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Abstract

This paper presents a rational approach to the representation and manipula-
tion of imprecise degrees of belief in the framework of evidence theory. We adopt
as a starting point the non probabilistic interpretation of belief functions provided
by Smets’ Transferable Belief Model, as well as previous generalizations of evi-
dence theory allowing to deal with fuzzy propositions. We then introduce the con-
cepts of interval-valued and fuzzy-valued belief structures, defined, respectively,
as crisp and fuzzy sets of belief structures verifying hard or elastic constraints.
We then proceed with a generalization of various concepts of Dempster-Shafer
theory including those of belief and plausibility functions, combination rules and
normalization procedures. Most calculations implied by the manipulation of these
concepts are based on simple forms of linear programming problems for which an-
alytical solutions exist, making the whole scheme computationally tractable. We
discuss the application of this framework in the areas of decision making under
uncertainty and classification of fuzzy data.

Keywords: Evidence Theory, Belief Functions, Fuzzy Numbers, Uncertainty
Representation, Approximate Reasoning, Decision Making, Pattern Recognition.

1 Introduction

One of the main objections against the adoption of Probability theory as a universal
model of uncertainty is its “unreasonable requirement for precision” [28]. As convinc-
ingly argued by Walley [28], imprecision can hardly be avoided in the representation of
beliefs because of indeterminacy of actual or ideal beliefs, and model incompleteness.
Indeterminacy, which may be defined as an absence of preference between different
alternatives, is mainly due to lack of information. The inability of the Bayesian model
of subjective probabilities to represent states of total ignorance has been pointed out
by many authors [20, 22, 28], and has been one of the main incentives for studying
non additive uncertainty measures such as belief functions [20]. Such measures may
be obtained by distributing fractions of a unit “mass of belief” to certain subsets of



a possibility space €2, the belief in A C ) being then defined as the mass assigned to
subsets of A. In this framework, total ignorance is easily represented by the assign-
ment of the total mass of belief to the whole possibility space, while probabilities are
recovered as a special case when all belief masses are allocated to singletons.

The second main source of imprecision in belief representation is model incom-
pleteness, which essentially stems from difficulties in analyzing evidence and eliciting
numerical degrees of belief. Even though such numbers may in principle exist, their
practical determination may be too difficult, too costly, or unnecessary [28]. Within
the probabilistic framework, such arguments have lead to theories of imprecise proba-
bilities in which an unknown probability measure is only partially specified by proba-
bility intervals assigned to certain propositions. The replacement of hard constraints
by elastic ones leads in turn to the notion of fuzzy or linguistic probability, which was
introduced by Zadeh [36] and explored by several authors [29, 13, 12].

The approach discussed in this paper attempts to combine the two previous ideas,
by defining a theoretical and practical framework in which imprecise belief masses
may be assigned to imprecise propositions. This idea was already present in a paper
by Zadeh [38, p. 15], who related some concepts of Evidence theory to the notions of
expected possibility and expected certainty, the expectation being taken with respect
to crisp or fuzzy probabilities. Despite its generality and mathematical elegance,
this idea seems to have been, so to say, overlooked for many years, which may be
due to at least two reasons. The first one is related to the wide acceptance of a
particular interpretation of belief functions in terms of lower and upper bounds of a
family of probability functions, as originally proposed by Dempster [1]. Under this
interpretation, a belief function is viewed as defining probability intervals, and there
does not seem to be any reason for allowing additional imprecision. However, as shown
by Smets [24], the Dempster model is but one interpretation of the theory of belief
functions, and is open to certain criticisms regarding the conditioning and evidence
combination mechanisms. These inconsistencies are avoided in the Transferable Belief
Model (TBM) introduced by Smets [22, 27|, in which belief functions are seen as
alternatives to probability functions for pointwise representation of the beliefs held by
a rational agent. This view is accepted in this paper, which presents what may be
seen as an extension of the TBM allowing imprecision in the specification of degrees
of belief.

The second factor which seems to have prevented the widespread use of imprecise
degrees of belief in evidence theory is the general feeling that the manipulation of
such numbers would be intractable. For example, Lamata and Moral [17] attempted
to define rules of calculus with linguistic probabilities and beliefs, but they felt that
they had to “sacrifice mathematical purity to get an efficient and simple calculus”.
This lead them to defining heuristic rules and “ad hoc” methods which cannot be
widely accepted for lack of clear theoretical justification.

This aim of this paper is to present and discuss a principled approach allowing
the representation and manipulation of imprecise degrees of belief in the framework
of evidence theory. We adopt as a starting point the TBM interpretation of belief
functions, as well as previous generalizations of Evidence Theory allowing to deal with
fuzzy propositions. We then introduce the concepts of interval-valued and fuzzy-valued
belief structures, and proceed with a generalization of various concepts of Dempster-
Shafer theory including those of belief and plausibility functions, combination rules



and normalization procedures. We show that, for that matter, mathematical rigor is
compatible with computational tractability, and that imprecise degrees of belief may
be used efficiently in certain problems such as fuzzy data analysis.

The organization of the paper is as follows. Section 2 presents the necessary
background concerning the theory of belief functions and previous “fuzzifications” of
this theory. The concept of interval-valued belief structure (IBS) is then introduced
in Section 3, where various issues pertaining to the use and manipulation of such
mathematical objects are discussed. A further generalization is carried out in Section
4, in which we define a fuzzy-valued belief structure (FBS) as a fuzzy set of belief
structures defined by fuzzy constraints. The manipulation of such objects is shown to
be quite easy using the techniques introduced in the previous section. Finally, Section
5 discusses two general applications of this framework in the areas of decision making
and pattern classification.

2 Background

2.1 Basic definitions

Let € denote a finite set of possible answers to a certain question, and let Y be a
variable describing the correct (but unknown) answer. We wish to propose a coherent
description of the beliefs held by a rational agent (denoted by “You”) regarding the
value taken by Y, given a certain body of evidence. In the TBM, it is assumed that
Your state of belief at a given time may be represented by the distribution of a unit
“mass of belief” to certain crisp subsets of Q [22, 27]. The fraction of the mass (also
called a belief number) assigned to A C € represents the part of Your belief that
supports A (i.e., the hypothesis that Y € A), without supporting any more specific
subset, because of lack of sufficient information. Mathematically, such an allocation
of belief numbers to subsets of Q defines a function m from 2% to [0, 1], verifying:

Y m4) =1, (1)

ACQ

which is called a belief structure (BS), or a basic belief assignment. The subsets A of
such that m(A) > 0 are called the focal elements of m. A belief structure m such that
m(() = 0 is said to be normal. The normality condition corresponds to the certainty
that Y lies in Q. If Q is assumed to be exhaustive (closed-world assumption), then
such a condition should be imposed (this is the situation initially considered by Shafer
[20]). In the most general case, however, the allocation of a positive belief number to
the empty set may be interpreted as quantifying Your belief that Y & Q [22].
Assuming Your state of belief to be represented by m, Your total belief in the
proposition Y € A is represented by a number, called the credibility of A, and defined
as:
bel,,(4) 2 Y m(B). (2)

0£BCA

Such a function bel,, : 2% + [0,1], called a belief function, may be shown to have
the property of complete monotonicity [20]. Smets recently proposed a set of axioms
justifying the use of belief functions for representing degrees of belief [26]. Closely



related to the notion of belief function is that of plausibility function, defined for each
A CQ as:

plo(4) 2 Y m(B) (3)

BNA#()
= bel,(Q) — belm(ﬂ) (4)

where A denotes the complement of A. The quantity pl,,(A) receives a natural in-
terpretation as the amount of potential support that could be given to A, if further
evidence became available. It should be noted that the three functions m, bel,;, and
pl,,, are in one-to-one correspondence, and therefore constitute three equivalent rep-
resentations of the same information (Your state of belief).

