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1 Introduction

Neural network models such as multilayer perceptrons and radial basis function networks are powerful
tools for non linear function approximation. If each pair of input and output vectors is assumed to
be drawn from a certain joint probability distribution f(x,y), it is well known that minimizing the
sum-of-squares criterion results asymptotically in finding the best approximation (in the least-squares
sense) to the regression function, i.e. in estimating the conditional average of the target data, given the
input data. However, this result holds only when the number of training vectors goes to infinity. For
finite sample size, the accuracy of the prediction made for some input x depends on the local density
of training vectors around x. In some applications, the probability distribution of the data may even
not be rigorously the same in the training and test sets, yielding very poor predictions for those input
vectors situated far from training samples. For these reasons, it is usually very important to provide,
together with the predictions, an assessment of their reliability, for example in the form of lower and
upper bounds. Such an approach has been proposed in the context of radial basis function networks
by Leonard et al. [5], who have proposed a heuristic method for determining confidence limits of the
predictions, based on estimated residuals and local data density. However, their approach still assumes
the input vector to be situated in the region of influence of a learnt prototype vector, a condition that
may not be verified, especially in high dimensional spaces.

In this paper, we propose a new approach to this problem, based on the Dempster-Shafer (D-
S) theory of belief functions [6, 7]. The main idea consists in introducing principles whereby the
uncertainty pertaining to a prediction of the target data, given the input data, may be assessed and
quantified. The formalism of belief functions introduced by Shafer [6] and justified axiomatically by
Smets [7] is used for uncertainty representation. This formalism allows to introduce the concepts of
lower and upper expectations, which can be used to describe the confidence that may be attached to
the prediction, given the presence or absence of training data in a given region of the input space. An
implementation of this method in a neural network architecture with adaptive weights is proposed
and is demonstrated on simulated data.

The paper is organized as follows. The main definitions related to the D-S theory of evidence
are first recalled in Section 2. We then show how this approach may be applied to classification and
regression problems (Section 3). The connectionist implementation is then described in Section 4, and
demonstrated in Section 5.

2 The D-S theory of evidence

The idea of using belief functions for representing someone’s feeling of uncertainty was first explored
by Shafer [6], following the seminal work of Dempster [1] about upper and lower probabilities induced
by multi-valued mappings. The use of belief functions as an alternative to subjective probabilities
for representing uncertainty was later justified axiomatically by Smets [7], who introduced the Trans-
ferable Belief Model (TBM), providing a clear and coherent interpretation of the various concepts
underlying the theory. A general scheme for applying this theoretical framework to pattern classifi-
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cation has been proposed by Denœux [3, 2]. In the following the main definitions pertaining to the
theory of belief functions (according to the interpretations provided by the TBM) are briefly recalled.

Let ω be some variable of interest taking on values in a finite set Ω called the frame of discernment.
Let us assume that an agent entertains beliefs concerning the value of ω, given a certain evidential
corpus. We postulate that these beliefs may be represented by a belief structure (or belief assignment),
i.e. a function from 2Ω to [0, 1] verifying

∑
A⊆Ωm(A) = 1 and m(∅) = 0. For all A ⊆ Ω, the

quantity m(A) represents the mass of belief allocated to the proposition “ω ∈ A”, and that cannot
be allocated to any strict sub-proposition because of lack of evidence. The subsets A of Ω such that
m(A) > 0 are called the focal elements of m. The information contained in a belief structure may be
equivalently represented as a belief function bel, or as a plausibility function pl, defined respectively as
bel(A) =

∑
B⊆Am(B) and pl(A) =

∑
B∩A6=∅m(B). The quantity bel(A), called the credibility of A, is

interpreted as the total degree of belief in A (i.e. in the proposition “ω ∈ A”), whereas pl(A) denotes
the amount of belief that could potentially be transfered to A, taking into account the evidence that
does not contradict that hypothesis.

Let us now assume that two distinct pieces of evidence induce two belief structures m1 and m2.
The orthogonal sum of m1 and m2, denoted as m = m1 ⊕m2 is defined as:

m(A) = K−1
∑

B∩C=A

m1(B)m2(C) (1)

withK =
∑

B∩C 6=∅m1(B)m2(C) for A 6= ∅ andm(∅) = 0. The orthogonal sum (also called Dempster’s
rule of combination) is commutative and associative. It plays a fundamental operation for combining
different evidential sources in evidence theory.

