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Abstract

Handling the uncertainty of information sources is a key issue in parameter iden-
tification. In this work, we address this issue using the theory of belief func-
tions. First, measurement information is described through likelihood-based
belief functions, and prior information is represented by an arbitrary belief
function. Second, both belief functions are combined by Dempster’s rule us-
ing point-cloud representation of focal sets and Monte Carlo simulation. Lastly,
to summarize the combined belief function, we propose to find the minimal-area
region in the parameter space, whose belief and plausibility values exceed given
thresholds. As compared to Bayesian inference, this approach is more flexible,
as it allows us to specify weak prior information. Experimental results show that
it is also more robust than Bayesian inference to unreliable prior information.
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uncertainty, epistemic uncertainty, likelihood, Dempster-Shafer theory,
evidence theory, random set.

1. Introduction

In computational mechanics, more and more complex material models are
used to meet the need for more predictive and accurate mechanical simulations.
The parameters of these models have to be identified from experiments; con-
sequently, identification of material properties remains a top-priority objective.5

As models get more complex, more information is needed from more elaborate
experiments. In recent years, the use of full-field displacement measurements
(based, in particular, on Digital Image Correlation (DIC) [1]) has rapidly spread
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within the experimental mechanics community. Such data (a full field of dis-
placement over an area of the loaded structure) are very rich in comparison10

to previous measurements (e.g., strain gauges); they offer more possibilities in
terms of material characterization. However, straightforward identification is
no longer possible and dedicated approaches need to be developed.

Identification is typically an inverse problem [2]. Inverse problems are often
ill-posed [3], in the sense that their solution may suffer from a lack of exis-15

tence, unicity or continuity with respect to the data. To ensure the existence
of a solution, inverse problems are often reformulated as optimization problems
(e.g., least-squares). To tackle the non-unicity issue, we need to introduce some
form of regularization [4, 5]. An effective way to regularize an inverse problem
is to take into account prior information. This can be done through Bayesian20

inference [6], which makes it possible to deal with uncertainties in both the
measurements and the prior information. However, under the Bayesian ap-
proach, uncertain information has to be described by probabilities, which is
quite restrictive. Over the years, different alternative formalisms for modeling
epistemic uncertainties have been developed, including interval analysis [7], pos-25

sibility theory [8], and p-boxes [9]. In this work, we aim to develop new tools
for parameter identification allowing us to incorporate weak prior knowledge in
the belief function framework, which encompasses all the formalisms mentioned
above.

This paper focuses on developing a method to identify material elastic pa-30

rameters from displacement fields. There are two main challenges: (1) faithfully
representing prior information, and (2) quantifying uncertainties from various
sources and propagating them. Recently, a lot of methods have been proposed
to identify material properties from kinematic fields, including Finite Element
Model Updating (FEMU) [10, 11, 12], the Constitutive Relation Error Method35

(CREM) [13, 14], the Modified Constitutive Relation Error Method (M-CREM)
[15], the Equilibrium Gap Method (EGM) [16, 17, 18], and the Virtual Fields
Method (VFM) [19, 20]. These methods do not specifically address the issues of
exploiting prior information and quantifying uncertainty. The Bayesian frame-
work [21, 22] accounts for prior information and quantifies uncertainty using40

probabilities. However, the probabilistic formalism is limited when it comes
to describing near-ignorance situations. This limitation, discussed by many
authors (see, e.g., [23, 24, 25]), has motivated the development of alternative
theories of uncertainty in the last quarter of the 20th century. In particular, the
theory of belief functions, also referred to as Dempster-Shafer theory or Evidence45

Theory [26, 23, 27, 28], offers a suitable framework for encoding and quantify-
ing both epistemic and aleatory (random) uncertainty. Moreover, it includes
comprehensive mechanisms for combining information from multiple sources.

Most previous studies using the theory of belief functions in mechanics have
focused on the propagation of uncertainty through mechanical models, i.e., on50

the direct problem. For instance, in [29, 30], the authors consider the problem of
computing the uncertain response of a numerical model with uncertain param-
eters, seen as a black box. Other authors have used belief functions to predict
the remaining lifetime of mechanical systems and quantify the corresponding
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uncertainty [31, 32]. However, to our knowledge, none of these studies has been55

devoted to handling uncertainty in inverse problems, i.e., identifying the pa-
rameters of mechanical models from measurements based on the theory of belief
functions, which is the topic of this paper1. In Section 2, we introduce the basic
concepts needed in this paper and we outline our identification strategy. Section
3 describes the numerical implementation of this strategy, including the descrip-60

tion and discretization of multidimensional random sets and the summarization
of the combined belief function. In Section 4, we present two applications to
static tensile tests of homogeneous and heterogeneous plates. Section 5 con-
cludes the paper.

2. Identification Strategy65

This section is composed of two parts. In Section 2.1, we introduce the
general identification framework, including the mechanical models and the ba-
sic concepts of the theory of belief functions. The encoding and merging of
information are then addressed in Section 2.2.

2.1. Framework and Proposed Strategy70

We consider the identification of elastic parameters of a solid body under
static loading based on displacement field data obtained using DIC [35, 36, 37].
This framework corresponds to the standard case of a mechanical test on a
specimen. The first step is to model the experiment, through the continuum
mechanics partial differential equations and boundary conditions that describe75

the mechanical behavior of the specimen. For the sake of simplicity, we will
limit ourselves to the case where the available data make it possible to define
a well-posed direct problem. Otherwise, some methods have been proposed to
deal with lack of data [38], but they will not be addressed here. This direct
problem is parametrized by unknown elastic parameters collected in a vector θ,80

taking values in a set Θ.