Let us now assume that You collect two distinct pieces of evidence coming from
two different sources. Let m; and ms denote the BSs induced by each of these pieces
of evidence considered individually. Then, m; and meo may be combined in several
different ways, depending on Your knowledge concerning the reliability of the two
sources. If You know that they both are reliable, then You may combine m; and mso
conjunctively by defining a new BS m1 Nmy as:

(minmo)(A) 2 Y~ my(B)ma(C) VAC Q. (5)
BNC=A

On the other hand, if You only know that at least one of the two sources is reliable,
then the corresponding BSs should rather be combined in a disjunctive fashion [9, 23],
leading to:

(m1Umg)(A) £ Y my(B)ma(C) VACQ. (6)

BUC=A

Note that the conjunctive sum as described by (5) may produce a subnormal BS
(i.e., it is possible to have (m; N mg)(@) > 0). Under the closed-world assumption,
some kind of normalization thus has to be performed. The Dempster normalization
procedure converts a subnormal BS m into a normal BS m* defined by:

m(A) )
m') 2 Tom@ A7
0 if A=0.

(7)

The conjunctive sum operation with Dempster normalization is the orthogonal sum
operation (also called Demspter’s rule of combination) initially studied by Shafer [20].
To avoid some counterintuitive effects of this rule in case of conflicting evidence, other
normalization procedures have been proposed. In particular, Yager [32] proposed to
convert a subnormal BS m into a normal one m° by transferring the mass m() to
the whole frame of discernment, leading to the following definition:

m(A) if Ae22\{0,Q}
m°(A) £ m(Q) +m(0) if A=Q (8)
0 if A=0.

However, the association of the conjunctive sum with this normalization procedure
(hereafter referred to as Yager normalization) defines an operation on BSs which is
no longer associative.



Another important concept in the TBM is that of pignistic transformation. As-
sume that Your state of belief is described by a BS m, and You have to select an action
among a set A. The consequences of these actions only depend on the value of Y, in
such a way that, if You choose action a; while Y = w;, You surely gain a reward whose
utility is measured by some number wu; ;. What should be Your decision? Starting
from simple rationality requirements, Smets [27] showed that the solution resides in
the transformation of m into a pignistic probability function, defined for all A C 2 as:

BetP(4) 2 Y m*(B) ’AU;B’ : (9)

BCQ,BA)

where m* is the normalized form of m according to the Dempster procedure (7).

The selected action is then the one entailing the maximum expected utility, relative
to the pignistic probability function. The pignistic transformation thus provides a
bridge between a “credal” level, where beliefs are represented by belief functions, and
a decision level where decision are made according to an additive measure.

As argued by Smets [25], a distinctive advantage of the TBM as compared to
the classical Bayesian approach based on probability measures resides in its ability
to represent every state of partial belief, from absolute certainty up to the state
of total ignorance (described by the vacuous belief structure verifying m(Q) = 1).
However, the TBM in its standard form does not allow You to assign degrees of
belief to ambiguous propositions such as expressed in many verbal statements. For
example, assume that You want to forecast the temperature of the next day. Let
Q = {-10,...,40} be Your frame of discernment (temperatures being measured in
°C). You are told by expert Fj that tomorrow’s temperature will be wvery high,
whereas another expert Fo asserts that it will be medium. Knowing that You have
degrees of confidence of 0.5 in expert ;1 and of 0.8 in expert Eo, what is Your belief
that tomorrow’s temperature will be high 7 A possible approach to answer such a
question is to extend the theory in order to allow degrees of belief to be assigned to
fuzzy subsets of the possibility space. Such extensions have been proposed by several
authors and are reviewed in the next section.

2.2 Extension to fuzzy propositions

The idea of extending the concepts of evidence theory to fuzzy sets was first proposed
by Zadeh [38], in relation to his work on information granularity and Possibility theory.
The approach described in [38] is based on a generalization of the Dempster’s model, in
which belief functions are introduced as lower probabilities induced by a multivalued
mapping [1]. In Zadeh’s model, a body of evidence is represented as a probability
distribution Px of a random variable X taking values in an underlying space U =
{1,...,n}, and a possibility distribution I1(y|x) of ¥ given X. For a given value 7 of
X, the conditional possibility distribution Il(y|x) defines a normal fuzzy subset F; of
Q) such that
My ix= = In. (10)
The probability distribution of X induces on €2 a belief structure m whose focal ele-
ments are the fuzzy sets F;, 1 <i < n (this is called a fuzzy belief structure by Yager
[30]), and
m(F;) = Px(i) VieU. (11)



For any fuzzy subset A of €, let us denote II(A|F;) the conditional possibility
measure of A given that Y is F;. This quantity is equal to:

II(A|F;) = Poss(Y is A|X =1) (12)
= maxpy(w) A pr, (W), (13)

where p14 and pp, denote the membership functions of A and Fj, respectively, and A
denotes the minimum operator. The uncertainty on X being described by a probability
measure, it is then natural to consider the expectation of Poss(Y is A|X):

Ex[Poss(Y is A|X)] = Y Px(i)Poss(Y is A|X =) (14)
=1

= Zm I(A|F}) (15)

If both A and the F; are crisp, then Ex[Poss(Y is A|X)] is equal to the plausibility of
A, which allows to propose (15) as a general definition for the plausibility of a fuzzy
set A:

n
pl,(A) £ m(F)I(A|F). (16)
i=1
When the F; are crisp but A is fuzzy, then (15) may be written in the following
alternative form:

Zm ) max pig(w), (17)

wGF

which is exactly the upper expectatlon of the membership function of A with respect
to m [21]. In that sense, this definition of the plausibility of a fuzzy event may be seen
as generalizing Zadeh’s definition of the probability of a fuzzy event proposed in [35].

Similarly, the conditional necessity of the proposition Y is A given that Y is Fj is
given by:

N(A|F;)) 2 Nec(Y is A|X =1) (18)
= 1—Poss(Y is not A|X =) (19)
= minpy(w) Vg, W), (20)

where V denotes the maximum operator. The expected necessity of A is then defined
as

Ex[Nec(Y is A[X)] = Y Px(i)Nec(Y is A|X =1i) (21)
=1

= Zm N(A|F), (22)

which, when A and the F; are crisp (and provided F; # (), Vi), reduces to the credibility
of A, and can therefore be proposed as a definition of the credibility of a fuzzy event:

n

bely,(A) £ " m(F)N(A|F,). (23)

i=1



When the F; are crisp and A is fuzzy, we have:

bel,,(A4) = Z m(F;) gél}g pa(w), (24)
i=1 ‘

which is equal to the lower expectation of function p4 [21].

REMARK 1 The condition that the fuzzy focal elements of a fuzzy BS m be normal
(max F; = 1,Vi) generalize the normality condition (m(()) = 0) imposed to classical
belief structures under the closed-world assumption. If this condition is relaxed, the
definition of the conditional necessity of A given F; should to be changed to:

N(A|F;) £ I(QF) - II(A]F) (25)
= maxpup, (W) — max pa (W) A pg, (W), (26)

which ensures that the expected necessity is still a valid generalization of the credibility
[10].

Although (16) and (23) provide “natural” extensions of the concepts of plausibility
and credibility!, other definitions have been proposed. As remarked by Yager [30],
the min and max operations used in the definitions of the conditional possibility and
necessity measures may be replaced by any other ¢-norm and ¢-conorm, respectively,
leading to more general forms of plausibility and credibility measures. It is not clear,
however, how a particular pair of a t-norm and a t-conorm should be selected.

Starting from Dempster’s model but following a different path, Yen [34] proposed
another generalization of the concepts of belief and plausibility functions, based on a
decomposition of each fuzzy focal element F' of a fuzzy belief structure m into a collec-
tion of crisp focal elements “ F' (the ci-cuts of F') with belief numbers m(F)(co; —;—1).
This leads to the following alternative definitions of the credibility and plausibility of
a fuzzy subset A:

bel (4) 2 3" m(F) (i — aic1) min jua(w) (27)
F a;

pl, (4) £ ZF: m(F) %:(Oéi — Qi-1) Max pip(w). (28)
As noted by Yen, the belief and plausibility measures defined above are more sensitive
to changes in the membership functions of their focal elements, as compared to their
counterparts defined in (23) and (16) (or other, more ad hoc definitions proposed
by Ishizuka [15] and Ogawa [18]). However, given the relative arbitrariness that often
prevails in the choice of the membership function of a fuzzy set, this lack of robustness
might very well be viewed as a disadvantage of Yen’s approach. In the rest of this
paper, we shall adopt (23) and (16) as our definitions for the credibility and plausibility
of a fuzzy event.
The next step in the generalization of evidence theory to fuzzy events concerns
the combination of fuzzy belief structures. As proposed by Yager [31, 33], (5) and

n particular, the expected possibility and the expected necessity are, respectively, subadditive
and superadditive measures, as shown by Zadeh [38].



