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Abstract

A general approach to information correction and fusion for belief functions is proposed,
where not only may the information items be irrelevant, but sources may lie as well. We
introduce a new correction scheme, which takes into account uncertain metaknowledge
on the source’s relevance and truthfulness and that generalizes Shafer’s discounting
operation. We then show how to reinterpret all connectives of Boolean logic in terms of
source behavior assumptions with respect to relevance and truthfulness. We are led to
generalize the unnormalized Dempster’s rule to all Boolean connectives, while taking into
account the uncertainties pertaining to assumptions concerning the behavior of sources.
Eventually, we further extend this approach to an even more general setting, where
source behavior assumptions do not have to be restricted to relevance and truthfulness.
We also establish the commutativity property between correction and fusion processes,
when the behaviors of the sources are independent.

Keywords: Dempster-Shafer theory, Belief functions, Evidence theory, Boolean
logic, Information fusion, Discounting.



Quand deux témoins me disent une chose, il faut, pour que je me trompe
en ajoutant foi à leur témoignage, que l’un & l’autre m’induisent en erreur;
si je suis sûr de l’un des deux, peu m’importe que l’autre soit croyable. Or
la probabilité que l’un & l’autre me trompent, est une probabilité composée
de deux probabilités, que le premier trompe, & que le second trompe. Celle
du premier est 1/10 (puisque la probabilité que la chose est conforme à son
rapport est 9/10); la probabilité que le second me trompe aussi, est encore
1/10: donc la probabilité composée est la dixième d’une dixième ou 1/100;
donc la probabilité du contraire, c’est-à-dire celle que l’un ou l’autre dit vrai,
est 99/100. Entry “Probabilité”, Encyclopedia of D’Alembert and Diderot,
XVIIIth century.

1 Introduction

The problem of constructing an agent’s knowledge on the value taken by a parameter
x defined on a domain X, where the agent’s sole information on the parameter comes
from one or many sources, has gained increased interest in the last twenty years with
the development of various kinds of information systems. This problem is actually as
old as probability theory: its roots can be traced at least back to the formalization of
the reliability of testimonies (see, for instance, the entry “Probabilité” in D’Alembert
and Diderot’s famous XVIIIth century Encyclopedia1).

It is not possible for an agent to evaluate the pieces of information provided by
several sources, unless some meta-knowledge on the sources is available to this agent.
Typically, meta-knowledge on the sources amounts to assumptions about their relevance.
If a source providing a testimony of the form x ∈ A is relevant with probability p, then
one assumes that the corresponding information is not useful with probability 1− p. In
the context of the theory of belief functions [4, 22, 31], this is known as the discounting
of a piece of information [22, 27] and the resulting state of knowledge is represented by a
simple support function [22]: the weight p is allocated to the fact of being able to state
x ∈ A with certainty, and the weight 1 − p is allocated to the tautology (it becomes
the probability of knowing nothing from the source). If the agent receives the piece of
information x ∈ A from two independent sources, with respective reliabilities p1 and p2,
then Dempster’s rule of combination [4, 22], justifies attaching reliability p1 + p2 - p1p2
to the statement x ∈ A (this was already explained in full details in the D’Alembert and
Diderot Encyclopedia, see the above-mentioned entry).

In this paper, it is proposed to also take into account some meta-knowledge on
the truthfulness of the sources. We study how the information provided by a single
source is modified, or corrected [16], when the agent has some uncertain meta-knowledge
on relevance and truthfulness of the source. The case where multiple sources provide
information is also thoroughly investigated. This study is performed in the framework
of the theory of belief functions. It leads to a general approach to the correction (single
source case) and fusion (multiple sources case) of belief functions. This exploration
is then pushed forward and further extended to an even more general setting, where

1Encyclopédie, ou dictionnaire raisonné des sciences, des arts et des métiers. D. Diderot and
J. le Rond D’Alembert, editors. University of Chicago: ARTFL Encyclopédie Projet (Winter 2008
Edition), Robert Morrissey (ed).
http://artflx.uchicago.edu/cgi-bin/philologic/getobject.pl?c.99:87.encyclopedie0110.362669
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assumptions about information sources do not have to be restricted to relevance and
truthfulness.

The rest of this paper is organized as follows. The notion of truthfulness is added
to the notion of relevance in Section 2, where a thorough study of what this addition
brings to the problems of information correction and fusion is conducted. In Section 3,
this investigation is pursued by allowing for general source behavior assumptions that go
beyond the notions of relevance and truthfulness. A link between information correction
and fusion processes, when the behaviors of the sources are independent, is exhibited in
Section 4. Some relationships with previous works are outlined in Section 5. Section 6
concludes the paper.