Decision making is an important issue in any theory of uncertainty. In the TBM, a distinction is
made between two levels of uncertainty representation: a credal level at which beliefs are entertained
and represented using the formalism of belief functions, and a decision level at which belief functions
are converted to probability distributions to allow coherent betting behaviors [7]. Given a belief
structure m, the Generalized Insufficient Reason Principle [7] leads to the definition of the pignistic

probability distribution BetP defined as BetP(ω) =
∑

A3ω
m(A)
|A| where |A| denotes the cardinality of

A. According to the TBM, pignistic probabilities should be used for computing expected utilities
or losses in a decision context. Another approach to decision making in D-S theory consists in
considering the set C of probability distributions P compatible with belief function bel, i.e., verifying
bel(A) ≤ P (A) ≤ pl(A) ∀A ⊆ Ω. The lower and upper expectations of a function f : Ω 7→ IR are then
defined respectively as:

IE∗(f) = min
P∈C

IEP (f) =
∑
A⊆Ω

m(A) min
ω∈A

f(ω) (2)

IE∗(f) = max
P∈C

IEP (f) =
∑
A⊆Ω

m(A) max
ω∈A

f(ω) (3)

where IEP (·) denotes expectation relative to P . These definitions lead to different possible decision
strategies, based on minimization of the lower or upper expected loss.

3 Application to classification and regression

3.1 Classification

We consider the task of classifying a feature vector x into one of M predefined groups or categories
[3, 2]. The variable of interest is then the class ω of that pattern, and the frame of discernment
is the set Ω = {ω1, . . . , ωM} of classes. The available evidence is supposed to consist in a set of n
representative patterns or prototypes p1, . . . ,pn. We do not for the moment consider the way in which
this set of patterns has been obtained from training data. Each prototype pi is assumed to have
some known degree of membership uij to each class ωj , with

∑M
j=1 u

i
j = 1. The membership vector of

prototype i is denoted as ui = (ui1, . . . , u
i
M ).

Each data item (pi,ui) constitutes a piece of evidence regarding the class of feature vector x.
This evidence may be assumed to induce a belief structure mi(·|x) on Ω with focal elements {ωj} for
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j ∈ {1, . . . ,M} and Ω. The mass of belief assigned to {ωj} is postulated to be proportional to the
degree of membership of pi to class ωj , and a decreasing function of the distance (according to some
relevant metric δ) between vectors x and pi:

mi({ωj}|x) = uijφ
i(δ(x,pi)) ∀j ∈ {1, . . . ,M}

mi(Ω|x) = 1− φi(δ(x,pi))

where φ is a decreasing function verifying φi(0) ≤ 1 and limd→∞ φi(d) = 0. In [2], δ was chosen to be
the Euclidean distance, and φi was assumed to be of the form φi(d) = αi exp(−γid2) with 0 ≤ αi ≤ 1
and γi > 0. However, any other metric and family of functions could be considered as well.

As a result of the consideration of the n prototypes, n belief structures may defined. These
structures are obtained from distinct sources of information and may therefore be combined using
Dempster’s rule to yield a global belief structure m(·|x) = m1(·|x) ⊕ . . . ⊕mn(·|x) summarizing our
final belief concerning the class of x. The focal elements of m are the singletons of Ω, and Ω itself. In
the decision phase, pattern x may be assigned to the class of maximum credibility, which is also in
this case the one with greatest plausibility. More sophisticated decision strategies are discussed in [4].

3.2 Regression

The above procedure may be transposed to regression problems in the following way. We consider
the task of predicting the value of a continuous variable y based on an input vector x. The data
generating process is unknown, but it may be assumed to be properly described by a joint probability
distribution f(x, y). Let Y denote the set of values taken by variable y. As an approximation to y,
we consider a discrete variable ỹ obtained by partitioning Y into M disjoint subsets ω1, . . . , ωM , and
associating to each ωi a representative value yi.

Let us now denote by Ω the set {ω1, . . . , ωM}, and let us assume that we have gathered some
evidence regarding the value of y associated to some input vector x. Then, according to the TBM,
the belief induced by this evidence may be represented by a belief structure. Ideally, the frame of
discernment for that belief structure should be Y, the domain of variation of variable y. However, the
theory of evidence is much more complex when considering continuous frames, so we prefer to define
a belief structure on the discretized version Ω of Y.