Mechanical model and information for identification. We sum up the modeling
of the experiment as follows. The specimen is considered as a 2D domain Ω.
The displacement data ũ are measured over a domain Ωm, which can be Ω itself
or a subset of Ω. They have to be compared to the displacement computed
from the model for a given θ, denoted by u(θ). The displacement u(θ) is
the solution of the continuum mechanics problem on domain Ω, driven by the
standard equations: equilibrium, Neumann and Dirichlet boundary equations
and constitutive equation. The latter is assumed here to be linear elastic and
isotropic so that it can be written as

Cε = λtr(ε)I + 2µε on all the domain, (1)

1This paper is based on the first author’s PhD thesis [33], and is an extended version of
Ref. [34].
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where I denotes the identity matrix, tr is the trace operator and ε is the strain

field associated to the displacement (ε =
1

2
(∇u+∇Tu)). C is the Hook tensor

corresponding to the elastic behaviour and (λ, µ) are the two Lamé parameters
that can be constant over Ω or not. Vector θ collects the parameters that allow85

us to describe the λ and µ fields.
The continuum mechanics direct problem does not usually have a closed-

form solution. Therefore, an approximate solution has to be computed based
on a discretization of the problem. The standard method used here is the finite
element (FE) method [39, 40], which can provide an accurate estimation of u(θ).90

The FE method is based on an approximation of the displacement field thanks
to a mesh of Ω, where u is described from its interpolation between its values
at the nodes of the mesh (see Figure 4(b) in Section 4 for an illustration, where
the nodes correspond to the corners of the triangles).

The purpose of identification through the inverse approach is to find the95

elastic parameters θ such that u(θ) is as close as possible to the measured
displacement ũ, taking uncertainty into account. The available information can
be divided into three categories:

1. Theoretical information, considered as reliable and deterministic. For any
given θ, this information is described by u(θ) and corresponds to the100

displacement predicted by the model.

2. Experimental information, tainted with aleatory uncertainty (random er-
ror). It is assumed that the measured displacement can be written as

ũ = u(θ) + e, (2)

where e is the measurement error, which is a random vector with a known
probability distribution e ∼ Pe(e).

3. Background information corresponding to prior knowledge on θ; it is sub-
ject to epistemic uncertainty.105

Standard identification methods. Based on parametric model (2), the likelihood
function after observing measurement vector ũ is defined from the error proba-
bility distribution Pe(e) as

L(θ; ũ) = Pe(u(θ)− ũ). (3)

Deterministic identification of θ then consists in finding the most likely param-
eter vector

θ̂L = arg max
θ∈Θ

L(θ; ũ). (4)

If e has a Gaussian distribution, the maximization problem in Eq. (4) is equiv-
alent to the minimization of a least-square criterion; this is the case, e.g., in the
FEMU method [41, 42, 43]. In order to quantify uncertainty and handle prior
information, Bayesian inference applies Bayes’ theorem to derive a posterior
distribution on parameters θ based on the measurement field ũ. To do so, prior
knowledge has to be expressed as a probability distribution, which amounts to
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considering θ as a random vector with distribution p(θ). The posterior distri-
bution is then

p(θ|ũ) = c · p(θ) · L(θ; ũ), (5)

where c is a normalizing constant. We can see that the introduction of prior
probability distribution p(θ) is unavoidable in Bayesian inference. However,
the use of probabilities to represent weak knowledge has been questioned (see,
e.g., [44, 45, 46, 47]). This ongoing debate motivates us to explore alternative
strategies for inference.110

Theory of belief functions. In the following, we will use the belief function frame-
work to model different types of uncertainty. Considering a probability space
(S, σS , P ), where σS is a σ-algebra of subsets of S; a non-empty set Θ and
its power set 2Θ, a strongly measurable multi-valued mapping Γ: S −→ 2Θ is
called a random set [48]. For any measurable subset A ⊆ Θ, the uncertainty
of the proposition θ ∈ A can be quantified by belief and plausibility functions
[26, 23, 49],

Bel(A) =
P ({ω ∈ S | Γ(ω) ⊆ A,Γ(ω) 6= ∅})

P ({ω ∈ S | Γ(ω) 6= ∅})
, (6a)

Pl(A) =
P ({ω ∈ S|Γ(ω) ∩A 6= ∅})
P ({ω ∈ S | Γ(ω) 6= ∅})

= 1−Bel(A), (6b)

where A denotes the complement of A. The quantity Bel(A) is interpreted as
the degree of support given to the proposition θ ∈ A, while the quantity Pl(A)
measures the lack of support given to the proposition θ 6∈ A. Each set Γ(ω)
for ω ∈ S is called a focal set of the belief function. The random set Γ and
the corresponding belief function Bel are said to be consonant if, for any ω and
ω′ in S, we have either Γ(ω) ⊆ Γ(ω′) or Γ(ω′) ⊆ Γ(ω). The restriction of the
plausibility function to singletons is called the contour function,

pl(θ) = Pl({θ}), ∀θ ∈ Θ. (7)

In the case of a consonant belief function, we have

Pl(A) = sup
θ∈A

pl(θ), (8)

for all A ⊆ Θ. A consonant belief function can, thus, be represented by its
contour function.

The formal equivalence between random sets and belief functions has been
shown by Nguyen in [48]: for any random set Γ, there exists a belief function
defined by (6a) and, conversely, for any belief function, there exists a random115

set that generates it. In this paper, we will adopt the “random set” or “belief
function” points of view, depending on the context.
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Proposed inference strategy. Our strategy can be decomposed into three steps.
In the first step, we aim at expressing both measurement and prior information
using belief functions. In a second step, we merge these two pieces of infor-120

mation in order to construct a posterior belief function combining prior and
measurement information. Finally, we summarize this combined belief function
set to provide usable and interpretable information about parameter θ.