2 Relevance and truthfulness

It is assumed here that the reliability of a source of information involves two dimensions:
its relevance and its truthfulness. A source is said to be relevant if it provides useful
information regarding a given question of interest. If the source is a human agent,
irrelevance means that the provided information does not pertain to the question it
answers, for instance because the agent is actually ignorant. If the source is a sensor, the
sensor response is typically irrelevant when it is out of order. For instance, it is useless to
try and find the time it is from a clock that is not working since there is no way to know
whether the supplied information is correct or not (the hour read on a broken watch
can even be correct). In contrast, a source is said to be truthful if it actually supplies
the information it possesses. There are various forms of lack of truthfulness. A source
may declare the contrary of what it knows, or just say less, or something different, even
if consistent with its knowledge. Lack of truthfulness for a sensor may take the form
of a systematic bias. Note that if the the agent receiving information does not know in
which way the source lies, the difference between irrelevance and lack of truthfulness of
a source becomes itself less significant from the standpoint of this agent.

2.1 The case of a single source

Suppose a single source provides information on the value of some deterministic param-
eter x ranging on a set X of possible values (for instance, somebody’s birth-date). Such
a piece of information may be of the form “All the source knows is that x ∈ A” where
A is a proper non-empty subset of X, supposedly containing the actual value of x. We
assume that ∅ ⊂ A ⊂ X because we consider as a source any entity that supplies a non-
trivial and non-self-contradictory input. If the source declares not to know the value of
x, this would be modeled by A = X. However, such information is immaterial for the
purpose of information fusion. For simplicity, in the following, we shall assume a crude
description of the lack of truthfulness, namely that the source declares the opposite of
what it knows to be true. The difference between a source known to lie in this way, and
a source known to be irrelevant is that it is possible to retrieve the actual information
from the former, while the latter is totally useless.

Knowledge about whether a source is reliable or not, truthful or not differs from
the knowledge supplied by the source. It is higher order knowledge and is called meta-
knowledge. If the source that declares x ∈ A is known to be irrelevant, the agent receiving
this information can always replace it by the trivial information x ∈ X, whether the
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source is truthful or not. If the source is relevant and is known to lie in the way assumed
above, the agent should replace it by x ∈ A, where A is the complement of A.

2.1.1 Crisp testimony and uncertain meta-knowledge

However, the difficulty is that, in general, the meta-information is uncertain. Consider
the frame of discernment H describing the possible states of the source. Define H =
R × T , with R = {R,¬R} and T = {T,¬T}, as the domain of the pair of Boolean
variables (hR, hT ), where R means relevant and T means truthful. Meta-knowledge
about a source may take the form of subjective probabilities prob(hR, hT ) about the
state of the source. Following Dempster’s approach [4], a multiple-valued function ΓA

from H to X can be defined such that:

ΓA(R, T ) = A;

ΓA(R,¬T ) = A;

ΓA(¬R, T ) = Γ(¬R,¬T ) = X.

ΓA(h) interprets the testimony x ∈ A in each configuration h of the source. Hence, this
piece of information will be systematically interpreted by a belief function in the sense
of Shafer [22], with mass function mX on X defined by

mX(A) = prob(R, T )

mX(A) = prob(R,¬T )

mX(X) = prob(¬R) = prob(¬R, T ) + prob(¬R,¬T ).

A mass function mX on X is formally a probability distribution on the power set of
X (hence

∑

A⊆X mX(A) = 1). In this uncertainty theory, the mass mX(A) is assigned
to the possibility of stating x ∈ A as a faithful representation of the available knowledge;
it does not evaluate the likelihood of event A like does a subjective probability prob(A).
Philosophically, and in analogy to modal logic, the probability prob(A) could be called a
de re probability, whilemX(A) can be understood as a de dicto probability (in opposition
to the usual probabilistic tradition).

Let q = prob(T |R) and p = prob(R). Assuming ∅ ⊂ A ⊂ X, it is easily found that

mX(A) = p · q; (1)

mX(A) = p · (1− q); (2)

mX(X) = 1− p, (3)

corresponding, respectively, to the cases where the source is relevant and truthful, rele-
vant and untruthful, and irrelevant. In practice, it can be assumed that the relevance of
a source is independent of its truthfulness, although equations (1)-(3) show that this is
not necessary in our approach. In this case, the probability distribution on H is defined
from the probability p = prob(R) that it is relevant and q = prob(T ) the probability of
its being truthful.