(6) may be readily extended to fuzzy belief structures by replacing crisp intersection
and union by fuzzy counterparts. More generally, any binary set operator V defines
a corresponding operation on BSs such that:

(miVma)(A) 2 Y~ mi(B)ma(C), (29)
BVC=A

where A is an arbitrary fuzzy subset of €.

Of course, the combination of two normal fuzzy BSs using, for example, the con-
junctive sum, produces a fuzzy BS that may not be normal. If the normality condition
is enforced, the conversion of an arbitrary fuzzy BS into a normal one may be per-
formed by generalizing either of the Dempster or Yager normalization procedures. Yen
[34] and Yager [33, 32] both propose to generalize the Dempster procedure as:

m*(A) N ZB*:A th(B) (30)

a ZBG]—‘(m) hpm(B)

where hp = max,, pup(w) denotes the height of B, B* is the normal fuzzy set defined
by pp+(w) = pp(w)/hp, and F(m) is the set of focal elements of m (this procedure
is called soft normalization par Yager). In [32], it is also proposed to generalize the
Yager procedure as:

m(A) 2 Y m(B) (31)
B°e=A
where B° is a normal fuzzy set defined by upe(w) = up(w) + 1 — hp.
Finally, it may be remarked here that pignistic probabilities may also be defined in
the case of fuzzy BSs, by generalizing (9) using the usual definition of the cardinality
of a fuzzy set B as |B| = ) .qpup(w) (the quantity % may then be interpreted

as a degree of subsethood of A in B [16]).

3 Interval-valued belief structures

Fuzzy belief structures and the associated concepts of credibility and plausibility of
fuzzy events, recalled in Section 2.2, constitute a very useful generalization of the the-
ory of belief functions, in that they provide a means of representing someone’s belief
in vague propositions such as produced in natural language. However, a fuzzy belief
structure still assigns precise real numbers to each focal element, thereby ignoring the
uncertainty attached to elicited belief numbers in many realistic situations. In this sec-
tion, we go one step further in the generalization of evidence theory, by allowing belief
masses to be provided in the form of intervals. This allows us to define a more flexible
framework in which Your beliefs are no longer described by a unique belief structure,
but by a convex set of belief structures verifying certain constraints. Although the
concept of interval-valued belief structure defined in this section is interesting its own
right [4], it is mainly seen in this paper as a preliminary step towards the complete
fuzzification of the TBM (undertaken in Section 4) in which fuzzy belief numbers are
allowed to be assigned to fuzzy propositions.



3.1 Definition

Our point of departure in this section is the notion of interval-valued belief structure
(IBS), defined as a set of belief structures verifying certain inequality constraints. In
the rest of this paper, we denote by [0, 1] the set of fuzzy subsets of 2, and by Sq the
set of belief structures on 2. The set of focal elements of a BS m will be noted F(m).
Unless explicitly stated, no distinction shall be made between BSs with crisp and
fuzzy focal elements, neither shall we assume the BSs to be normalized. The reader is
referred to a companion paper [4] for detailed proofs of most results presented in this
section.

DEFINITION 1 (INTERVAL-VALUED BELIEF STRUCTURE)

An interval-valued belief structure (IBS) m is a non empty subset of Sq such that
there exist n crisp or fuzzy subsets Fi, ..., F, of Q, and n intervals ([a;, b;])1<i<n Of
R, such that m € m iff

e a, <m(F;) <b; Vie{l,...,n}, and
o > m(F)=1. O
i=1

REMARK 2 As shown in [4], a necessary and sufficient condition for m to be non
empty is that Y ;" a; <1 and > b > 1.

REMARK 3 If m is a belief structure, then {m} is an IBS with a; = b; = m(F;) for all
F; € F(m). Hence, the concept of IBS generalizes that of BS.

REMARK 4 The set of all belief structures on €2 with crisp focal elements is an IBS
m with {F,...,F,} =2% and [a;,b;] = [0,1] for all i € {1,...,n}.

An IBS is completely specified by a set of n subsets {Fy,...,F,} of ©, and a
corresponding set of interval [a;,b;] for 1 < ¢ < n. However, it is important to
note that this representation is not unique: since both b; and 1 — 3 j£i @i are upper
bounds of m(F;), it is clear that, whenever b; > 1 — Zj# a;, b; may be replaced by
a higher bound b, > b;. To obtain a unique characterization of m, we thus introduce
the concepts of tightest lower and upper bounds of m, defined for all A € [0,1] as,

respectively:
m~(A) = mein m(A) (32)
mt(A) = max m(A). (33)

We may then define the set F(m) of focal elements of m as

F(m) £ {A €0, 1]%m*(A4) > 0}.



The tightest bounds may be easily obtained from any set of intervals [a;, b;] defining
m by:

m~(F;) = max ai,l—ij (34)
J#

m*(F;) = min bi,l—Zaj (35)
J#i

for all 1 <i <n, and m~(A) =m*(A4) =0, for all A ¢ F(m).
For each IBS m, one may define an interval-valued set function fp, such that

fm(A) £ [m~(A),m"(4)] (36)

for all A € [0,1]2. Function f, may be called the interval-valued mapping associated
to m. By abuse of notation, we shall not distinguish between an IBS m and its
corresponding mapping fm,, which will also be denoted as m. Hence, an IBS will be
viewed, depending on the context, as a set of BSs, or as a generalized BS assigning
intervals to propositions.

ExaMPLE 1 Let Fy, F» and F3 be three arbitrary subsets of a finite possibility space
), and m the set of BSs m verifying the equality:

m(Fl) + m(Fg) + m(Fg) =1
as well as the following inequality constraints:
m(Fy) € [0.38,0.65] m(F3) €[0.23,0.8] m(F3) € [0.06,0.5].

According to Definition 1, m is an IBS. By applying the formula given by (34) and
(35), we obtain the following tightest bounds for m:

m~(F)) =038 m~(Fy) =023 m(F3)=0.06
mt(Fy) =0.65 m*(Fy)=0.56 m"(Fs) =0.39,

which shows that the constraints m(Fs) < 0.8 and m(F3) < 0.5 were to loose and
could never be active. Finally, we may write:

m(F;) = [0.38,0.65] m(F,) =[0.23,0.56] m(Fs) = [0.06,0.39].

Such a IBS with at most three focal elements may be very conveniently represented as a
set of points in the two-dimensional probability simplex (The same representation was
used by Walley [28], and others, for representing imprecise probabilities). This is an
equilateral triangle with unit height, in which the masses assigned to each of the three
focal elements are identified with perpendicular distances to each side of the triangle.
Hence, each BS with corresponding focal elements is uniquely represented by a point
in this triangle, while each constraint of the form m(F;) < m*(F;) or m(F;) > m™ (F;)
for some i is identified with a line parallel to one side of the triangle, and dividing the
simplex in two parts. An IBS is thus represented as a convex polyhedron with sides
parallel to sides of the triangle.

The above IBS is represented in this way in Figure 1, in which the original con-
straints and the tightest bounds are shown as dotted and dashed lines, respectively.

10



3.2 Interval-valued evidential functions

Given an IBS m, and a crisp or fuzzy subset A of ), let us now consider the problem
of determining the possible values of bel,,(A) (defined by (23)), where m ranges over
m. Since this quantity is a linear combination of belief numbers constrained to lie in
closed intervals, its range is itself a closed interval. We thus have:

{x € R|3m € m,z = bel,,,(A)} = [bel,, (A), bel! (A)]

where
bel,, (A) £ min bel,,(A)

mem

and
bell (A) £ max bel,, (A4).

The interval [bel (A), bel! (A)] will be called the credibility interval of A induced by
m, and will be noted bely,(A4). The interval-valued function

bely, : A — bely(A)

will be called the interval-valued belief function induced by m. Without any risk of
confusion, the same notation will also be used to refer to the set of belief functions
bel verifying bel(A) € bel,(A) for all subset A of Q.