2.2. Measurement, Prior Information and Merging

In this section, we show how to express both measurement information and125

prior knowledge in the belief function framework, and how to combine these two
pieces of information.

Measurement information. The measurement ũ is assumed to be a noisy version
of the theoretical displacement u(θ), corrupted by additive error (see Eq. (2)).
The error is assumed to be Gaussian, with known covariance D: e ∼ N (0,D).
The value of D can actually be estimated by the DIC algorithm used for the
measurement of the displacement field [50, 51]. The evidential likelihood-based
approach, introduced in [23], represent the uncertainty on θ by a consonant
belief function, whose contour function equals the normalized likelihood function

plL(θ; ũ) =
L(θ; ũ)

supθ L(θ; ũ)
. (9)

Here, L(θ; ũ) is equal to

L(θ; ũ) = (2π detD)−1/2 exp

[
−1

2
(u(θ)− ũ)TD−1(u(θ)− ũ)

]
. (10)

In [28, 52], the author showed that Eq. (9) can be derived form three ba-
sic principles: the likelihood principle, compatibility with Bayes’ rule when a
prior probability distribution is available and the minimal commitment prin-130

ciple. This method of inference is more flexible than Bayesian inference. In
particular, it does not assume the existence of a prior probability distribution.
However, it boils down to Bayesian inference is a probabilistic prior is provided.

Prior information. Measurement information expressed by the likelihood-based
belief function (9) can be combined with prior information also expressed in
the belief function setting [30, 53]. In theory, the prior belief function can be
arbitrary but, for practical reasons, it is convenient to use a simple form such
as a consonant belief function [54, 55]. Thanks to Eq. (8), a consonant belief
function can be represented by its contour function pl : Θ → [0, 1]. In the case
of a multidimensional parameter (θ1, . . . , θd) ∈ Rd, it may be difficult to elicit
directly the joint contour function pl. Rather, we may elicit its marginals

pli(θi) = sup
{θj ,j 6=i}

pl(θ1, . . . , θd). (11)
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From (11), we can deduce that pl(θ1, . . . , θd) ≤ pli(θi) and, thus,

pl(θ1, . . . , θd) ≤ min{pl1(θ1), . . . , pld(θd)}.

Without any other information on pl, a conservative attitude leads to selecting
the least committed one [56], defined by

pl(θ1, . . . , θd) = min{pl1(θ1), . . . , pld(θd)}, (12)

for all θ1, . . . , θd.
It is sometimes desirable to weaken, or discount [23] a belief function, to135

express partial lack of confidence in a source of information. Let us assume
that, for instance, an expert gives us a belief function Bel about a parameter
θ and we have a degree of confidence 1 − α ∈ [0, 1] in the expert’s opinion.
The discounted belief function is defined as αBel = (1− α)Bel + αBel?, where
Bel? is the vacuous belief function defined by Bel?(A) = 0 for all A ⊂ Θ. If140

Bel is consonant with contour function pl, the discounted contour function is
αpl(θ) = max[α, pl(θ)] for all θ ∈ Θ.

Information merging. The likelihood-based and prior belief functions defined,
respectively, by (9) and (12) can be merged by Dempster’s rule [26] [23, Chapter
3] [57], which is the standard operation for combining pieces of information from
independent sources in the Dempster-Shafer framework. Let us consider two
random sets (Sk, σSk

, Pk,Γk), k = 1, 2. Let S = S1 × S2 be the product space,
P = P1 × P2 the product measure on σS = σS1

⊗ σS2
, and Γp the multi-valued

mapping defined by Γp(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2) for all (ω1, ω2) ∈ S. The
combined random set is defined as (S, σS , P,Γp). It induces the following belief
and plausibility functions: for any A ⊆ Θ,

Bel(A) =
P ({(ω1, ω2) ∈ S | Γp(ω1, ω2) ⊆ A,Γp(ω1, ω2) 6= ∅})

P ({(ω1, ω2) ∈ S | Γp(ω1, ω2) 6= ∅})
, (13a)

Pl(A) =
P ({(ω1, ω2) ∈ S | Γp(ω1, ω2) ∩A 6= ∅})
P ({(ω1, ω2) ∈ S | Γp(ω1, ω2) 6= ∅})

. (13b)

The degree of conflict is the quantity

κ = P ({(ω1, ω2) ∈ S | Γp(ω1, ω2) = ∅}). (14)

It is a measure of the inconsistency between the two sources of information.

Remark 1. As shown in [58] and [28], combining the likelihood-based conso-
nant belief function defined by contour function (9) with a probabilistic prior p(θ)145

using Dempster’s rule (13) yields the posterior probability distribution p(θ|ũ).
Dempster’s rule (13) thus generalizes Bayes’ rule (5). Consequently, Bayesian
reasoning and Dempster-Shafer reasoning yield the same result if provided with
the same prior information. However, thanks to its greater expressivity, the
belief function formalism makes it possible to represent weak forms prior knowl-150

edge that cannot be expressed in the probabilistic framework.
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Remark 2. Dempster’s rule could be used not only to combine measurement
and prior information, but also to combine prior information about different
parameters. In the case of a multidimensional parameter, we could specify the
prior joint belief function by fixing its marginals and assuming that they are155

independent. The joint belief function would then be obtained by combining
the marginals using Dempster’s rule. If the marginals are consonant, the joint
is then no longer consonant. While this approach is defendable, we prefer to
assume the consonance of the joint and use the least commitment principle,
which dispenses us from assuming independence and results in a simpler prior160

joint belief function.