2.1.2 Uncertain testimony and meta-knowledge

More generally, one may assume that the information supplied by a source already
takes the form of any kind of mass function mX

S on X (especially, mX
S (X) > 0 and/or
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mX
S (∅) > 0 could be allowed). Assuming that the source is in a given state h, then each

mass mX
S (A) should be transferred to ΓA(h), yielding the following mass function:

mX(B|h) =
∑

A:ΓA(h)=B

mX
S (A), ∀B ⊆ X. (4)

When meta-knowledge on the source is uncertain and each state h has a probability
prob(h), then (4) implies that:

mX(B) =
∑

h

mX(B|h)prob(h) =
∑

h

prob(h)
∑

A:ΓA(h)=B

mX
S (A). (5)

Let us already remark that (5) may also be recovered using standard operations of belief
function theory (i.e., vacuous extension, Dempter’s rule of combination and marginal-
ization) on the considered pieces of evidence (namely the uncertain testimony and meta-
knowledge), as will be shown in Section 4.2 (Lemma 1).

Assuming the uncertain meta-knowledge of the preceding section, i.e., prob(R, T ) =
pq, prob(R,¬T ) = p(1− q), prob(¬R, T ) = (1− p)q and prob(¬R,¬T ) = (1− p)(1− q),
leads then to transforming the mass function mX

S into a new mass function denoted by
mX and defined by:

mX = pq mX
S + p(1− q) mX

S + (1− p) mX
X , (6)

where mX
S is the (random) set complement of m [7], defined by mX

S (A) = mX
S (A), ∀A ⊆

X, and mX
X the vacuous mass function defined by mX

X(X) = 1. We thus get

mX(A) = pq mX
S (A) + p(1− q) mX

S (A)

for all A 6= X and

mX(X) = pq mX
S (X) + p(1− q)mX

S (∅) + 1− p.

This is clearly a generalization of the notion of discounting of a belief function proposed
by Shafer [22] to integrate the reliability of information sources. In the model underlying
the discounting operation, the lack of reliability of a source is assumed to originate in
some flaw making it irrelevant. Our approach adds the possibility of the source lacking
truthfulness, i.e., lying2. Let us also remark that the complement of a mass function is
recovered as a special case of this approach: it corresponds to a relevant source that is
lying.

One may as well consider more complex assumptions corresponding to subsets of H,
representing epistemic states of the receiving agent about the source state. For instance,
the agent may know that:

• The source is either relevant or truthful but not both, that is R⊕T = (R∧¬T )∨
(¬R ∧ T ), corresponding to the disjunction of two mutually exclusive states.

• The source is relevant or truthful, which is the disjunction R∨ T of three possible
mutually exclusive states ¬R ∧ T , R ∧ ¬T and R ∧ T .

2We use the term “lying” here as a synonym of “not telling the truth”, irrespective of the existence
of any intention of an agent to deceive.
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Let H ⊆ H be some assumption of this type about the source. Using a common abuse
of notation, the image of H under ΓA will be denoted as ΓA(H). It is defined as

ΓA(H) =
⋃

h∈H

{ΓA(h)}.

The above results can be applied to such non-elementary assumptions. However, this
is not so useful in the case of a single source, since ΓA(H) = X as long as H is not
elementary. The major appeal of non-elementary assumptions in the case of several
sources will become patent in the sequel.

2.2 The case of multiple sources

If there are two sources of information, two approaches can be envisaged:

1. Modifying information items supplied by each source, then merging the resulting
belief functions (using Dempster’s rule [22] or its unnormalized version [29]).

2. Embedding meta-knowledge about the source state inside the merging process.

It is clear that the latter option looks more general and more convincing. In this case, a
joint assumption on the relevance and truthfulness of sources is in order. Denoting by
H1 and H2, the set of possible state configurations of each source, the set of elementary
joint state assumptions on sources will be H12 = H1 ×H2. Hence, there are 16 possible
states of the pair of sources (h1R, h

1
T , h

2
R, h

2
T ). Uncertain meta-knowledge about the

state of sources must be expressed on H12. In the following we describe the result
of making elementary assumptions on sources; then we consider the case of uncertain
meta-knowledge and uncertain sources, and we are led to equip the assumption space
itself with a belief structure.

2.2.1 Crisp testimonies and precise meta-knowledge

Suppose that source 1 asserts x ∈ A and source 2 asserts x ∈ B where A,B 6= X. How
to combine these pieces of information depends on the chosen assumption on the state of
sources. Namely, there is a multiple-valued mapping ΓA,B : H12 → 2X prescribing, for
each elementary assumption, the result of the process of merging the two information
items.

1. Suppose both sources are truthful.

(a) If they are both relevant, then one must conclude that x ∈ A ∩B;

(b) If source 2 (resp. 1) is irrelevant, then one must conclude that x ∈ A (resp.
B).

(c) Else x ∈ X.