Let m(·|x) denote that structure, assumed to be obtained by comparing x to n prototypes as
explained in the previous section. The focal elements of m(·|x) are thus {ωi} for i = 1, . . . ,M and Ω.
Then, the upper and lower expectations of ỹ are defined respectively as:

IE∗(ỹ|x) =

M∑
i=1

m({ωi}|x)yi +m(Ω|x) min
i
yi

IE∗(ỹ|x) =

M∑
i=1

m({ωi}|x)yi +m(Ω|x) max
i
yi

The expectation of ỹ relative to the pignistic probability distribution is:

IEbet(ỹ|x) =

M∑
i=1

BetP(ωi|x)yi (4)

with BetP(ωi|x) = m({ωi}|x)+m(Ω|x)/M . The quantity IEbet(ỹ|x) may thus be considered as a point
prediction of y given x, while the interval [IE∗(ỹ|x), IE∗(ỹ|x)] constitutes an imprecise assessment of
the target variable.

4 Neural network implementation

4.1 Architecture

A possible neural network implementation of the above procedure is represented in Figure 1. The first
hidden layer (L1) is similar to the hidden layer of a RBF network with Gaussian activation function.
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Figure 1: Architecture of the Belief Function Neural Network.

The activation of neuron i in that layer is φi = αi exp(−γi‖x − pi‖2). The second hidden layer (L2)
computes the belief structure mi associated to prototype pi. It is composed of n modules of M + 1
units. The outputs from the i-th module is a vector

mi = (mi({ω1}|x), . . . ,mi({ωM}|x),mi(Ω|x)) = (ui1φ
i, . . . , uiMφ

i, 1− φi) (5)

The third hidden layer (L3) performs the combination of the n belief structures from the former layer
using the Dempster’s rule without normalization. It is composed of n interconnected modules of M+1
sigma-pi units. The outputs oi = (oi1, . . . , o

i
M+1) from module i correspond to the unnormalized

orthogonal sum of m1, . . . ,mi. They are computed iteratively using the outputs from module i of
layer L2 and module i− 1 of layer L3:

oij = oi−1
j mi

j + oi−1
j mi

M+1 + oi−1
M+1m

i
j (6)

for j = 1, . . . ,M and
oiM+1 = oi−1

M+1m
i
M+1 (7)

with o1
j = m1

j for j = 1, . . . ,M + 1.
The output from layer L3 is the vector on of activations in the last module of that layer. Its

values are the belief masses corresponding to the unnormalized orthogonal sum of m1, . . . ,mn. The
normalized output vector m is obtained by normalizing the components of on to unity: m = on/K

with K =
∑M+1

j=1 onj .
Finally, the output layer is composed of a single neuron with activation ŷ defined as:

ŷ =

M∑
i=1

yimi + ȳmM+1 (8)

with ȳ = 1
M

∑M
j=1 yj . Hence, the network output is exactly equal to the expectation of ỹ relative to the

pignistic probability distribution as defined by Eq. 4. Once the input signal has been propagated in the
network, the lower and upper expectations of ỹ may be readily obtained as IE∗(ỹ|x) =

∑M
i=1 yimi +

mM+1 mini yi and IE∗(ỹ|x) =
∑M

i=1 yimi +mM+1 maxi yi.

4.2 Training

The training of the above network may be performed in two phases: (1) initialization and (2) mini-
mization of an error criterion.

First of all, we start by defining M classes by partitioning the output space Y so as to have
approximately the same number samples in each class (more sophisticated discretization techniques
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could also be used). Assuming Y to be of the form [ymin, ymax], we thus find M − 1 thresholds
ξ1, . . . , ξM−1 and define ω1 = [ymin, ξ1[, ωi = [ξi−1, ξi[ for i = 1, . . . ,M − 1, and ωM = [ξM−1, ymax].
The initial value of yi may then be set to the middle of interval ωi, for i = 1, . . . ,M .

