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Abstract We consider the problem of statistical parameter estimation when
the data are uncertain and described by belief functions. An extension of the
Expectation-Maximization (EM) algorithm, called the Evidential EM (E2M)
algorithm, is described and shown to maximize a generalized likelihood func-
tion. This general procedure provides a simple mechanism for estimating
the parameters in statistical models when observed data are uncertain. The
method is illustrated using the problem of univariate normal mean and vari-
ance estimation from uncertain data.
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1 Introduction

In statistics, observations of random quantities are usually assumed to be
either precise or imprecise, i.e., set-valued. The latter situation occurs, e.g.,
in the case of censored data, where an observation is only known to belong to a
set, usually an interval. The Expectation-Maximization (EM) algorithm [4, 8]
has proved to be a powerful mechanism for performing maximum likelihood
parameter estimation from such incomplete data.

There are situations, however, where the observations are not only impre-
cise, but also uncertain, i.e., partially reliable [1]. Consider, e.g., a classifica-
tion problem in which objects in a population belong to one and only one
group. Let X be the finite set of groups, and X be the group of an object
randomly drawn from the population. In some applications, realizations x
of X are not known with certainty. Rather, an expert provides a subjective
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assessment of x (a process known as labeling). This assessment may take the
form of a subset A⊆X , a probability distribution p on X or, more generally,
a mass function m on X , i.e., a function m : 2X → [0,1]. It must be stressed
that, in this example, the data generation process can be decomposed into
two components: a random component, which generates a realization x from
X , and a non random component, which produces a mass function m that
models the expert’s partial knowledge of x.

If this process is repeated n times independently, the data takes the form
of n mass functions m1, . . . ,mn, considered as a partial specification of an
unknown realization x1, . . . ,xn of an i.i.d. random sample X1, . . . ,Xn. We will
refer to such data as evidential data. If a parametric model is postulated for X ,
how can the method of maximum likelihood be extended to handle such data?
This is the problem considered in this paper. A generalization of the likelihood
function will be proposed, and an extension of the EM algorithm, called the
evidential EM (E2M) algorithm, will be introduced for its maximization.

We may note that, in the special case where each mass functions mi is con-
sonant, the data can be equivalently represented as n possibility distribution
x̃1, . . . , x̃n, which constitutes a fuzzy random sample. The problem of statistical
inference from fuzzy data, which has received a lot of attention in the past
few years [5, 6], is thus a special case of the problem considered here.

Early attempts to adapt the EM algorithm to evidential data, in the special
case of mixture models with evidential class labels, were presented in [10, 7].
A rigorous solution to this problem, which is a special case of the general
method presented in this paper, was introduced in [2].

The rest of the paper is organized as follows. The EM algorithm will first
be recalled in Section 2. The extension of the likelihood function and the
E2M algorithm will then be introduced in Sections 3 and 4, respectively.
Section 5 will demonstrate the application of this algorithm to the problem
of univariate normal mean and variance estimation using uncertain data.

2 The EM Algorithm

The EM algorithm is a broadly applicable mechanism for computing MLEs
from incomplete data, in situations where ML estimation would be straight-
forward if complete data were available [4]. Formally, we assume the existence
of two sample spaces X and Y , and a many-to-one mapping ϕ from X to
Y . The observed (incomplete) data y are a realization from Y , while the
corresponding x in X is not observed and is only known to lie in the set

X (y) = ϕ−1(y) = {x ∈ X |ϕ(x) = y}.

Vector x is referred to as the complete data vector. It is a realization from a
random vector X with p.d.f. gc(x;ΨΨΨ), where ΨΨΨ = (Ψ1, . . . ,Ψd)

′ is a vector of



Maximum Likelihood from Evidential Data 3

unknown parameters with parameter space ΩΩΩ . The observed data likelihood
L(ΨΨΨ ) is related to gc(x;ΨΨΨ) by

L(ΨΨΨ ) =

∫
X (y)

gc(x;ΨΨΨ)dx. (1)

The EM algorithm approaches the problem of maximizing the observed-
data log likelihood logL(ΨΨΨ ) by proceeding iteratively with the complete-data
log likelihood logLc(ΨΨΨ ) = loggc(x;ΨΨΨ ). Each iteration of the algorithm involves
two steps called the expectation step (E-step) and the maximization step (M-
step).