2. Suppose source 1 truthful and source 2 lies.

(a) If they are both relevant, then one must conclude that x ∈ A ∩B;

(b) If source 2 (resp. 1) is irrelevant, then one must conclude that x ∈ A (resp.
B).
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(c) Else x ∈ X.

3. Suppose source 2 is truthful and source 1 lies.

(a) If they are both relevant, then one must conclude that x ∈ A ∩B;

(b) If source 2 (resp. 1) is irrelevant, then one must conclude that x ∈ A (resp.
B).

(c) Else x ∈ X.

4. Suppose both sources lie.

(a) If they are both relevant, then one must conclude that x ∈ A ∩B;

(b) If source 2 (resp. 1) is irrelevant, then one must conclude that x ∈ A (resp.
B).

(c) Else x ∈ X.

Obviously, the four binary connectives A∩B, A∩B, A∩B, and A∩B are obtained,
depending on the truthfulness of supposedly relevant sources. Note that elementary as-
sumptions may be incompatible with some available pieces of information. For instance,
in case of conflicting information (A ∩ B = ∅), case 1a is obviously impossible: either
one of the sources is irrelevant, or one of them lies. Likewise, case A ∩ B = ∅ excludes
assumption 2a, and case A ∪B = X excludes the assumption that both sources lie.

2.2.2 Crisp testimonies and incomplete meta-knowledge

Other Boolean binary connectives can be retrieved by considering non-trivial non-
elementary assumptions H ⊂ H12 on the state of sources, namely disjunctions of el-
ementary assumptions. In theory, the number of such composite assumptions is huge
(216). In practice, only a few assumptions are interesting to study. Indeed, the resulting
information is trivial (x ∈ X because ΓA,B(H) = X) as soon as H contains an elemen-
tary assumption of the form (¬R, h1T ,¬R, h2T ), for instance. Some forms of non trivial
incomplete meta-knowledge are worth considering.

A first kind of non-trivial meta-knowledge consists in guessing the number of truthful
and/or relevant sources, by lack of knowledge on the reliability of individual sources.
The interesting cases are as follows (alternative weaker assumptions of this form generate
no information):

• Both sources are relevant, and at least one of them is truthful. This is the dis-
junction of assumptions 1a, 2a, and 3a. Then, x ∈ A ∪B follows.

• Both sources are relevant, exactly one of which is truthful. This is the disjunction
of assumptions 2a and 3a. Then, x ∈ A△B (exclusive or).

• Both sources are relevant, at most one of which truthful. This is the disjunction
of assumptions 2a, 3a, and 4a. Then, x ∈ A ∪B.

• Both sources are truthful, and at least one of them is relevant. This is the disjunc-
tion of assumptions 1b and 1a. Then, again x ∈ A∪B. The same results would be
obtained by assuming truthful sources truthful, exactly one of them being relevant.
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Another kind of meta-knowledge pertains to logical dependence between source
states. For instance, one may know that both sources are relevant, but source 1 is
truthful if and only if source 2 is so too. This is the disjunction of assumptions 1a
and 4a, yielding x ∈ (A ∩ B) ∪ (A ∩ B), which corresponds to the Boolean equivalence
connective. One could likewise retrieve the connective A ∪B postulating that:

• Both sources are relevant, but it is impossible that at the same time source 1 lies
and source 2 is truthful;

• Or yet that either source 1 is truthful while the other is irrelevant, or source 2 lies
and the first one is irrelevant.

This assumption is captured by the implication if B then A, which boils down to the
following piece of meta-knowledge: “If source 2 is truthful, then source 1 is truthful too”
(in the case of relevant sources).

It is possible to retrieve almost all binary Boolean connectives of propositional logic
(except A⊥B = ∅, already ruled out in the case of a single source, if one requires that
the result of the merging process should be logically consistent). This is not surprising
at all, in some sense. However the point here is that each logical connective can be
derived from an assumption about the global quality of information sources, in terms of
truthfulness and relevance. This kind of interpretation has been known for a long time
for union and intersection only [8].

Actually, when modeling a complex assumption on quality of sources by means of
the appropriate connective yielding the correct ensuing information drawn from these
sources, part of the actual meta-information is lost. For instance, x ∈ A∪B is obtained
in several distinct situations. However, the information that would result from a finer
representation of the complex assumptions would be different in each case. Namely:

• If sources are both truthful, and exactly one is relevant, then either one should
know that x ∈ A or one should know that x ∈ B (had we known which source is
relevant);

• If both sources are relevant, and at least one is truthful, then either one should
know that x ∈ A ∩ B, or one should know that x ∈ A ∩ B or yet that x ∈ A ∩ B

(had we known which source is truthful).