REMARK 5 It must be well understood at this point that the set bely, is not the set
Bm of belief functions induced by some IBS in m. However, we obviously have the
inclusion

B C bely,,

which allows to regard bel,, as an approximation to By, (it is in fact the smallest
interval-valued belief function containing Bp,).

The practical determination of the credibility intervals involves the resolution of a
particular class of linear programming (LP) problems, in which the goal is to find the
minimum and maximum of a linear function of n variables x1, ..., x,, under one linear
equality constraint and a set of box constraints. A general solution to this problem
was proposed by Dubois and Prade [6, 7, 11] who proved the following theorem:

THEOREM 1 (DuBOIS AND PRADE, 1981)

Let x1,...,x, be n variables linked by the following constraints:
n
Sn=t
i=1

a; <x; <by 1<i<n
and let f be a function defined by f(x1,...,xn) = Y 1y ¢;x; with

0<c < <...<¢y,.

11



Then

k—1 k—1 n n
min f = ]?:1?); Z bjCj +|1-— ij — Z a; | ¢, + Z a;c;
\j=1 j=1 j=k+1 j=k+1
n

k—1 k—1 n
max f = knjl{r; jz;ajcj+ 1—;%— Z bj | cr + Z bjc; | U

Hence, an exact determination of bel (A4) and bel} (A) may be obtained without
resorting to an iterative procedure. In particular, when both A and the focal elements
of m are crisp, then the coefficients ¢; in Theorem 1 are all equal to 0 or 1, and one
obtains without difficulty the following expressions for the bounds of bel,, (A):

bel (A) = max | » m (B),1- Y m*(B)—m"(0) (37)

P£BCA BZA

bel™(A) = min| > m"(B),1-> m (B)—m () (38)

0£BCA BZA

Needless to say, the approach adopted above to define the credibility interval of
a fuzzy event A may easily be transposed to the definition of the plausibility and
pignistic probability intervals of A, denoted, respectively, as pl,,,(A) and BetP,,(A):

Pln(4) = [min pl,,(A), max pl,,(A)]
BetP,(A) £ [min Beth(A),meaxBeth(A)].

mem
The bounds of pl,,(A) are easily obtained using Theorem 1, in exactly the same
way as explained above for the bounds of bely,(A4). The calculation of BetP, (A)
and BetP (A) is not so straightforward in the general case, because (9) defines a
linear function of the normalized belief numbers. When the IBS m is not normal, i.e.
max,, F; < 1 for some F; € F(m), some normalization procedure has to be defined.
This issue will be addressed in a Section 3.4.

3.3 Combination of IBSs
3.3.1 Definition

As shown in Section 2.2, any binary set operation V induces a binary operation on
belief structures (also denoted V for simplicity) through (29). In this section, we
go one step further in the generalization process by extending any binary operation
in Sq to IBSs. This will be achieved by considering the lower and upper bounds of
(m1Vma)(A), for all A € [0,1]%.

DEFINITION 2 (COMBINATION OF TWO IBSs)
Let m; and ms be two IBSs on the same frame €1, and let V be a binary operation
on BSs. The combination of my and my by V is defined as the IBS m = m;Vmy
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with bounds:

m~(A) = min (m1Vmg)(A)
(m17m2)6m1 Xma
mt(A) = max (m1Vma)(A)

(m1,m2)Emi Xmy
for all A € [0,1]%. O

REMARK 6 A more natural definition for the combination of m; and my by V could
have been to consider the set Mj o of all BSs obtained by combining one BS in my;
with one BS in msy:

MLQ = {m € SQ|E|(m1,m2) cmj X mg,m = m1Vm2} (39)

Unfortunately, M 2 is not, in general, an IBS, as shown by the following counterex-
ample [4]. Note, however, we have obviously M; 2 C m;Vmsy. The IBS m;Vmy is
thus the smallest IBS containing Mj ».

EXAMPLE 2 Let us m; and my be two IBSs such that F(m;) = {4,Q}, F(mg) =
{B,Q}, with C = AN B ¢ {A, B}, and:

m1(A) = [0,05] ml(Q) = [0.5, 1}
my(B) = [0,0.5] my(Q) = [0.5,1]

The conjunctive sum m = m; N msy is immediately obtained as:

m(A) = [my (A)my (Q),m] (A)m] (Q)] = [0,0.5]
m(B) = [my (Q)my (B),m{ (Q)my (B)] = [0,0.5]
m(C) [my (A)my (B), my (A)ym] (B)] = [0,0.25]
m(Q) = [my (Q)my (2),m] (2)m3 (Q)] = [0.25, 1]

Let m € m defined by m(A) = 0.4, m(B) = 0.2, m(C) = 0.1 and m(Q2) = 0.3. Let us
show that it is impossible to find mq € my and mo € ms such that m = mqNmsy. Let
x = my(A) and y = mg(B). These quantities must be solutions of a system of four
equations:

z(l—y) = 04
(1—-2)y = 0.2
Ty = 0.1
(1-2)(1-y) = 03

It is easy to see that this system is incompatible. Hence m ¢ M .

REMARK 7 It may also be shown by counterexamples [4] that the extension of the V
operation from BSs to IBSs performed according to Definition 2 does not, in general,
preserve the associativity property, i.e., we may have

(m1 Vmg)Vmg 7& m1V(m2Vm3)

for some mj, ms and m3. To avoid any influence of the order in which n IBSs are com-
bined, it is therefore necessary to combine them at once using an n-ary combination
operator introduced in the following definition.
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DEFINITION 3 (COMBINATION OF n IBSS)

Let my,...,m, ben IBSs on the same frame ), and let V be a transitive operation on
BSs. The combination of my, ..., m, by V is defined as the IBS m = m;V...Vm,
with bounds:

m~(A) = min (miV...Vmy,)(A)
(M1 ,eeeymy ) EmMy X... XMy,
mtT(A) = max (m1V...Vmy,)(A)
(M1 yeeeymp )EM1 X... XMy,
for all A € [0,1]%. O

It may be shown [4] that, for any IBSs m;, my and mg, we have:
(m1Vm2)Vm3 2 m1Vm2Vm3.

Hence, given a sequence of n IBS my, ..., m, the strategy of combining them one by
one using the binary operator introduced in Definition 2 leads to pessimistic lower
and upper bounds for the belief intervals introduced more rigorously in Definition 3.

Techniques for computing the combination of two or more BSs were introduced in
[4]. They are briefly recalled in Appendix A.

3.4 Normalization of an IBS

As already mentioned in Section 2.1, a reasonable condition to impose on a BS m
with crisp focal elements, in the case where the variable Y of interest is known with
absolute certainty, is m(0) = 0. When the focal elements of m are fuzzy, this normality
condition may be generalized to hp = 1 for all F' € F(m). By analogy, an IBS m will
be said to be normal if it contains only normal BSs, which can be expressed as hp = 1
for all F' € F(m). The aim of this section is to introduce extensions of the Dempster
and Yager normalization procedures, allowing to convert subnormal IBSs into normal
ones. As it involves only linear transformations, the Yager procedure is considerably
simpler, and will therefore be examined first.

3.4.1 Yager normalization

Let m be an IBS with crisp or fuzzy focal elements. The normalized form of m,
according to the Yager procedure, will be defined as the IBS m° with bounds:

me(A) 2 minm?(A) (40)
mH(A) 2 maxme(A), (41)

for all A in [0, 1], m°(A) being defined by (31). The bounds of m°® may therefore be
found as the solutions to very simple linear programming problems. It is easy to see
that:

m°(A) = max | > m (F),1- Y m'(F) (42)
mot(A) = min | Y mT(F),1- > m(F)|. (43)
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3.4.2 Dempster normalization

Conceptually, the extension of the Dempster normalization procedure to IBSs may be
performed in exactly the same way as for Yager’s procedure. Given an arbitrary IBS
m, its normalized form, according to the Dempster procedure, will be defined as the
IBS m* with bounds:

m™(A) £ minm*(A) (44)
m™(4) = maxm”(A), (45)

for all A in [0,1])%, with m*(A) defined by (30). However, because of the non linearity
of this equation, the practical determination of m* is significantly more difficult than
that of m°. This problem was solved exactly in [4] for the case where all focal elements
of F(m) are crisp. We showed that:

m*(4) = m”(4) (46)
1—max |m~(0),1- > m"(B)—m (4)
B+#A,B#£(
m**(A) m(4) (47)

1 —min [m™(0),1— Z m~(B) —m™T(A)
B#A,B£)

for all A € F(m*) = F(m) \ 0.