The E-step requires the calculation of

Q(ΨΨΨ ,ΨΨΨ (q)) = EΨΨΨ (q) [logLc(ΨΨΨ)|y] ,

where ΨΨΨ (q) denotes the current fit of ΨΨΨ at iteration q, and EΨΨΨ (q) denotes

expectation using the parameter vector ΨΨΨ (q).

The M-step then consists in maximizing Q(ΨΨΨ ,ΨΨΨ (q)) with respect toΨΨΨ over
the parameter space ΩΩΩ . The E- and M-steps are iterated until the difference
L(ΨΨΨ (q+1))−L(ΨΨΨ (q)) becomes smaller than some arbitrarily small amount.

3 Generalized Likelihood Function

Let us now consider the more complex situation where the relationship be-
tween the observed and complete spaces is uncertain, so that observed data
y can no longer be associated with certainty to a unique subset of X . This
situation will be formalized as follows.

Let us assume the existence of a set Θ of interpretations, one and only one
of which holds, and a probability measure Pr on Θ . If y has been observed and
θ ∈Θ is the true interpretation, then the complete data x is known to belong
to X (y,θ ) ⊆ X . Having observed y, the probability measure Pr is carried
to 2X by the mapping θ → X (y,θ ), which defines a Dempster-Shafer mass
function m on X . For simplicity, we will assume from now on that Θ is finite:
Θ = {θ1, . . . ,θK}, in which case m is a discrete mass function with focal sets
Xk = X (y,θk) and masses mk = m(Xk) = Pr({θk}) for k = 1, . . . ,K.

With the same notations as in the previous section, the observed data
likelihood may now be defined as:

L(ΨΨΨ ) =
K

∑
k=1

mk

∫
Xk

gc(x;ΨΨΨ)dx =

∫
X

gc(x;ΨΨΨ)

(
K

∑
k=1

mk1Xk(x)

)
dx

=

∫
X

gc(x;ΨΨΨ)pl(x)dx = EΨΨΨ [pl(X)] , (2)
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where pl : X → [0,1] is the contour function associated to m.

The generalized likelihood ofΨΨΨ is thus equal to the expectation of the plau-
sibility contour function, with respect to the probability distribution gc(x;ΨΨΨ ).
We can remark that, when m is consonant, the contour function can be seen
as the membership function of a fuzzy subset of X : L(ΨΨΨ ) is then the proba-
bility of that fuzzy subset, according to Zadeh’s definition of the probability
of a fuzzy event [11].

In the more general setting of belief functions, L(ΨΨΨ) has another interpre-
tation that will now be explained. Let gc(·|m;ΨΨΨ ) = m⊕ gc(·;ΨΨΨ ) denote the
p.d.f. obtained by combining m with the complete data p.d.f. gc(·;ΨΨΨ ) using
Dempster’s rule [3, 9]:

gc(x|m;ΨΨΨ) =
gc(x;ΨΨΨ )pl(x)∫

X gc(u;ΨΨΨ)pl(u)du
=

gc(x;ΨΨΨ )pl(x)
L(ΨΨΨ )

. (3)

The normalizing constant L(ΨΨΨ ) at the denominator of the above expression
is equal to one minus the degree of conflict between m and gc(x;ΨΨΨ ). Conse-
quently, maximizing L(ΨΨΨ ) amounts to minimizing the conflict between the
observations (represented by m) and the parametric model gc(·;ΨΨΨ ).

The expression of the observed data likelihood (2) can often be simplified
by making independence assumptions. Let us assume that the observed data
x= (x1, . . . ,xn) is a realization from a random vector X= (X1, . . . ,Xn). In many
applications, we can make the following assumptions:

A1: Stochastic independence of the r.v. X1, . . . ,Xn:

gc(u;ΨΨΨ ) =
n

∏
i=1

gc(ui;ΨΨΨ), ∀u = (u1, . . . ,un) ∈ X .