In both cases, one can derive that we know x ∈ A ∪ B, which is weaker that the most
precise pieces of information one could derive in each case. In order to express these
subtle distinctions, modal logic could be instrumental since it is more expressive than
propositional logic. Denoting � the modality “to know”, it is widely known that �A ∨
�B is not equivalent to (and weaker than) the formula�(A∩B)∨�(A∩B)∨�(A∩B) in a
standard modal logic. This line of study would require an investigation in epistemic logic
[13], and is left for further research. Nevertheless, the reader is referred to Banerjee and
Dubois [1] for a more refined representation in a modal logic framework (and in terms
of subsets of the power set of X) of what an agent knows about the epistemic state of
another agent acting as a source of information.
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2.2.3 Uncertain testimonies and sure meta-knowledge

Suppose now that one incomplete assumption H ⊂ H12 on the quality of the sources is
known to be true. Let ⊗H be the set-theoretic connective associated to the assumption
H in agreement with the above described assignment. Suppose that source 1 (resp.
2) supplies a mass function mX

1 (resp. mX
2 ). Moreover we postulate that sources are

independent in the following sense: interpreting mX
i (A) as the probability that source i

supplies information item x ∈ A, then the probability that source 1 supplies information
item x ∈ A and source 2 supplies at the same time information item x ∈ B is the product
mX

1 (A) ·mX
2 (B).

In this framework, the probability that should be assigned to the possibility of in-
terpreting the joint information supplied by the sources by the statement x ∈ C ⊆ X is
equal to

mX(C) =
∑

A,B:C=A⊗HB

mX
1 (A) ·mX

2 (B). (7)

This result is a straightforward consequence of the claim that if source 1 asserts
x ∈ A and source 2 asserts x ∈ B, then under assumption H, the conclusion should be
that x ∈ A ⊗H B is what we actually know. There are 15 variants of this combination
rule including the unnormalized version of Dempster’s rule (also called conjunctive rule)
(Smets [29]) and the disjunctive rule (Dubois et Prade [7]). Observe that when A⊗HB =
∅ for two focal sets A and B, each coming from a distinct source, this conflict no longer
pertains to a disagreement inside X between the two sources, but to a conflict between
the information items supplied by the two sources and the meta-assumption H, in space
H12 ×X. Several approaches make sense to cope with this conflict:

• Either renormalize the resulting belief function like with Dempster’s rule, which
amounts to assuming the correctness of assumption H, and conditioning on the
assumption that sources should not contradict each other;

• Or reject assumption H and prefer one that is compatible with the information
supplied by the sources.

Remark: When belief functions built from mass functions mX
i are consonant,

hence fully represented by their contour functions considered as possibility distributions
πX
i : X → [0, 1], one could choose to perform the fusion operation inside the possibilistic

framework [9], replacing combination rule (7) by a fuzzy logic connective that extends
⊗H from the Boolean to the multiple-valued setting.

2.2.4 Crisp testimonies and uncertain meta-knowledge

Now we assume some uncertainty about the meta-knowledge regarding source quality.
It is natural to try and represent this meta-uncertainty by means of a mass function
mH on the space H of incomplete assumptions, rather than a probability distribution
on H12. At this point, we limit ourselves to the case where information supplied by
sources are simple testimonies of the form x ∈ A and x ∈ B respectively. The result of
the merging is a mass function mX on X defined by:

mX(C) =
∑

H:A⊗HB=C

mH12(H). (8)
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This mass function actually induces a probability distribution over the 15 Boolean binary
connectives attached to assumptions H:

pH12(⊗) =
∑

H:⊗H=⊗

mH12(H). (9)

If one of the sources is non-informative (B = X), only three connectives remain possible
(they reduce to C = A,A or X) and the interpretation of information supplied by a
single source is recovered (Section 2.1.1).

This approach is general in the sense that, even if the information supplied by each
source is independent from the information supplied by the other one, pieces of meta-
knowledge regarding the states of each source may not be independent. Such a “meta-
independence” between sources may be modeled by assuming that

mH12(H) =

{

mH1(H1)m
H2(H2) if H = H1 ×H2

0 otherwise,
(10)

which corresponds to evidential independence [22] between frames H1 and H2 with
respect to mH12 . We note that this notion should not be confused with other notions of
independence in evidence theory, as outlined, e.g., in [3] and [5].