In the more general case in which some focal elements of m are fuzzy, the bounds
of m* are the solutions of non linear programming problems for which no analytic
solution is, to our knowledge, available. These values thus have to be computed
numerically using an iterative non linear optimization procedure.

4 Fuzzy-valued belief structures

4.1 Definition

In many applications, the degrees of belief in various hypotheses are either directly
obtained through verbal statements such as “high”, “very low”, “around 0.8”, or
are inferred from “vague” evidence expressed linguistically in a similar way. In such
situations, it is difficult to avoid arbitrariness in the assignment of a precise number, or
even an interval, to each hypothesis. Fuzzy numbers have been proposed as a suitable
formalism for handling such kind of ambiguity in modeling subjective probability
judgments [29, 13, 7, 12]. Mathematically, a fuzzy number may be defined as a normal
fuzzy subset Z of R with compact support, and whose a-cuts are closed intervals [11,
16] (Dubois and Prade make a distinction between fuzzy intervals and fuzzy numbers
depending on the multiplicity or uniqueness of modal values. We shall use the term
“fuzzy number” in its most general sense in this paper.). A fuzzy number may be
viewed as an elastic constraint acting on a certain variable which is only known to
lie “around” a certain value. It generalizes both concepts of real number and closed
interval.
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In this section, we introduce the new concept of a fuzzy-valued belief structure
(FBS), which will be defined as a fuzzy set of belief structures on 2, whose belief
masses are restricted by fuzzy numbers.

DEFINITION 4 (FUZZY-VALUED BELIEF STRUCTURE)

A fuzzy-valued belief structure (FBS) is a normal fuzzy subset m of Sq such that there
exist n elements Fy,...,F, of [0,1], and n non null fuzzy numbers m;,1 < i < n,
with supports from [0, 1], such that, for every m € Sq,

m) é{ II<HZI£1 i, (m(F)) if S m(F) =1 .

0 otherwise

REMARK 8 This definition obviously reduces to Definition 1 when the m; are crisp
intervals. Hence, the concept of FBS generalizes that of IBS, which can be expressed
schematically as:

fuzzy-valued BS D interval-valued BS D (precise) BS.

REMARK 9 The assumption that m is a normal fuzzy set imposes certain conditions
on fuzzy numbers m;. More precisely, the fact that pg(m) = 1 for some m implies
that

pi, (m(F3)) =

for every i € {1,...,n}. Hence, for all i, m(F;) belongs to the core 'm; of m;. The
BS m thus belongs to an IBS with bounds [*m,; , 'm;]. According to Remark 2, this

implies that
n n
Zlﬁz; <1 and ZIT%;L > 1.
i=1 i=1

As suggested in the above remark, each BS m belonging to the core of a FBS
m constrained by fuzzy numbers m;, belongs to an IBS bounded by the cores of
the m;. Conversely, it is obvious that a BS m such that m(F;) € 'm; for all i and
Yoy m(F;) =1 has full membership to m. Hence, we may deduce that the core of a
FBS m constrained by fuzzy numbers m; is an IBS 'm bounded by the cores of the
m;. This result may be extended to any a-cut of m, which happen to have a very
simple characterization in terms of the a-cuts of the fuzzy numbers constraining m,
as stated in the following proposition.

ProposITION 1

Let m be a FBS defined by n elements Fi,...,F, of [0,1]® and n fuzzy numbers
mi, ..., my. For any «a €]0, 1], the a-cut of m is an IBS *m with bounds “m, for all
ie{l,...,n}. O
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Proof: Let a be any real number in ]0, 1], and “m the a-cut of m. We have

‘m = {m e Solpm(m) > a}

= {m e Sq| 11;1;171;1%(771(}7})) >« and Z;m(F’) =1}

= {m e Sal|um,(m(F;)) > a Vi and Zm(Fz) =1}
i=1

n
= {m € Sq|m(F;)) € “m; ¥i and Zm(FZ) =1}
i=1
Since the m; are fuzzy numbers, their a-cuts are closed intervals. Hence, “m is an
IBS. O

REMARK 10 Following the same line of reasoning, it is simple to show that the support
of a FBS m constrained by fuzzy numbers m; is an IBS *m constrained by the
supports of the m;.

As in the case of interval-valued belief structures, it is useful to define a unique
representation of a FBS m, in the form of fuzzy numbers assigned to each of the focal
elements. This may be achieved by considering the upper and lower bounds of all its
a-cuts. More precisely, let us denote:

“m~(F;) = min m(F)
medm
mt(F;) 2 max m(F)
me“m
The fuzzy set m(F;) with a-cuts *m(F;) = [*m~ (F;),* m™ (F;)] satisfies all the axioms
of a fuzzy number. Hence, a FBS may be seen a fuzzy mapping assigning a fuzzy
number to each A € [0,1] (with m(A) =0 for all A ¢ {Fy,...,F,}).

As for IBSs, we may define a focal element of a FBS m as a crisp or fuzzy subset of
Q) that receives a positive mass of belief from at least one BS with non zero membership
to m. The set F(m) of focal elements of m is thus identical to F(°Tm), the set of
focal elements of the support of m.

EXAMPLE 3 Assume that, in view of certain evidence, an expert assigns the following
fuzzy belief numbers to three crisp or fuzzy subsets Fy, F> and F3 of a possibility
space §2:

~ A ~ A ~ A
my1 = ‘around 0.2° mo = ‘around 0.5° ms3 = ‘around 0.3’

where ‘around z’ denotes the triangular fuzzy number with modal value x and support
[max(0,z — 0.1), min(1,z + 0.1)]. According to Definition 4, these fuzzy constraints
define a FBS m, whose support is the IBS “*m defined by

OFm(Fy) =[0.1,0.3] %Tm(Fy) =[0.4,0.6] “Tm(F3) =[0.2,0.4]
and whose core is the BS 'm defined by

"W(F) =02 'm(F,) =05 'm(F) =03

17



Let m denote the BS defined by
m(F1) =025 m(Fy) =048 m(F3) =0.27

We have
Wiy (0.25) = 0.5 pz,(0.48) = 0.8 p17,(0.27) = 0.7

Hence, pg(m) = 0.5.

The membership function s of a FBS with at most three focal elements may be
visualized as a surface in the probability simplex representation. For any « €]0, 1], the
a-level contour of g is the convex polyhedron representing the a-cut “m of m. Such
a representation is shown for the above example in Figure 2, for 10 different values of
Q.

4.2 Fuzzy credibility and plausibility

The fuzzy credibility and the fuzzy plausibility of a crisp or fuzzy subset A of 2
induced by a FBS may be defined by applying the extension principle to (23) and
(16), respectively. Generally speaking, the extension principle provides a canonical
way of finding the range of a function f whose arguments are restricted by a certain
possibility distribution [36, 6]. In the case where each variable Z; is restricted by
a possibility distribution pz,, and where the variables are constrained to lie within
a domain D, their image z = f(Z1,...,T,) under f is defined as a fuzzy set with
membership function:

pz(w) £ sup  min gz, (u;) (48)
UL,ye.yUn
under the constraints w = f(ui,...,u,) and (uy,...,u,) € D.

By applying this principle to (23), we may define the fuzzy credibility of A as a
fuzzy set bel(A) with membership function:

A .
pi=y, (W) = sup min g gy (m(EF; 49
iy (0) S s i e (n(F) (49)

where D is the set of BSs m such that Y ;" , m(F;) = 1, and bel,,(A) is defined
according to (23). Since, by definition, for any m € D,

pi(m) = min g (m(F),

(49) may be written more simply as:

A
i o (w) = sup L (m). 50
bel(A)( ) (bl (A)=w) ( ) ( )

As shown by Dubois and Prade [6], (48) defines a fuzzy number when the z; are fuzzy

numbers and the domain D is defined by linear equality constraints. Hence, BEI(A)
defined by (50) is a fuzzy number. Its a-cut is given by:

O‘l/:)\e/l(A) = min bel,,(A),

me*m

which is nothing but the credibility interval induced by the IBS “m. Similarly, using
(16) as a definition for the plausibility pl,,(A) of a crisp or fuzzy subset A of €,
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induced by a BS m, the fuzzy plausibility of A may be defined as a fuzzy number with
membership function:

pron(w) = sup pg(m). (51)
pl(4) {mipl,, (4)=w)

Its a-cut is the plausibility interval induced by “m.