The next step in the initialization phase consists in constructing a set of n prototypes using a
clustering or vector quantization procedure such as the c-means algorithm. The degree of membership
of prototype i to class ωj may then be initialized as the proportion of training pattern from that class
in the region of influence V i of prototype i. As a heuristic, the initial value of the scale parameter
γi may be set equal to the inverse of the mean squared distance between prototype pi and training
patterns in V i.

Once the network parameters have been initialized, the next step consists in defining an error func-
tion to be minimized. In our case, since we are performing classification and function approximation
simultaneously, we shall define the total error for pattern x as a weighted sum of a classification error
Ec and a regression error Er:

E(x) = νEc(x) + (1− ν)Er(x) (9)

where 0 ≤ ν ≤ 1 is a parameter controlling the tradeoff between both types or error. A natural choice
for the regression error is Er(x) = (y − ŷ)2, whereas the classification error may be defined as:

Ec(x) =

M∑
j=1

(BetP(ωj |x)− tj)2 (10)

where tj is a binary variable indicating the true membership of x to class ωj (tj = 1 if x ∈ ωj , and
tj = 0 otherwise), and BetP(ωj |x) is the pignistic probability of class ωj computed for pattern x,
which is equal to m({ωj}|x) +m(Ω|x)/M .

A mean output error E can be computed by averaging E(x) for all x in the training set. Since
the prototypes vectors should remain in regions of high data density, they are not changed during
the optimization process. The free parameters are therefore γi, αi and uij for i = 1, . . . , n and

j = 1, . . . ,M + 1. The constraints are γi > 0, 0 < αi < 1 and
∑M

j=1 u
i
j = 1 for all 1 ≤ i ≤ n.

These constraints are automatically satisfied by introducing new parameters ηi, ξi and βi
q such that

γi = (ηi)2, αi = (1 + exp(−ξi))−1 and uiq = (βi
q)2/

∑M
k=1(βi

k)2, and minimizing E with respect to
these new parameters. Calculation of the whole gradient can be performed in linear time with respect
to the input dimension, the number M of classes and the number n of prototypes [2].

A common approach to avoid overfitting is to perform regularization. In our model, a way to
moderate the importance of a prototype i is to decrease αi: for αi = 0, we have mi(Ω|x) = 1, and
mi no longer influences the result of the orthogonal sum. To obtain a smoother solution, it has also
proved beneficial to avoid large absolute values of the yi. We therefore add to the error function a
regularization term C equal to:

C =

n∑
i=1

αi +

M∑
j=1

y2
j (11)

The new error function to be minimized then becomes J = E + µC, where µ is a hyper-parameter,
the optimal value of which may be determined by cross-validation.

5 Example

As an example, we consider a regression problem where the input x ∈ IR is taken from a mixture of
two Gaussian distributions: f(x) ∼ 0.5N (−2, 0.25) + 0.5N (2, 0.25). The target variable y is defined
as y = sin(3x) + x + ε(x), where ε(x) is a Gaussian white noise with variance 0.01 if x ≤ 0 and 1 if
x > 0. A training set of N = 150 samples was generated from that distribution.

Figure 2 shows a result of our simulations with n = 20, M = 7, ν = 0.5 and µ = 0.005. As can
be seen in that example, the absence of training data around x = 0 is correctly reflected by a large
difference between lower and upper expectations. Note that the prediction interval does not become
larger in the region of large variance of ε(x), since the width of this interval essentially indicates
uncertainty about the conditional average of the target data resulting from low density of training
data. The scatter of the target variable around the mean might be estimated independently, for
example by approximating the squared prediction error (ŷ − y)2.
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Figure 2: Plot of the lower, pignistic and upper conditional expectations. Training points and proto-
types are indicated by x and o, resp.

6 Conclusions

We have proposed a novel approach to functional regression based on the Transferable Belief Model,
a variant of the Dempster-Shafer theory of evidence. This method consists in using reference vectors
for computing a belief structure that quantifies the uncertainty attached to the prediction of the
target data, given the input data. The method may be implemented in a neural network with specific
architecture and adaptive weights. It allows to compute an imprecise assessment of the target data in
the form of lower and upper conditional expectations. The width of this interval should be interpreted
as reflecting the partial indeterminacy of the prediction resulting from the relative scarcity of training
data. Detailed comparison between this method and other approaches based e.g. on confidence
intervals in the classical sense such as described in [5] is under way and will be reported in future
papers.
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