For instance, assume truthful sources with independent probabilities of relevance p1
and p2: for i = 1, 2,

mHi({(Ri, Ti)}) = pi, (11)

mHi({(¬Ri, Ti)}) = 1− p1. (12)

We then have

mH12({(R1, T1, R2, T2)}) = mH1({(R1, T1)})m
H2({(R2, T2)}) = p1p2 (13)

and, similarly,

mH12({(R1, T1,¬R2, T2)}) = p1(1− p2), (14)

mH12({(¬R1, T1, R2, T2)}) = (1− p1)p2, (15)

mH12({(¬R1, T1,¬R2, T2)}) = (1− p1)(1− p2), (16)

and mH12(H) = 0 for all other H ⊆ H12.
Furthermore, it is easy to verify, under these specific hypotheses, that it is equivalent

to combine discounted testimonies from each source (with discounting factors p1 and
p2) by means of the unnormalized Dempster’s rule, or to use the combination rule
(8) proposed above using the mass function mH12 defined by (13)-(16). Indeed, both
methods yield the same mass function mX :

mX(A ∩B) = p1p2 (H = (R1, T1, R2, T2));
mX(A) = p1(1− p2) (H = (R1, T1,¬R2, T2));
mX(B) = (1− p1)p2 (H = (¬R1, T1, R2, T2));
mX(X) = (1− p1)(1− p2) (H = (¬R1, T1,¬R2, T2)).

A more general form of this property will be studied in Section 4.
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2.2.5 General case

Consider now the general case where information forwarded by independent sources are
belief functions defined by independent mass functions mX

1 and mX
2 . The two merging

operations (7) and (8) can be extended jointly by first selecting a merging operation ⊗
with probability pH12(⊗), and then applying combination ⊗ between focal sets of mX

1

and mX
2 :

mX(C) =
∑

H

mH12(H)
∑

A,B:C=A⊗HB

mX
1 (A)mX

2 (B) (17)

=
∑

⊗

pH12(⊗)
∑

A,B:C=A⊗B

mX
1 (A)mX

2 (B). (18)

Here again, we may remark that a more formal derivation of the above result in a more
general setting will be presented in Section 4.2 (Lemma 2).

The extension of this approach to the case of n > 2 sources that are more or less
certainly truthful and/or relevant does not raise any theoretical issue. However the
computational complexity will increase exponentially (since there will be 4n elementary
assumptions on the global state of sources, hence a 24

n
complexity for the belief function

expressing meta-knowledge on the sources, in the general case).

3 Beyond relevance and truthfulness: a general model of

meta-knowledge

In the preceding section, we have seen that considering meta-knowledge on the relevance
and truthfulness of information sources leads to some interesting results. In particular,
a new correction scheme has been introduced, which generalizes the notions of discount-
ing and complement of a belief function. It also becomes possible to reinterpret all
connectives of Boolean logic in terms of assumptions with respect to the relevance and
truthfulness of information sources. Furthermore, a general combination rule has been
derived, which generalizes the unnormalized version of Dempster’s rule to all Boolean
connectives and that integrates the uncertainties pertaining to assumptions concerning
the possible behavior or state of the sources in the fusion process itself.

In some applications, it may happen that one has finer or even different meta-
knowledge on the sources than knowing their relevance and truthfulness. It seems
interesting to be able to use such meta-knowledge. In this section, an approach to
account for general source behavior assumptions is proposed, through a generalization
of the preceding section. We study first the single source case before continuing with
the multiple sources case.

3.1 The case of a single source

The notions of relevance and truthfulness were formalized in Section 2.1 using multival-
ued mappings ΓA from H = R× T to X, for each A ⊆ X. In this section, we propose
a generalization of this setting to account for general source behavior assumptions.
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3.1.1 Crisp testimony and certain meta-knowledge

Let us suppose that a source S provides a piece of information on the value taken by
a variable y defined on a domain Y . We suppose that this piece of information takes
the form y ∈ A, for some A ⊆ Y . Let us further assume that the source may be in N

elementary states instead of four (as is the case in Section 2.1.1), i.e., we generalize the
frame from H = {(R, T ), (R,¬T ), (¬R, T ), (¬R,¬T )} to H = {h1, ..., hN} (N does not
need to be greater than or equal to four, as illustrated in Example 1 below). In addition,
we consider that we are not so much interested in the value taken by y, as by the related
value taken by a variable x defined on a domain X (x and y may or may not be the same
parameter). Let us also assume that we have at our disposal some meta-knowledge that
relate the piece of information y ∈ A provided by the source on Y to an information of
the form x ∈ B, for some B ⊆ X, for each possible state h ∈ H of the source.

The reasoning described in the previous paragraph can be formalized as follows.
For each A ⊆ Y , we define a multivalued mapping ΓA from H to X. ΓA(h) indicates
how to interpret on X the piece of information y ∈ A provided by the source in each
configuration h of the source. As done in Section 2.1.2, we may also consider non
elementary hypotheses H ⊆ H, whose image by ΓA is ΓA(H) = ∪h∈HΓA(h).