REMARK 11 It is well known that a plausibility function pl with nested focal elements
Fy C F,...C F, is a possibility measure [8], since

pl(AU B) = max(pl(4),pl(B)) VA,B CQ.
The function 7 on §2 defined by
m(w) =pl{w}) Yw e

is then a possibility distribution, which, as remarked by Zadeh [37], may be viewed
as the membership function of a fuzzy set F'. These observations may be extended to
the case of fuzzy belief numbers. Let m be a FBS with nested focal elements F} C
Fy... C F, in 2°. By analogy with the crisp case, the associated fuzzy plausibility
function 1;1 may be termed a fuzzy possibility function. One may then define a fuzzy
possibility distribution 7 defined as:

7(w) = pl({w})

for any w € €. Function 7 is formally equivalent to a type 2 fuzzy subset of €2, i.e., a
fuzzy set with fuzzy membership values [36].

REMARK 12 The manipulation of fuzzy numbers may be considerably simplified by
using the LL parameterization introduced by Dubois and Prade [11]. A fuzzy number
x is of type LL if its membership function is of the form:

L(a;u) Vu < o
i) 2 {1 Vel

L<u56) Yu > 3

where L is a left-continuous, non increasing mapping from R to [0, 1]. We may then
write, without ambiguity,
% é (Oé, /87 v, 5)LL7

or ¥ £ (a,7,8)rr when a = 3. When the fuzzy masses m(F) assigned by m are

fuzzy numbers of type LL, then Eei(A) and pl(A) defined by (50) and (51) are also
LL fuzzy numbers [11, p. 55]. Their parameters may be calculated by applying the
formula in Theorem 1 to the core and support of m. U

ExXAMPLE 4 Consider again the FBS m of Example 3, assuming I}, F> and F3 to be
three subsets of a possibility space Q = {1,...,10} defined as:

L ={1,...,5} F,#=1{0.1/2,0.5/3,1/4,0.5/5,0.1/6}
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F3={0.1/3,0.5/4,1/5,0.5/6,0.1/7}.

Fy is thus a crisp subset of {2 corresponding to the proposition “Y is strictly smaller
than 6” (where Y denote the unknown variable of interest), while F; and F3 are fuzzy
subsets that might correspond to such fuzzy propositions as, respectively, “Y is around
47 and “Y is around 5”. Given that piece of evidence, what is the credibility and
plausibility of the following propositions: (1) A £ “Y is equal to 3 or 47, (2) B £ “Y
is around 3 or 4” 7 To answer these questions, let us first identify propositions A and
B with the following subsets of 2

A2 {34} B2{0.1/1,0.5/2,1/3,1/4,0.5/5,0.1/6}.

We then have, for any BS m such that F(m) = {F}, Fa, F3}:

bel, (A) = Zm )min jia(w) V p, (w)
_ (Fl) X 0+ m(Fy) x 0.5+ m(F3) x 0

pl,(4) = Zm ) max fia (w) A (W)
= (F1) X 14+ m(Fy) x 14+ m(F3) x 0.5.

Since the fuzzy belief masses m(F;) are all triangular LL fuzzy numbers, the corre-
sponding credibility and plausibility values bel(A) and pl(A) are also triangular LL
fuzzy numbers. Note that the calculation of bel(A) is straightforward in this case,
since it involves only one fuzzy belief number:

bel(A) = 0.5 x m(F) = (0.25,0.05,0.05)

The calculation of ﬁl(A) is, in principle, a little more delicate, since it involves three
interactive fuzzy numbers. However, in this case, the cores of the m(F;) are reduced
to single numbers, so that the core of ﬁl(A) may be obtained without any difficulty.
Theorem 1 is then needed only for the calculation of the support of I;I(A). We finally
obtain: _

pl(A) = (0.85,0.05,0.05) 11

Similarly, we have:

bel,,(B) = m(F1) x 0.1 +m(Fp) x 0.5+ m(F3) x 0.5
pl,(B) = m(F) x 1+ m(F) x 1+ m(F3) x 0.5,

which leads to:

bel(B) = (0.42,0.04,0.04).,
pl(B) = (0.85,0.05,0.05)r,

Note that we have a higher degree of belief in a less precise proposition, which is an
illustration of the usual opposition between imprecision and uncertainty [11]. O
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4.3 Combination of fuzzy belief structures

A binary operation V on BSs may also be generalized to FBSs by applying the exten-
sion principle to (29). Given to FBSs m; and mjy, their combination by V may be de-
fined as a FBS m assigning to each A € [0, 1] a fuzzy number m(A) £ (m;Vms)(A)
with membership function

rh 2 s i [ ' ﬁq B)), mi ﬁq B
[a(a)(w) Gp min | i H L(B)(m1(B)) s # L(B)(m2(B))

under the constraints

Y o m(B) = 1

BeF(m1)

> ma(B) = 1

BeF(m2)
(m1Vm2) (A) = w,

which may also be written in more compact form as:

(A (w) = sup min{fig, (M1), i, (M2)]. (52)
{m1,m2|(m1Vm2)(A)=w}

The a-cut of m(A) is an interval *m(A4) = [*m(A)~,* m(A)™] with

“m(A)” = min (m1Vma)(A)
(ml,mg)ealﬁl Xaﬁlg
‘m(A)T = max (m1Vma)(A)

(m1,m2)€E*m1 X*my

It is therefore equal to (“m;V®my)(A), which may be calculated using one of the
techniques described in Appendix A. This important result gives us a method for
computing the combination of two FBSs to any degree of accuracy, by combining any
number of a-cuts using the techniques developed for IBSs.

Note that, because the calculation of (m3Vms)(A) involves multiplications, m(A)
is not, in general, of type LL. However, when the precise form of the membership
function of m(A) is not regarded as important, it may be sufficient to approximate it
by an LL fuzzy number with the same core and support, as suggested by Dubois and
Prade [11].

EXAMPLE 5 Let m denote the FBS already considered in Examples 3 and 4, and m’
the FBS defined by the trapezoidal fuzzy belief numbers

m'(F]) £ (0.5,0.6.0.3,0.3), m'(F3) = (0.3,0.5.0.3,0.3) 1

with

F} £{0.1/2,0.5/3,1/4,1/5,0.5/6,0.1/7} F, = Q.
Let m” £ m N m’ be the conjunctive sum of m and m’. It is a FBS with focal
elements:

F{,:FlﬂFll, FQIIZFl, Fé/:FQ, F//:Fg,
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where N denotes standard fuzzy set intersection. For any « €]0,1] and any focal
element F', the a-cut of m”(F]) may easily be computed as:

aIAfl//(Fi//) — (ar"fl N aﬁ:l/)(Fi//),

using the formula given in Section A.2. The resulting fuzzy belief numbers are shown
in Figure 3.

4.4 Normalization of a FBS

The Dempster and Yager normalization procedures that were extended to IBSs in Sec-
tion 3.4 may be further generalized to FBSs using, once again, the extension principle.

For example, let m be a FBS with crisp focal elements. Its normalization using the
Dempster procedure yields a normal FBS m* with focal elements F(m*) = F(m) \ 0,
such that

N&*(A)(w) 2 sup m(m)

7
{m|m(A)/(1-—m(0))=w}

The a-cut of m*(A) is obviously an interval [*m*(A)~,*m*(A)*], with

G AV m(A)
AT = e T )
am* (A)+ = max m(A)

These bounds may be computed using (46) and (47). Note that, even when the masses
m(B) for B € F(m) are LL fuzzy numbers, m*(A) is not because its calculation
involves a division. However, an LL fuzzy number with the same core and support as
m*(A) may here again easily be computed as an approximation.