We have presented an identification strategy based on (i) the representation
of measurement information by a consonant belief function whose contour func-
tion is identical to the normalized likelihood function, (ii) the representation
of prior information by an arbitrary belief function (that can also be chosen165

to be consonant for simplicity), and (iii) the combination of these two belief
functions by Dempster’s rule. The next section will be devoted to the numerical
implementation of this strategy.

3. Numerical Implementation

We propose to implement the identification strategy outlined in Section 2 us-170

ing Monte Carlo simulation, by randomly generating focal sets of the likelihood-
based and prior belief functions, and computing their intersections. For that
purpose, we need a method to represent and intersect regions of the parameter
space of arbitrary shape. Such a method will first be presented in Section 3.1.
The implementation of Dempster’s rule will then be described in Section 3.2.175

Finally, the summarization of the combined belief function will be addressed in
Section 3.3.

3.1. Description of Multidimensional Belief Functions

To combine belief functions defined in multidimensional spaces, we need a
method to describe domains with arbitrary shapes without loosing too much180

information. There are two main categories of methods to describe a geometric
domain. The first one makes use of functions to parametrize a domain, e.g.,
regular shape functions (triangle, square, ellipsoid, etc.); the level-set method
[59] also belongs to this category. The second class of methods is based on
discretizing a domain of interest into small regions; a geometric domain is then185

described by assigning a value (1, −1 or 0) to each region. In particular, point
clouds are sets of data points in a coordinate system, which allow us to make
detailed scans of complex objects [60].

Methods based on parametrized functions lead to difficult implementation
of Boolean operations (intersection, union, and complementation), which are
needed for Dempster-Shafer reasoning (see Section 3.2). There are three reasons
for choosing point clouds to describe the domains. Firstly, a point cloud can be
used to describe any domain in arbitrary dimensions using indicator functions.
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Figure 1: Ellipse described by point clouds.

Given a domain A ⊆ Θ, we can associate to any point θi in the cloud a binary
value vA(i) such that

vA(i) =

{
1 if θi ∈ A,
0 if θi 6∈ A.

(15)

Domain A can then be described by the vector vA = (vA(1), . . . , vA(N)), where
N is the number of points. Secondly, there are many methods and techniques to190

generate point clouds, including grid sequences, random sequences and quasi-
random sequences [61, 62, 63]. Thirdly, the point-cloud representation lends
itself to easy and fast Boolean operations.

Let us mention the various techniques to generate point clouds. Regular
grids have been applied historically on discretized general domains [61]. The195

finer the grid, the more accurate the discretization, but the computational and
storage cost quickly become prohibitive in high dimension due to the curse of
dimensionality. Random sampling is another way to generate point clouds, but
it also becomes inefficient in high-dimensional spaces. Latin hypercube sam-
pling (LHS) [62, 64] is a form of stratified sampling, in which we divide each200

unidimensional domain into segments, and we insure that there is only one
sample value in each segment of each dimension. Quasi-random sequence gen-
eration methods [63, 65] make use of deterministic low-discrepancy sequences
to generate sample points. The low-discrepancy sequences are more “uniformly
distributed” than random ones: consequently, they usually perform better than205

random sequences in Monte Carlo simulations. Halton sequences [66] are par-
ticular low-discrepancy sequences that will be used in this work.

After generating a point cloud, the domains are described by their discretized
indicator functions defined by Eq. (15). Figure 1 shows an ellipse described by
point clouds generated by a regular grid, LHS, and a Halton sequence. We
use the estimator of relative volume (surface) error to assess the point cloud
performance:

ε =
|Nin/Ntotal − Vrel|

Vrel
, (16)

where Nin is the number of points inside the domain and Ntotal is the total
number of points in the cloud. The value Vrel is the relative volume (surface)
of the domain to be described with respect to the total volume described by210
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the whole point cloud. One hundred ellipsoids (hyper-ellipsoids) with different
sizes and orientations in three, four and ten dimensions were described by point
clouds generated by regular grids, LHS, and standard Halton sequences. The
relations between the number of points and the error estimators are presented in
Figures 2(a), 2(b), and 2(c) for numbers of dimensions equal, respectively, to 3, 4215

and 10. (With 10 dimensions, the regular grid approach cannot be implemented
anymore). We can see that the Halton sequences have the best performance in all
three cases. These results coincide with the findings reported in [67, 68], where
it was already noticed that random sequences outperform the regular grids in
high-dimensional cases and low-discrepancy sequences have smaller error bounds220

than the average error bounds of random sequences. Therefore, in this paper,
we will use a point cloud generated using Halton sequences to describe focal
sets.

A point cloud can be stored in an N × D matrix X of point coordinates,
where N is the number of points, and D is the number of dimensions. A domain225

A can then be represented by the values of the indicator function at each point
of the cloud, stored in an N -vector vA. Operations on sets can be implemented
using Boolean operations on the components of their vectors. For instance, the
intersection of two domainsA andB is represented by vA∧vB with components
min{vA(i), vB(i)} for i = 1, . . . , N . The conditionsA 6= ∅ andA ⊆ B translate,230

respectively, to maxi vA(i) = 1 and mini I[vA(i) ≤ vB(i)] = 1, where I[·] is the
indicator function.