A2: The plausibility contour function pl(x) can be written as

pl(u) =
n

∏
i=1

pli(ui), ∀u = (u1, . . . ,un) ∈ X ,

where pli is the contour function corresponding to the marginal mass func-
tion mi on xi.

It should be noted that Assumption A2 is totally unrelated to A1: it is not a
property of the random variables X1 . . . ,Xn, but of the uncertain observation
process. It is actually a weaker form of the cognitive independence assumption,
as defined by Shafer [9].

Under Assumptions A1 and A2, the observed data log likelihood can be
written as a sum of n terms:

logL(ΨΨΨ) =
n

∑
i=1

logEΨΨΨ [pli(Xi)] .
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4 The Evidential EM Algorithm

To maximize function L(ΨΨΨ ) defined by (2), we propose to adapt the EM
algorithm as follows. Let the E-step now consist in the calculation of the
expectation of logLc(ΨΨΨ ) with respect to gc(·|m;ΨΨΨ (q)) defined by (3):

Q(ΨΨΨ ,ΨΨΨ (q)) = EΨΨΨ (q) [logLc(ΨΨΨ )|m] =

∫
log(Lc(ΨΨΨ))gc(x;ΨΨΨ (q))pl(x)dx

L(ΨΨΨ (q))
. (4)

The M-step is unchanged and requires the maximization of Q(ΨΨΨ ,ΨΨΨ (q)) with
respect to ΨΨΨ . The E2M algorithm alternately repeats the E- and M-steps
above until the increase of observed-data likelihood becomes smaller than
some threshold. The following theorem shows that E2M algorithm inherits
the monotonicity property of the EM algorithm, which ensures convergence
provided the sequence of incomplete-data likelihood values remains bounded
from above.

Theorem 1. Any sequence L(ΨΨΨ (q)) for q = 0,1,2, . . . of likelihood values ob-
tained using the E2M algorithm is non decreasing, i.e., it verifies

L(ΨΨΨ (q+1))≥ L(ΨΨΨ (q)), ∀q. (5)

Proof. The proof is similar to that of Dempster et al. [4]. 	

To conclude this section, we may note that the p.d.f. gc(x|m;ΨΨΨ) and, con-

sequently, the E2M algorithm depend only on the contour function pl(x) and
they are unchanged if pl(x) is multiplied by a constant. Consequently, the
results are unchanged if m is converted into a probability distribution by
normalizing the contour function.

5 Normal Mean and Variance Estimation

To illustrate the above algorithm, let us assume that the complete data x =
(x1, . . . ,xn) ∈ X = R

n is a realization from an i.i.d. random sample from a
univariate normal distribution N (μ ,σ2). The parameter vector is thus ΨΨΨ =
(μ ,σ). The observed data has the form y=(y1, . . . ,yn) with yi =(wi,αi), where
wi is an estimate of xi (provided, e.g., by a sensor), and αi ∈ [0,1] is a degree
of confidence in that estimation. For each yi, there are two interpretations θi1

and θi2. Under interpretation θi1, we admit that xi = wi; under interpretation
θi2, we know only that xi ∈ R. The probability for interpretation θi1 to be
correct is αi, which can thus be interpreted as a degree of reliability of the
piece of information yi. The induced mass function mi on R is defined by

mi({wi}) = αi, mi(R) = 1−αi.
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The corresponding contour function is defined by

pli(x) = αiδ (x−wi)+ 1−αi

for all x ∈R, where δ (·) is the Dirac Delta function.

Let gc(·; μ ,σ) denote the normal p.d.f. with mean μ and standard deviation
σ . The observed data log likelihood is

logL(μ ,σ) =
n

∑
i=1

log

(∫ ∞

−∞
gc(x; μ ,σ)pli(x)dx

)
=

n

∑
i=1

log(αigc(wi; μ ,σ)+ 1−αi) ,

which is to be maximized with respect to μ and σ .