The same approach may be used to extend the soft normalization and Yager nor-
malization procedures to FBSs. Yager normalization has the computational advantage
of being based only on additions and subtractions, which allows to perform exact com-
putations with LL parameterization of fuzzy numbers.

EXAMPLE 6 Let us consider a FBS m defined on a possibility space Q = {1,2,3,4},
with the following three subnormal fuzzy focal elements:

F, ={0.1/1,0.4/2,0.5/3,0.2/4} F,={0.3/1,0.6/2,0.7/3,0.4/4}
F3={0.1/1,0.3/2,0.2/3,0.1/4}
and the following triangular LL fuzzy belief numbers:
m(F;) =(0.5,0.3,0.3),, m(Fp)=(0.2,0.2,0.3)rr

m(F3) = (0.3,0.2,0.2) L.

The soft Dempster normalization procedure leads to a normal FBS m* with focal
elements

Ff ={0.2/1,0.8/2,1/3,0.4/4} F; ={0.43/1,0.86/2,1/3,0.57/4}
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F; ={0.33/1,1/2,0.67/3,0.33/4}

and the fuzzy belief numbers plotted in Figure 4.
In contrast, the application of the Yager procedure yields to a FBS m® with only
two focal elements, since

FP = F$ ={0.6/1,0.9/2,1/3,0.7/4} F{ = {0.8/1,1/2,0.9/3,0.8/4}.

The corresponding belief masses are triangular LL fuzzy numbers as shown in Figure
5.

5 Applications

5.1 Decision analysis

Decision making under uncertainty is a fundamental problem, whose importance in
a wide range of applications cannot be overestimated. As already mentioned in Sec-
tion 2.1, this problem in handled in the TBM by means of the transformation of a
belief function describing Your state of belief into a probability function. Assuming
the consequences of each action to be quantified by a utility function, the decision
strategy is then based on the principle of expected utility maximization as in the clas-
sical Bayesian decision theory. In this section, we extend this approach to the case
where beliefs are represented by a FBS. In the spirit of previous applications of Fuzzy
Set theory to decision analysis [29, 13, 7, 12], we shall also allow the utilities to be
described in terms of fuzzy numbers.
Let A denote the finite set of actions, 2 = {1,..., M} the possibility space, and

u: AXxQ—=R

a (crisp) utility function quantifying the consequences of each action under each state
of nature (or value of the unknown quantity of interest Y').

Let us first assume Your beliefs to be represented by a BS with crisp or fuzzy focal
elements Fi,..., F,. As already mentioned in Section 2.2, the concept of pignistic
probability distribution originally defined by (9) may be generalized in this case by
replacing crisp intersection and cardinality by their fuzzy counterparts, leading to:

BetP(j) im(ﬂ)”?("j ) vjea (53)
i=1 v

with |F;| = > 7_, pr, (k). The expected utility of each action a € A is then equal to

M
U(a) = ) BetP(ju(a,j) (54)
j=1
- sz(m)“ﬁ;'ﬂ u(a, j) (55)
j=1i=1 ¢
i=1



with
LM
Tq = W Z“Fi (J)ula, j)
7 ]:1
Using the extension principle, (56) can now be easily generalized to the case where

both utilities and belief masses are fuzzy numbers. Let Z; be the fuzzy number defined
by

1 M
'EEZ' = Z HE; (])ﬂ(au])a
il =

where u(a, j) denotes the fuzzy utility of action a when Y = j, and let m be a FBS.
The fuzzy expected utility U(a) of action a is then defined as:

Moy (W) = sup minmin (g, (), pace) () (57)
V1,.--,Un

where the supremum is taken under the constraints
n
Z UjV; = W
i=1
n
Z v; = 1.
i=1

As shown by Dubois and Prade [11, p. 56|, this membership function defines a fuzzy
number, whose a-cuts may be computed using a variant of Theorem 1. More precisely,
“U(a) is obtained as:

n n
°U(a) = minz:77’L(F’Z-)O‘a:i_,mauxz:m(E)aac;-Ir
i=1 1=1

where the minimum and maximum are taken under the constraint m € “m.

The final step in the decision process consists in the comparison of the obtained
fuzzy expected utilities. As remarked by Klir [16], many methods for total ordering of
fuzzy numbers have been suggested in the literature, without any method unquestion-
ably emerging as the best one in all cases. A cautious (though not always applicable)
approach might be to restrict oneself to a partial ordering, such as = > y iif *z~ > *y~
and “7T > 5T, and admit indeterminacy when two fuzzy expected utilities are not

comparable.
EXAMPLE 7 Let m be a FBS on Q = {1, 2,3} with focal elements

Fy ={1/1,0.5/2,0/3} F»=1{0.6/1,1/2,0.3/3} F3={0.1/1,0.4/2,1/3}
and triangular fuzzy belief numbers

m(F)) = (0.5,0.2,0.2),;, m(F)=(0.3,0.2,0.2),;, m(F3)=(0.2,0.2,0.2).p.
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Let A = {a1, az2,a3} be the set of actions, and assume the fuzzy utilities to be defined
as follows:

am = (1,0.25,0.25) 11, 171,2 = (0.5,0.25,0.25) 1, 17173 = (0,0,0.25)11,
U1 = (0.75,0.25,0.25) .1, U o = (0,0,0.25)1.1, U3 = (0.75,0.25,0.25) .1,
uz,1 = (0,0,0.25) 11, Uz = (0.5,0.25,0.25) 11, U3z = (1,0.25,0.25) 11,

where u; ; = u(a;, j).
The application of the above method leads to the three fuzzy expected utilities
plotted in Figure 6. It is clear in this case that

U(Oél) 2 U(Oéz) Z U(ag)

which leads to the prescription of action a;.

5.2 Pattern classification

Pattern classification is a very general task whose goal is to assign entities, represented
by feature vectors, to predefined groups or categories. In the classical approach to sta-
tistical pattern recognition (including neural network techniques), a classification rule
is learnt automatically from a set of N patterns with known classification. Mathe-
matically, such training data may be represented by a set

T={(x"y)1 <i< N},

where x* € R? is a real-valued feature vector, and 3* € Q = {1,..., M} denotes the
class of the corresponding entity.

In some applications, however, the nature of the available knowledge does not allow
the construction of such a training set. For example, when the training samples are
labeled by an expert and only partial information is available, the expert may only be
able to provide imprecise statements concerning the class membership of example 1,
such as: y' € A?, where A’ is a subset of 2. We then have a training set of a different
kind, in which each sample is no longer labeled with a single class, but with a set of
classes.

In previous papers [2, 3], we have proposed a solution to this problem using the
theory of belief functions. In this approach, each training sample 2! = (x¢, A?) is
considered as an item of evidence regarding the class membership of each new vector
X to be classified. This evidence is represented by a BS m/(-|z?) defined as a function
of the dissimilarity (according to some relevant measure §) between vectors x and x*:

' 0(6(x,x%)) o ifA= Al
m(Alz') =< 1—p(6(x,x")) if A=Q (58)

0 otherwise

where ¢ is a decreasing function verifying ¢(0) < 1 and limg,~ ¢(d) = 0. When §
denotes the squared Euclidean distance, a rational choice for ¢ was shown in [5] to
be:

@(d) = Bexp(—vd) (59)
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where § and v are parameters that may be learnt form training data [40]. The
BSs induced by each learning sample are then combined using the conjunctive sum
operation (with or without normalization):

m=m(|z)N...nm(-]2Y). (60)

This approach may easily be extended to the case where the available knowledge
concerning the class membership of training patterns is expressed by linguistic terms
and is properly described by fuzzy class labels [39]. For example, if {2 is the base set
of a variable Y describing the degree of gravity of a disease, one may only know that
example 7 corresponds to a “serious” case, and represent this information in the form
a fuzzy subset A’ of 2. In that case (58) may still be used, with the difference that
m(-]2*) and the resulting BS m are now BSs with fuzzy focal elements.

The concept of FBS introduced in this paper allows us to model an even more
general situation, in which some components of the pattern vectors are themselves
tainted with imprecision or uncertainty. Such a situation may occur, for example, in
sensor fusion applications where heterogeneous data coming from a variety of sensors
(including humans or knowledge-base systems encapsulating human expertise) have
to be taken into account [14]. In other applications, fuzzy numbers may also arise as
imprecise estimates of missing features computed by a fuzzy system [19].