3.2. Monte Carlo Approximation of Dempster’s Rule

Dempster’s rule can be approximated by Monte Carlo simulation [69]. Con-
sider two independent random sets Γ1(ω1) and Γ2(ω2), where ω1 and ω2 are inde-235

pendent random variables with distributions P1 and P2. For each ωj (j = 1, 2),
we assume that we can determine the set of points approximating Γj(ωj), and
the corresponding vector representation vΓj(ωj). For instance, if Γj is conso-
nant with contour function πj , then vΓj(ωj)(i) = I[πj(θi) ≥ ωj ]. The com-
bined random set Γp(ω1, ω2) = Γ1(ω1) ∩ Γ2(ω2) can be approximated by iter-240

atively drawing pairs (ω1, ω2) from the joint distribution P1 × P2. For each
pair, the point-cloud representations vΓ1(ω1) and vΓ2(ω2) of focal sets Γ1(ω1)
and Γ2(ω2) are determined. The intersection Γp(ω1, ω2) is represented by vec-
tor vΓ1(ω1) ∧ vΓ2(ω2). This vector is kept in memory if Γp(ω1, ω2) is nonempty,
which can be checked by the condition maxi(vΓ1(ω1) ∧vΓ2(ω2))(i) = 1. The pro-245

cess is iterated until M nonempty focal sets have been obtained. This procedure
is described formally in Algorithm 1.

The combined random set is finally represented by M vectors

vj = (vj(1), . . . , vj(N)), j = 1, . . . ,M,

corresponding to M nonempty focal sets. Given a subset A ⊂ Θ, focal set j is
included in A iff mini I [vj(i) ≤ vA(i)] = 1, and it has a non empty intersection
with A iff maxi min {vj(i), vA(i)} = 1. The degrees of belief and plausibility
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Figure 2: Relative volume error vs number of points in 3D (a), 4D (b) and 10D (c).
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Algorithm 1 Monte Carlo algorithm for approximating Dempster’s rule.

Require: M
j ← 0, k ← 0
while j < M do
k ← k + 1
Draw (ω1, ω2) from P1 × P2

Get Γ1(ω1), Γ2(ω2) and their point-cloud representations vΓ1(ω1) and
vΓ2(ω2)

Compute the point-cloud representation vΓ1(ω1) ∧ vΓ2(ω2) of Γp(ω1, ω2)
if maxi(vΓ1(ω1) ∧ vΓ2(ω2))(i) = 1 then
j ← j + 1
vj ← vΓ1(ω1) ∧ vΓ2(ω2)

end if
end while
Ns ← k
return {vj | j = 1, . . . ,M}, Ns

can be approximated by the proportion of focal sets, respectively, included in
A, and intersecting A [69], and can thus be computed as follows,

B̂el(A) =
1

M
#
{

1 ≤ j ≤M | min
i
I [vj(i) ≤ vA(i)] = 1

}
(17a)

P̂ l(A) =
1

M
#
{

1 ≤ j ≤M | max
i

min {vj(i), vA(i)} = 1
}
. (17b)

The only parameter to be determined in Algorithm 1 is the number M of
focal sets. Here, we will discuss the relationship between sample size and numer-
ical error using an example of reconstruction of a combined contour function.
Let pl1 and pl2 be the contour functions of the two belief functions to be com-
bined. Let pl denote the contour function after combination by Dempster’s rule.
The following relation holds,

pl(θ) =
pl1(θ)pl2(θ)

1− κ
, (18)

where κ is the degree of conflict (14), which can be estimated by κ̂ = 1−M/Ns.
The contour function pl can be estimated at θi by

p̂l(θi) =
1

M

M∑
j=1

vj(i). (19)

The relative numerical error can be defined as

εMC =

1

N

N∑
i=1

∣∣∣(1− κ̂)p̂l(θi)− pl1(θi)pl2(θi)
∣∣∣

max
i
pl1(θi)pl2(θi)

. (20)
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Figure 3: Relative numerical error of Monte Carlo sampling as a function of number M of
draws, for the combination of two unidimensional trapezoidal contour functions.

It is clear that εMC = 0 in the case of perfect approximation, i.e., when
p̂l(θi) = pl(θi) for all i and κ̂ = κ. the numerator in the right-hand side of
(20) ensures that the error does not become artificially small in case of high250

conflict, i.e., when pl1(θi)pl2(θi) is close to zero for all i. As an illustration, we
computed the relative numerical error εMC as a function of sample size M in
the special case of the combination of two unidimensional trapezoidal contour
functions. Samples of each size were drawn 10 times. The error as a function
of sample size is shown in Figure 3. The curve corresponds to the mean values255

of the errors; the vertical intervals represent the standard deviations. We can
see that the error curve has an “elbow point” around a sample size of 5000, and
the convergence rate becomes very small after 15,000 iterations. These values
can, of course vary for different problems. Formula (20) to compute the relative
numerical error can be used as long as we can compute the contour functions260

at any θi. The numerical study performed here can be reproduced or used as a
guideline for further studies.

3.3. Summarization of the combined belief function

After combining the likelihood-based belief function with the prior belief
function using the Monte Carlo approximation of Dempster’s rule as explained
in Section 3.2, we get an approximation of the combined belief function in the
form of M vectors vj = (vj(1), . . . , vj(N)), j = 1, . . . ,M,. To exploit this
information, we need to synthesize it so that it can be interpreted by the user.
The most straightforward approach is to compute the maximum plausibility
estimate of θ,

θ̂P = arg max
θ∈Θ

plP (θ), (21)

where plP is the posterior contour function. This estimate can be approximated
by θi maximizing p̂lP (θi) given by (19). However, a point estimate is a poor265

summary of the combined belief function, as it does not reflect the estimation
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uncertainty. A more interesting summary may consist in the minimal-size subset
of Θ whose belief and plausibility exceed some predefined values. Such sets will
be called plausible subsets. Here, we present a tractable method to compute
plausible subsets.270