It is easy to see that the setting introduced in Section 2.1.1 is a particular case of
this general scheme, with N = 4 and y = x and where the multivalued mappings ΓA are
defined by, for all A ⊆ X:

ΓA(h1) = A,

ΓA(h2) = A,

ΓA(h3) = ΓA(h4) = X. (19)

The states h1, h2, h3 and h4 then respectively correspond to the hypotheses (R, T ),
(R,¬T ), (¬R, T ) and (¬R,¬T ). More generally this framework also covers known canon-
ical examples for belief function design such as the randomly coded message example,
provided by Shafer and Tversky[24].

Furthermore, let us illustrate this general setting using two examples, where meta-
knowledge on sources is not limited to notions of relevance and truthfulness.

Example 1 (Case y = x, inspired from Shafer [23]). Let us assume that we are interested
by the amount of money Glenn paid for his coffee dues. Besides, we consider that there
are only four possible amounts: 0, $1, $5 or $10. The only information we have on
this amount comes from a person, named Bill, that we do not know very well and that
may be informed, approximately informed or unreliable. If Bill is informed, whatever
amount he provides should be accepted. If Bill is approximately informed, the amount
he provides should be expanded using the lowest and highest closest amounts (e.g., $1
is expanded to {0, $1, $5}). If Bill is unreliable, the amount he provides cannot be used
and we are left in our state of ignorance.

Using the general scheme proposed above, we may formalize this problem as follows.
We have H = {informed, approximately informed, unreliable} = {h1, h2, h3} and X =
{0, $1, $5, $10} = {x1, x2, x3, x4}. Let Ak,r denote the subset {xk, ..., xr}, for 1 ≤ k ≤ r ≤
4 and let I denote the set of intervals of X: I = {Ak,r, 1 ≤ k ≤ r ≤ 4}. By convention,
we consider that the piece of information provided by Bill is one of the intervals in I.
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We may then define the various states of the source as follows:

ΓAk,r
(informed) = Ak,r,

ΓAk,r
(ap-informed) =























{xk−1} ∪Ak,r ∪ {xr+1} if k > 1 and r < 4,

Ak,r ∪ {xr+1} if k = 1 and r < 4,

{xk−1} ∪Ak,r if k > 1 and r = 4,

Ak,r if k = 1 and r = 4,

ΓAk,r
(unreliable) = X.

Example 2 (Case Y 6= X, inspired from Janez and Appriou [14]). Let us assume that
we are interested in finding the type of a given road, which can only be a track, a lane
or a highway. We have a source at our disposal that provides information on this type.
However, the source has but a limited perception of the possible types of road and in
particular is not aware of the existence of the type “lane”. In addition, we know that
this source discriminate between roads either using their width or their texture (width
and texture are called attributes in [14]). If the source uses the road width, then when
it says “track”, it is clear that we may only safely infer that the type is “track or lane”
since tracks and lanes have similar width, and when it says “highway”, we may infer
“highway”. On the other hand, if the source uses the road texture, then when it says
“track”, we may infer “track”, and when it says “highway”, we may only infer “highway
or lane” since highways and lanes have similar textures.

Using the approach proposed above, we may formalize this problem as follows. We
have Y = {track, highway}, X = {track, lane, highway}, H = {width, texture} and

Γtrack(width) = {track, lane} ,

Γhighway(width) = {highway} ,

ΓY (width) = X,

Γtrack(texture) = {track} ,

Γhighway(texture) = {lane, highway} ,

ΓY (texture) = X.

3.1.2 Behavior-based correction scheme

The approach described in the previous section may be generalized to the case where
the source provides uncertain information in the form of a mass function mY

S and meta-
knowledge on the source are uncertain. Assuming some hypothesis H ⊆ H on the
behavior of the source, then each mass mY

S (A) should be transferred to ΓA(H), yielding
the following mass function:

mX(B|H) =
∑

A:ΓA(H)=B

mY
S (A), (20)

for all B ⊆ X.
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In the more general situation where we have uncertain meta-knowledge described by
a mass function mH on H, then we get

mX(B) =
∑

H

mX(B|H)mH(H) =
∑

H

mH(H)
∑

A:ΓA(H)=B

mY
S (A), (21)

for all B ⊆ X, which clearly generalizes (5). The correction mechanism defined by
(21) will be hereafter referred to as Behavior-Based Correction (BBC). A more formal
derivation of (21) will be provided in Section 4.2 (Lemma 1).