The complete data log likelihood is

logLc(μ ,σ) =−n
2

log(2π)− n logσ − 1
2σ 2

n

∑
i=1

(xi − μ)2 =

− n
2

log(2π)− n logσ − 1
2σ 2

(
n

∑
i=1

x2
i − 2μ

n

∑
i=1

xi + μ2

)
.

Consequently,

Q(ΨΨΨ ,ΨΨΨ (q)) =−n
2

log(2π)− n logσ

− 1
2σ 2

(
n

∑
i=1

β (q)
i − 2μ

n

∑
i=1

γ(q)i + μ2

)
, (6)

where γ(q)i and β (q)
i denote, respectively, the expectations of X and X2 with

respect to the conditional probability distribution

gc(·|mi;ΨΨΨ (q)) = gc(·; μ(q),σ (q))⊕mi

defined by

gc(x|mi;ΨΨΨ (q)) =
gc(x;ΨΨΨ (q))pli(x)∫+∞

−∞ gc(u;ΨΨΨ (q))pli(u)du
=

gc(x;ΨΨΨ (q)) [αiδwi(x)+ (1−αi)]

αigc(wi;ΨΨΨ (q))+ 1−αi
.

The following equalities thus hold:

γ(q)i =
αigc(wi;ΨΨΨ (q))wi +(1−αi)μ (q)

αigc(wi;ΨΨΨ (q))+ 1−αi
(7)

and



Maximum Likelihood from Evidential Data 7

β (q)
i =

αigc(wi;ΨΨΨ (q))w2
i +(1−αi)

[(
μ (q)

)2
+
(

σ (q)
)2
]

αigc(wi;ΨΨΨ (q))+ 1−αi
. (8)

The maximum of Q(ΨΨΨ ,ΨΨΨ (q)) defined by (6) is obtained for the following
values of μ and σ :

μ (q+1) =
1
n

n

∑
i=1

γ(q)i (9)

and

σ (q+1) =

√
1
n

n

∑
i=1

β (q)
i − (μ (q+1)

)2
. (10)

In E-step of the E2M algorithm for this problem thus consists in the cal-

culation of γ(q)i and β (q)
i for all i using (7) and (8), respectively. The M-step

then updates the estimates of μ and σ using (9) and (10). The algorithm
stops when the relative increase of the observed data likelihood becomes less
than some threshold ε.

Example 1. To illustrate the application of the above algorithm to a situation
where data are unreliable, we considered the following experiments. Random
samples of size n = 100 were drawn from a standard normal distribution. For
each realization xi, a number αi was drawn from the uniform distribution
U[0,1]. With probability αi, wi was defined as xi, and with probability 1−αi it

was set to xi+εi, with εi ∼N (0,s2). Parameters μ and σ were estimated using
the E2M algorithm based on the data (wi,αi), i= 1, . . . ,n. The experiment was
repeated N = 100 times and mean squared errors on μ and σ were computed.
The results are shown in Figure 1. Our approach was compared with the
simple strategy that consists in estimating μ and σ by the sample mean and
standard deviation of the wi for all i such that αi ≥ c, for different choices
of c. We can see that the E2M algorithm is much more robust than this
simple reference method. Further experiments involving comparisons with
more sophisticated alternative estimators are under way.

6 Conclusion

An iterative procedure for estimating the parameters in a statistical model
using evidential data has been proposed. This procedure, which generalizes
the EM algorithm, minimizes the degree of conflict between the uncertain
observations and the parametric model. It provides a general mechanism for
statistical inference when the observed data are uncertain. It remains an open
problem to determine the conditions under which the obtained estimator is
consistent. This is the topic of on-going research.
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Fig. 1 Mean squared errors on μ (left) and σ (right, logarithmic y scale) as functions
of the noise standard deviation s for the E2M algorithm and alternative methods (see
details in text).

References

1. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.
IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)
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