Plausible Subsets. As a way to extract more useful information from the pos-
terior random set samples, we can find a minimal-size subset R ⊆ Θ such that
Pl(R) and Bel(R) are larger than given threshold values δPl and δBel. Let V
be the volume of R. This problem can be formalized as follows:

R̂ = arg min
R⊆Θ

V(R), (22)

subject to: {
Pl(R) ≥ δPl,
Bel(R) ≥ δBel,

Because this is a constrained optimization problem, we can use a penalty method
to transform it into an unconstrained one. The reformulation of the optimization
problem can be written as

R̂ = arg min
R⊆Θ

V ′(R), (23)

where

V ′(R) = V(R) + %Pl · ϕ
(
δPl − Pl(R)

)
+ %Bel · ϕ

(
δBel −Bel(R)

)
.

The quantities %Pl and %Bel are the penalty coefficients. They should be given
large values (we chose %Pl = %Bel = 103 in the simulations reported in Section
4). Function ϕ(t) is a penalty function defined as ϕ(t) = max(0, t).

In order to solve Eq. (23), we need again to parametrize R. The point-
cloud representation cannot be used here, because it uses too many parameters,
which would make the optimization problem intractable. To reduce the number
of parameters, we propose to use the Proper Orthogonal Decomposition2 (POD)
method [70]. This method extracts a smaller number n� N of basis vectors; a
region R can then be described by its coordinates in this basis. POD proceeds
as follows. We recall that the posterior belief function is represented by M
N -vectors vj , j = 1, . . . ,M . First, these vectors are centered,

wj = vj − v, (24)

where

v =
1

M

M∑
j=1

vj . (25)

2In statistics, the same method is known as Principal Component Analysis (PCA).
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The N ×M matrix of centered vectors is written as

W = [w1, . . . ,wM ]. (26)

We use the eigendecomposition of matrix W TW to extract basis vectors of
POD:

W TW = ΦΥΦT , (27)

where Φ is the M×M matrix whose i-th column φi is the eigenvector of W TW
corresponding to the i-th largest eigenvalue γi, and Υ is the diagonal matrix
with diagonal elements (γ1, . . . , γM ). Then

ϕi = Wφi, (28)

is the i-th POD basis vector. The target subsets can be parametrized through
their discrete indicator functions decomposed on the first n POD basis vectors,

vPOD = 1δ

(
v +

n∑
k=1

αkϕk

)
, (29)

where 1δ is the threshold function such that the i-th component of 1δ(v) is
I(v(i) ≥ δ). In order to choose the truncation number n, the energy proportion
(or proportion of explained variance) of a basis vector ϕi is defined as

Ei = γi

/∑
j

γj . (30)

We can choose the first n basis vectors whose cumulated energy proportion
exceeds some threshold. Finally, Eq. (23) is transformed into minimization
with regard to (α1, . . . , αn):

(α̂1, . . . , α̂n) = arg min
α1,...,αn

V ′
(
vPOD(α1, . . . , αn)

)
. (31)

4. Numerical Application

We now present two numerical examples to illustrate the general method-275

ology outlined in Section 3. The first example deals with the identification of
the elastic properties of a homogeneous 2D plate under loading (Section 4.1).
Classical Bayesian inference is used as a comparison. In the second example,
presented in Section 4.2, we consider a heterogeneous 2D plate under loading.

4.1. Identification of Homogeneous Material280

As a first example, we consider the identification of the elastic properties
of a 2D homogeneous plate as shown in Figure 4(a). The general mechanical
model was described in Section 2.1. Here, we consider the case where the elastic
properties are homogeneous over Ω. Thus, the parameters θ = (λ, µ) are the
two Lamé parameters determining the plate’s elastic properties, assumed to be285

constant over the whole domain. As for the boundary condition, the plate is
fixed on the left-hand side and loaded on the right-hand side by a traction f
with horizontal projection fx = f0y(1− y) and with null vertical projection.
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(a) Physical model (b) FE mesh

Figure 4: Homogeneous plate.

Measurement and prior information. Since we deal with a numerical example,
the first step is to create synthetic measurements, thanks to a reference FE290

calculation playing the role of the experiment. This reference FE analysis was
performed with reference values of the elastic parameters (λ0, µ0) = (1, 1) (see
Figure 4(b)). The FE reference displacement was transferred to a 10 × 10
measurement grid covering the whole plate, and a Gaussian white noise sample
was added to simulate measurement error. The standard deviation of the noise295

was 5% of the maximum displacement value.
These synthetic measurements along with the boundary conditions are the

only data kept from the reference FE calculation as an input to the inverse
identification. The same FE model (parameterized by the unknown parameter
vector θ) was then used in the identification process. The measurement informa-300

tion about θ was represented by the likelihood-based belief function described
by Eq. (9). Prior information from expert opinions was expressed as trapezoidal
contour functions. In order to assess the robustness of this approach to wrong
prior information, two scenarios were considered. In the first scenario, the ex-
pert opinions were correct, i.e., the reference values had plausibility values equal305

to 1, as shown by the solid lines in Figure 5. In the second scenario, the expert
opinions were completely wrong, i.e., the reference values had zero plausibility,
as shown by the broken lines in Figure 5. We assumed 80% confidence in the
expert opinions in both scenarios. Using the discounting operation introduced
in Section 2.2, the contour functions in both scenarios were transformed into310

the distributions shown in Figure 6. We note that, after discounting, the ref-
erence values belong to the support of both distributions. Using Eq. (12), we
constructed a joint contour function for λ and µ, shown as rectangular contour
lines in Figures 7(a) and 7(b). The quasi elliptic contour lines in Figure 7(a)
and 7(b) represent the normalized likelihood plL expressing the measurement315

information.
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Figure 5: Prior information expressed as trapezoidal contour functions.
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Figure 6: Discounted contour functions, based on a 80% confidence in expert opinions. All
parameter values have a plausibility at least equal to 0.2.
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Figure 7: Prior contour function π and normalized likelihood plL for Scenarios 1 and 2.
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Figure 8: Focal sets of combined belief functions in Scenarios 1 (a) and 2 (b).