More precisely, let us consider a training set

T ={= (X A)1<i<N}

of N fuzzy feature vectors X’ = (z%,...,7})" and associated fuzzy class labels A’ €
[0, 1], and assume that we wish to determine our beliefs concerning the class member-
ship of a new entity (or test pattern) described by a fuzzy feature vector x. According
to the extension principle, the dissimilarity between fuzzy vectors x and x! may now
be defined as a fuzzy number? §° = §(X,X’) with membership function:
p(w) = sup minmin(yig (o). iz, (2,)).

Z],rTy

L1,y Ty
where the supremum is taken under the constraint § (x!,x) = w. The application of
function ¢ to §° defines a new fuzzy number ¢(8%) that may itself be introduced into
(58), yielding a FBS m(-|2%). Assuming the exponential form of (59) for ¢, the a-cut
of m(-|2%) is given by:

Bexp(—y *6F), Bexp(—y “5"‘)} if A=A
‘m(Alz") = 1 — Bexp(—y agi_), 1 — Bexp(—y O‘g”)} if A=Q (61)
0 otherwise

where &' is the fuzzy squared Euclidean distance between X and X*. Our final belief
regarding the class of X may then be described by the FBS obtained as the conjunctive
sum of the m(-|z%):

m =m(-|z)Nn...nm(-[zV). (62)

2This fuzzy number may be interpreted as a fuzzy constraint acting on the dissimilarity between
feature vectors x and x‘, whose components are themselves constrained by fuzzy numbers. This notion
should not be confused with that of distance between two fuzzy numbers, which was introduced to
quantify the dissimilarity between two membership functions.
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Note that each of the FBS m(-|2?) is simple (it has only one focal element in addition
of ). Hence, the combination of these FBSs may be computed very effectively using
the formula given in Section A.2 of the Appendix.

If the ultimate goal of the classification task is to assign vector X to a single class,
then one may adopt the decision-making approach described in the previous section,
after the consequences of different kinds of correct or wrong classifications have been
quantified by a (possibly fuzzy) utility function.

ExAMPLE 8 To illustrate this approach, let us take as an example the simple data
set shown in Figure 7 and described in Table 1. It is a three-class problem composed
of six examples with triangular fuzzy features and fuzzy class labels. We consider
the problem of determining the class membership of a test fuzzy feature vector = also
shown in Figure 7. The results obtained with our method (applied with 5 = 0.9 and
v = 1) are shown in Figures 8 and 9. Figure 8 depicts the final FBS resulting from
the combination of the elementary FBSs induced by each of the six examples. The
fuzzy pignistic probabilities of each class are then represented in Figure 9. It is clear
that, in this case, the unknown pattern should be assigned to class 3.

6 Conclusions

This paper has introduced the new concepts of interval-valued and fuzzy-valued belief
structures, defined, respectively, as crisp and fuzzy sets of belief structures verifying
hard or elastic constraints. These mathematical objects may be seen as generalized
belief structures for which extensions of the classical notions of credibility, plausibility,
conjunctive or disjunctive sum, and normalization procedures may be defined. These
concepts constitute a very flexible framework allowing to express, and reason with
partially specified degrees of belief assigned to imprecise propositions. Most calcu-
lations implied by the manipulation of these concepts are based on simple forms of
linear programming problems for which analytical solutions exist, making the whole
scheme computationally tractable. An interesting application area concerns the de-
velopment of new tools for fuzzy data analysis, allowing to process complex data such
as sets of examples described by fuzzy feature vectors and fuzzy class labels. The
possibility to describe states of belief using verbal statements is also expected to be
useful in all situations involving the elicitation of degrees of belief from experts, such
as encountered in the development and operation of diagnosis and decision support
systems.
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A Procedures for combining IBSs

A.1 Problem formulation

Let m; and my be two IBSs defined on €2, and m = m;Vms, for some set operation
V. The practical determination of m™(A) and m™(A) for an arbitrary subset A of Q
requires to search for the extrema of

palmi,mo) = Y mi(B)ma(C) (63)
BVC=A

under the constraints:

m{(B) < mi(B) < mj(B) VBe&F(m)

my (C) < me(C) < my(C) VC € F(my).
The solution of this problem is trivial when the sum in the right-hand side of (63)
contains only one term, since we then simply have a product of two non interactive
variables. A more general result with high practical interest was obtained in [4], in
which we derived an analytical expression for (m; Nms)(A) in the case where ms is
a simple IBS, i.e., F(mg) = {F,Q} for some I € [0,1]. This result is given in the
next section.

A.2 Conjunctive sum of an arbitrary IBS with a simple IBS

Let us consider the simple case where an arbitrary IBS m; is combined (according to
the conjunctive sum operation) with a simple IBS my with F(ms) = {A4,Q} (A C Q).
Let us denote m = m; Nms. For any B C 2, m; € m; and mo € my, we then have:

m(B) = Y mi(C)ma(D) (64)

CNnD=B

= ma(A) Z m1(C) + ma(Q)my(B) (65)
ANC=B

To find the minimum and maximum of m(B), let us consider two cases.

Case 1: B ¢ A. In that case, the first term in (65) vanishes, and we have:
m(B) = msy(Q)m1(B)

It is then obvious that

= 1(B) (66)
T(B) = my(Q)my (B) (67)



Case 2: B C A. As proved in [4], the bounds of m in (65) are given by:

m_(B) = maX(Xl,XQ,Xg)
m(B) = min(¥i, Y, Y)
with
X1 = mi(B)+my(4) Y mi(0)
C:ANC=B
C+B
Xy = my(B)+my(A) [1- > mf(C)—m;(B)
ANC+#B
Xs = 1= > mf(@)+myA)-1) > mf(C)
ANC#B C:ANC=B
C#B
and

Yo = mf(B)+mg(A) |1 > my(C)—mf(B)

Y5 = 1- > mi(C)+(mf(4)-1) Y m(O)

A.3 General case

In the most general case, an explicit solution to the quadratic programming problem
described in Section A.1 is difficult to obtain, and one has to resort to iterative numer-
ical procedures. Whereas general non linear optimization algorithms may, of course,
be used, the particular form of this problem suggests to apply the following alternate
directions scheme [4].

Consider for example the minimization of ¢ 4(m1,ms). Let us fix m; and my to
some admissible values mgo) and mgo), respectively. Then ¢ A(ml,mgo)
function of the my(B), for B € F(m1):

palmy,md) = 3" m1<B>< 3 mé°><c>>
)

BeF(m1 BVC=A

) is a linear

The search for m; minimizing this expression is a linear programming problem that

may be solved directly using Theorem 1. Let mgl) be a solution (if m&o)

OISO

a solution, then we pose m;’ = m,

(1)

mizing @a(my’,ma). The procedure is iterated until a fixed point has been found,

i.e., until we have reached k such that mgk) = m&kil) and mgk) = mgkfl), which

was shown in [4] to happen in any case after a finite number of iterations. This

was already

(1)

We then proceed by searching m,’ mini-
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method proved experimentally to be significantly faster for that particular problem
than general purpose constrained optimization algorithms such as sequential quadratic
programming techniques. The generalization of this algorithm to the combination of
n IBS is straightforward [4].
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Figure 2: Representation of a FBS in the probability simplex.
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represented by rectangles with dashed lines.
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computed for the test pattern.
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Table 1: Data set (the last line corresponds to the test pattern).

Gl

T

Ai

(1.98,0.23,0.23) ..
(1.48,0.10,0.03) ..
(0.99,0.13,0.19) 1.1
(2.02,0.24,0.12) 1,
(2.95,0.05,0.09) ..
(2.43,0.25,0.04) .,
(3.14,0.20,0.20) .1

(1.05,0.17,0.15) ..
(1.96,0.08,0.12) .,
(3.02,0.24,0.16) ..
(2.90,0.07,0.02) ..
(2.99,0.23,0.00) ..
(2.07,0.10,0.10) ..
(2.02,0.20,0.20) ..

{1}
{0.5/1,0.5/2}
{2}
{1/2,0.5/3}
{3}
{0.5/1,1/3}
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