∈ L.

Hence, L is a linear extension of P . We thus have λ(x1 × . . .× xn) ⊆ Λ(P ).

Part 2: Λ(P ) ⊆ λ(x1×. . .×xn). A constructive proof may be deduced from Lemma
1. Let L be a linear extension of P . Without loss of generality, let us assume that we
have uiLuj if and only if i < j. We want to define n numbers x1 < . . . < xn such that
xi ∈ xi, i = 1, . . . , n. Let M1 < . . . < Mq denote the maximal antichains of P , with
Mk = {ui ∈ U | i ∈ Ik}. Consider the following algorithm:

• Begin

• `← {1, . . . , n}

• For k = 1 : q,

– `′ ← ` ∩ Ik
– choose card(`′) distinct points xi, i ∈ `′, in

⋂
i∈Ik xi such that i < j ⇒ xi <

xj for all i, j in `′.

– `← ` \ `′.

21



– EndFor

• End

By construction, the above procedure generates n distinct points x1 < . . . < xn such
that xi ∈ xi, i = 1, . . . , n. Hence L ∈ λ(x1 × . . .× xn), which completes the proof. �

Example 11 Let us come back to Example 10 and Figure 13. At step one (k = 1),
we have ` = {1, 2, 3, 4} and `′ = ` ∩ I1 = {1, 2}. We thus pick two numbers x1 and
x2, with x1 < x2, in x1 ∩ x2. At the second step (k = 2), we have ` = {3, 4} and
`′ = ` ∩ I2 = {3}. We pick one number x3 in x2 ∩ x3. Lastly, at step three (k = 3),
we have ` = {4} and `′ = ` ∩ I3 = {4}. We thus pick one number x4 in x3 ∩ x4. By
construction, we have x1 < x2 < x3 < x4.

B Random generation of linear extensions

A good summary of Bubley and Dyer’s algorithm [5] and its properties can be found
in [14]. This summary is essentially reproduced here.

Let P be a partial order on a set U of n elements. We encode each linear order on
U by a permutation σ of Nn = {1, . . . , n}. The algorithm constructs a Markov chain
Mf = (σt)t≥0 as follows. At any time step t, toss a fair coin. If the coin lands head,
then let σt+1 = σt. If the coin lands tail, choose an index i ∈ Nn−1 according to a fixed
probability distribution f . If the permutation σ obtained from σt by switching the
elements i and i+1 of σt is also a linear extension of P , then let σt+1 = σ. Otherwise,
let σt+1 = σt.

It can be shown that Mf si ergodic with uniform stationary distribution. The
running time required to obtain a certain precision ε (defined by a measure of distance
to the uniform distribution) depends on f . If f is uniform, then this time (called the
mixing time) is O(n5 log n + n4 log ε−1). Bubley and Dyer showed that the mixing
time can be reduced to O(n3 log nε−1) by defining f as f(i) = i(n − i)/K with K =
(n3 − n)/6.
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Tables

Table 1: Data of Example 1.

i 1 2 3 4
xi 11.5 9.5 15.5 16.5
yi 10.0 15.5 9.0 13.5

Table 2: Data of Example 3.

i 1 2 3 4
xi [10,13] [8,11] [14,17] [15,18]
yi [9,11] [15,16] [8,10] [13,14]

Table 3: Kendall’s correlation coefficients between the linear extensions of PX and PY
in Example 3.

τ (1, 2, 3, 4) (2, 1, 3, 4) (1, 2, 4, 3) (2, 1, 4, 3)
(1, 3, 4, 2) 1/3 0 0 -1/3
(3, 1, 4, 2) 0 -1/3 -1/3 -2/3
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Table 4: Fuzzy partial order of Example 5.

P̃ ↗ u1 u2 u3 u4
u1 0 0 1 1
u2 2/3 0 1 1
u3 0 0 0 1/3
u4 0 0 0 0

Table 5: Data of Example 6.

i 1 2 3 4
x̃i (10,11.5,13) (8,9.5,11) (14,15.5,17) (15,16.5,18)
ỹi (9,10,11) (15,15.5,16) (8,9,10) (13,13.5,14)

Table 6: Fuzzy partial order P̃Y of Example 6.

P̃Y ↗ u1 u2 u3 u4
u1 0 1 0 1
u2 0 0 0 0
u3 1/2 1 0 1
u4 0 1 0 0

Table 7: Computation of the fuzzy Kendall’s correlation coefficients between the linear
extensions of P̃X and P̃Y in Example 6.

τ (1,2,3,4)
1/3

(2,1,3,4)
1

(1,2,4,3)
1/3

(2,1,4,3)
2/3

(1,3,4,2)
1/2

1/3
1/3

0
1/2

0
1/3

−1/3
1/2

(3,1,4,2)
1

0
1/3

−1/3
1

−1/3
1/3

−2/3
2/3

Table 8: Triangular fuzzy data of Example 8. Each column contains the fuzzy values
of an attribute reported for 8 objects.

Attributes
1 2 3 4 5

(6.8,11.2,13.0) (92.9,94.6,97.4) (63.6,66.7,76.1) (87.8,90.7,94.6) (47.8,60.3,64.2)
(21.4,25.7,34.1) (80.4,87.0,92.7) (2.5,5.6,8.3) (96.2,96.2,100) (97.6,99.9,99.9)
(75.7,81.6,84.5) (70.4,78.2,80.2) (4.8,4.8,9.7) (38.8,45.2,53.0) (80.6,86.0,89.7)
(96.2,96.2,99.9) (0,6.4,13.2) (77.6,84.7,89.9) (70.2,75.5,81.7) (0,5.2,9.9)
(88.6,93.8,97.2) (83.5,90.5,95.2) (6.2,9.9,14.8) (10.3,19.2,25.1) (77.4,85.6,92.5)
(95.0,95.0,100) (0.1,0.1,5.8) (79.2,86.4,93.1) (12.2,12.2,20.4) (0.1,0.1,9.1)

(0.1,0.1,0.1) (68.5,91.5,91.5) (0.1,0.1,0.1) (0.1,0.1,0.1) (80.6,91.1,95.0)
(97.4,99.9,99.9) (100,100,100) (100,100,100) (95.4,99.9,99.9) (30.0,41.5,58.7)
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Figure 1: Data set of Example 2.
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Figure 3: First data set of Example 4.
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Figure 4: Second data set of Example 4.
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Figure 5: Fuzzy data set of Example 7.
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Figure 6: Fuzzy τ coefficient (Example 7). The vertical lines define the critical re-
gion of the 5% significance test (the null hypothesis is rejected if τ lies outside these
thresholds).
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Figure 7: Fuzzy p-value (Example 7). The vertical line corresponds to the 5% signifi-
cance level.
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Figure 8: Estimated length of the τ̃β interval for the data of Example 7, as a function
of the number of iterations in the Monte-Carlo simulation, using the method proposed
in this paper (solid lines) and by samping from the x̃βi and ỹβi intervals (dotted lines),
for four different values of β.
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Figure 9: Fuzzy tau coefficients between each pair of attributes for the data of Example
8, together with 5 % critical values.
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Figure 10: Fuzzy data set of Example 9.
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Figure 11: Fuzzy two-sample rank Wilcoxon statistic (Example 9). The vertical lines
define the critical region of the 5% significance test (the null hypothesis is rejected if
τ lies outside these thresholds).

30



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p−value

p

m
e

m
b

e
rs

h
ip

 d
e

g
re

e

Figure 12: Fuzzy p-value (Example 9). The vertical line corresponds to the 5% sig-
nificance level.

Figure 13: Data of Examples 10 and 11.
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