Information merging. The likelihood based and prior belief functions were com-
bined by Dempster’s rule (13), using the Monte Carlo algorithm described in
Section 3.2, with M = 104. Figure 8(a) and 8(b) show examples of focal sets of
the combined belief function in Scenarios 1 and 2, respectively. We can see that320

the focal sets in Scenario 1 are truncated versions of the ω-level cuts of plL, as
they have been intersected with level cuts of prior contour function π. In con-
trast, in Scenario 2, the focal sets result from the intersection of the ω-level cuts
of plL with the whole frame R2. The estimated degrees of conflict in Scenarios
1 and 2 were, respectively, κ̂1 = 0.020 and κ̂2 = 0.80.325

The combined contour functions in the two scenarios are shown in Figure
9. The maximum plausibility estimate was θ̂P = (1.0275, 1.0063) in Scenario 1

and θ̂P = (1.0344, 1.0082) in Scenario 2. These estimates are to be compared
with reference values θ0 = (1, 1) and with the maximum likelihood estimate

θ̂L = (1.0344, 1.0082). We can see that the correct prior information provided330

in Scenario 1 has resulted in a slightly smaller estimation error.

Comparison with Bayesian inference. To compare belief function inference with
Bayesian inference, we need to express prior information as a probability dis-
tribution. To do so, we transformed the prior contour function into Gaussian
probability density functions (PDFs) p(θ). The mean of p(θ) was taken as the335

central value of the core of the contour function (defined as the set of parameter
values with plausibility one), and the standard deviation was defined in such a
way that P (Supp) = 1−m(Θ), where Supp is the support of the contour function
(defined as the set of parameter values with strictly positive plausibility).

The marginal distributions of prior PDFs (dot-dash line), likelihood func-340

tions (solid line) and posterior PDFs (dashed line) are shown in Figure 10 for the
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Figure 9: Combined contour functions in Scenarios 1 (a) and 2 (b).

two scenarios. These results can be compared with the marginal contour func-
tions π (dot-dash line), plL (solid line) and plP (dashed line) shown in Figure
11. We can see that, in Scenario 1, both the posterior PDFs and the combined
contour functions “move” towards the reference values. In contrast, comparing345

Figures 10(c)-10(d) with Figures 11(c)-11(d), we can see that the two methods
yield very different results in Scenario 2. As the posterior PDFs of Bayesian
inference averages the two pieces of information, the incorrect prior information
(dashed-dotted curve in Figures 10(c) and 10(d)) corrupts the measurement in-
formation. As a consequence, the posterior PDF p(θ|ũ) is less accurate than the350

likelihood function L(θ; ũ). In contrast, the belief function formalism makes it
possible to specify a weak prior in the form of a non-additive belief function, such
as the discounted consonant belief function used in this example. In particular,
the discounting operation allows the expert to express doubt in his assessment,
thus avoiding the undesirable effect of a high conflict between the prior and the355

data.

Summarization of the combined belief function. For further exploitation of the
combined belief function, we constructed plausible subsets using the POD-based
method described in Section 3.3. This method relies on two parameters: the
truncation number n and the threshold δ in Eq. (29). Figure 12 shows the360

energy proportion of the first ten basis vectors. We can see that the first 10
basis vectors account for 82.55% of the total energy. It thus seems sufficient to
select the first 10 basis vectors to parametrize the target subsets.

It is interesting to study the sensitivity of the basis vectors to the sample
size. Figure 13 shows, as a function of sample size, the error on the first 10 basis
vectors defined as

εbasis =
1∑10
i=1 γi

10∑
i=1

γi||ϕi −ϕrefi ||
2, (32)
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Figure 10: Marginal probability density distributions in Scenarios 1 (a)-(b) and 2 (c)-(d).
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Figure 11: Marginal contour functions plL, π and plP in Scenarios 1 (a)-(b) and 2 (c)-(d).
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where ϕi is the i-th basis vector corresponding to eigenvalue γi, and ϕrefi is
the i-th reference basis vectors calculated with 9796 focal sets of the combined365

belief function. We can see that the error does not decrease significantly when
the sample size is greater than 7000.

In order to determine δ and n, we define the approximation error of the POD
as

εPOD =
V(v − vPOD)

V(v)
, (33)

where V(v − vPOD) is the volume estimated using the point cloud of the dif-
ference between the original v and the approximated vPOD, and V(v) is the
volume of the domains associated with v. First, we provisionally fixed δ = 0.5,370

and we reconstructed 100 subsets using Eq. (29) with different truncation num-
bers. The approximation errors are shown in Figure 14(a). In Figure 12 and
14(a), we can see that the first six basis vectors represent more than 75% energy
and the approximation error does not decrease significantly when n ≥ 6. There-
fore, we chose n = 6. Next, we computed the approximation errors with n = 6375

and different thresholds δ; the resulting curve is shown in Figure 14(b). We can
see that the value δ = 0.5 minimizes the approximation error. Parameter δ was
thus fixed to 0.5 in our simulations.

When choosing the truncation number n = 6, plausible subsets are described
by six parameters αk, k = 1, · · · , 6 in Eq. (31). We randomly sampled 104

380

parameter vectors (αk), generated the corresponding subsets, and calculated
their Bel, Pl and V values. These quantities are shown in Figure 15 for the
two scenarios. The frontier of the point cloud in Figure 15 can be seen as
an approximation of the Pareto frontier [71]. The Pareto frontier is helpful to
solve multi-objective optimization by revealing the potentially optimal solutions.385

This frontier reflects the relationship among the extreme values of Pl, Bel and
V. The points in Figure 15(b) are all in the same plane (Pl = 1), because the
combined belief function in Scenario 2 is consonant. To enhance the precision of
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Figure 15: Samples of Bel, Pl and V.

the Pareto frontier, some authors [72, 73, 74] proposed efficient tools for various
applications. Here, we can make use of the Pareto frontier to get suitable initial390

values for finding the global minimum in Eq. (31). For example, we set (1)
δBel = 0.10 and δPl = 0.95; (2) δBel = 0.30 and δPl = 0.95 (3) δBel = 0.50 and
δPl = 0.95; the resulting subsets for the two scenarios are shown in Figure 16. It
is clear that the size of the plausible subset increases as the threshold increases.
The subsets in Scenario 1 move toward the bottom left because of the influence395

of prior information. In contrast, in Scenario 2, the prior information does not
affect the measurement information, and the resulting subsets reflect the form
of the likelihood function. For the third group of thresholds, the resulting subset
covers the reference values in Scenario 1.

4.2. Identification of Heterogeneous Material400

Measurement and prior information. In this second example, we consider the
identification of the elastic properties of a heterogeneous plate with an inclusion
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Figure 16: Plausible subsets and point estimates. (1) δBel = 0.10 and δPl = 0.95; (2)
δBel = 0.30 and δPl = 0.95; (3) δBel = 0.50 and δPl = 0.95.
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at its center, as shown in Figure 17. The matrix material (white area) and the
inclusion material (grey area) are referred to, respectively, as materials 1 and 2.
The traction is the same as in the previous example (Figure 4(a)). The Lamé405

parameters θ = {λ1, µ1, λ2, µ2} determine its elastic properties. Parameters
λ1 and µ1 correspond to the matrix material, while λ2 and µ2 correspond to
the inclusion material. The relative reference values were (λ10, µ10, λ20, µ20) =
(1, 1, 1.5, 1.5). The measurement error was assumed to be a Gaussian white
noise with standard deviation equal to 5% of the maximum displacement value.410

The prior information was represented by the marginal trapezoidal contour
functions π shown in Figure 18. As before, an 80% confidence degree was postu-
lated. Figure 18 also displays the marginal likelihood-based contour functions.
Comparing Figures 18(b) and 18(c), we can see that the measurement infor-
mation is more precise for parameter µ1, while the prior information is more415

precise for parameter λ2.
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Figure 18: Marginal contour functions plL, π and plP .
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Information merging. As before, we combined the measurement and prior in-
formation by Dempster’s rule. The marginal combined contour functions plP
are shown in Figure 18. Function plP is always more specific than plL and
π. Therefore, when measurement information is more precise, the influence420

of prior information is smaller. In contrast, when measurement information
does not allow precise inference, prior information has a regularization effect on
measurement information.

Summarization of the combined belief function. After applying the POD to the
samples of the posterior random set, as explained in Section 4.1, we chose the425

first six parameters to parametrize the plausible subsets and we fixed δ to 0.5.
Then, we sampled 104 parameter vectors (αk), generated corresponding subsets,
and calculated their Bel, Pl and V values. These quantities are shown in Figure
19. The plausible regions corresponding to δBel = 0.30 and δPl = 0.95 are shown
in Figure 20. The location of the maximum of plP is closer to the reference values430

than that of plL. The reason for this improvement is the regularization by prior
information. The shapes of the plausible subsets reflect the dependence between
the parameters, while their sizes reflect the precision of input information. More
precise information results in smaller subsets for the same threshold values. It
should be noticed that the shapes of the plausible subsets are no longer regular,435

which indicates that using regular shape functions (such as ellipsoids or boxes)
to parametrize plausible subsets would be inefficient in this case.
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Figure 20: Plausible subsets and point estimates.
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5. Conclusion

In this paper, we have presented an identification strategy based on the rep-
resentation of measurement and prior information as belief functions, and on440

their combination by Dempster’s rule. In order to implement Dempster’s rule in
a continuous multidimensional setting, we have proposed to represent focal sets
using a point cloud. To summarize the combined belief function, we have intro-
duced a new method based on the construction of plausible subsets, defined as
minimal-size regions whose belief and plausibility exceed some thresholds. This445

methodology has been applied to two simulated examples concerning homoge-
nous and heterogeneous materials. Overall, our approach has been shown to
be more robust than Bayesian inference to incorrect prior information, thanks
to the possibility to encode weak prior information as non-additive belief func-
tions. In particular, the discounting operation allows us to express prior near-450

ignorance, thus avoiding a high conflict with the data that may lead to wrong
identification.

Many of the ideas presented in this paper can be applied not only to identi-
fication problems, but also to general problems involving the manipulation and
combination of multidimensional belief functions in continuous spaces. How-455

ever, computational complexity when the dimension becomes very large is an
important issue that remains to be investigated. In mechanics, the presented
identification method needs to be further explored to deal with more complex
material models, such as non-linear ones. Accounting for model uncertainty is
another important problem that will be tackled in future work. Finally, the460

uncertainty arising from unreliable boundary conditions also remains to be in-
vestigated.
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