In addition, let us remark that the BBC procedure generalizes a familiar operation of
Dempster-Shafer theory, called conditional embedding or ballooning extension [26, 27].
Let us explicitly reinterpret this operation in terms of source behavior assumptions. The
ballooning extension is the process that transforms a mass function mY defined on a
domain Y into a mass function on an extended space X, where X ⊇ Y . Let mY ⇑X

denote the ballooning extension of mY to X. It is defined as mY ⇑X(B) = mY (A) if
B = A∪ (X\Y ) and mY ⇑X(B) = 0 otherwise. Suppose that a source S provides a piece
of information on the value taken by a parameter x defined on a domain X. We assume
further that the information provided by S takes the form of a mass function mY

S on the
domain Y ⊆ X. We consider that there may be two reasons why the source provides a
piece of information on the value taken by x on the domain Y instead of X: either the
source has a limited perception of the actual domain of x or it knows that the values in
X\Y are impossible. Let h1 denote the state where the source has a limited perception
of the actual domain of x and let h2 denote the state where the source knows the values
in X\Y to be impossible. We associate to these two states the multivalued mappings
ΓA, A ⊆ Y , from H = {h1, h2} to X defined by, for all A ⊆ Y :

ΓA(h1) = A ∪ (Y \X), (22)

ΓA(h2) = A. (23)

ΓA(h1) translates the idea that when the source states x ∈ A, A ⊆ Y , we may only
safely conclude that x ∈ A ∪ (X\Y ), due to the limited perception of the source. Let
mH represent our meta-knowledge on the behavior of the source. If mH is such that
mH({h1}) = 1 and if we use the BBC procedure to transform mY

S into a mass function
on X, then the ballooning extension is recovered. The ballooning extension can thus be
seen as a correction scheme corresponding to a particular assumption on the behavior
of the source with respect its limited perception of the actual domain of a variable.

The ballooning extension is the most well-known representative of so-called decon-
ditioning methods [15]. To complete the picture on the relationship between the BBC
and these methods, we may remark that another deconditioning method, known as the
method by association of highest compatible hypotheses [15] and that generalizes the
ballooning extension, can also be seen as a particular case of the BBC scheme. Similarly
to the ballooning extension, this method transforms a mass function mY defined on a do-
main Y into a mass function on an extended space X, where X contains all the elements
of Y and some new elements. However, this transformation is guided by a compatibility
relation ω : 2Y → 2X\Y , where ω(A), A ⊆ Y , represents the set of hypotheses in X\Y
with which the hypotheses of Y contained in A are strongly compatible. For instance, in
Example 2 above, the transformation based on road width of the type “track” to “track
or lane” and of the type “highway” to “highway” relies on such compatibility relation
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ω, where Y = {track, highway}, X = {track, lane, highway}, and ω(track) = lane and
ω(highway) = ∅.

Let mY ⇑ωX denote the extension of mY to X using the method by association of
highest compatible hypotheses. It is defined asmY ⇑ωX(B) = mY (A) if B = A∪ω(A) and
mY ⇑ωX(B) = 0 otherwise. The ballooning extension is recovered when ω(A) = X\Y , for
all A ⊆ Y . As the ballooning extension, it is easy to see that the method by association of
highest compatible hypothesesis is a particular case of the BBC (simply replace ΓA(h1) =
A∪(Y \X) in (22) by ΓA(h1) = A∪ω(A)). The state h1 then corresponds to a particular
attribute, such as road width, used by the source to discriminate the hypotheses in Y , as
an attribute defines a particular compatibility relation. This deconditioning method can
thus also be seen as a correction scheme corresponding to a hypothesis on the behavior
of the source.

3.2 The case of multiple sources

Let us now consider that we have two sources S1 and S2, each of which may be in one
of N elementary states (those N states are the same for both sources). It is convenient
to denote by hij the state j of source Si, for i = 1, 2 and j = 1, ..., N . Accordingly, let

Hi =
{

hi1, ..., h
i
N

}

denote the possible states of source Si, i = 1, 2. The set of elementary
hypotheses on the source behaviors will be H12 = H1 ×H2.

3.2.1 Crisp testimonies and certain meta-knowledge

Let us assume that source S1 states y ∈ A and S2 states y ∈ B, A,B ⊆ Y . What
can be concluded about X after merging these pieces of information will depend on the
hypothesis made on the behavior of the sources. We can define a multivalued mapping
ΓA,B from H12 to X, which assigns to each elementary hypothesis h = (h1, h2), h ∈ H12,
the result of the fusion of the two pieces of information y ∈ A and y ∈ B. As we must
conclude ΓA(h

1) when S1 is in state h1 ∈ H1, and we must conclude ΓB(h
2) when S2 is

in state h2 ∈ H2, where ΓA and ΓB are the mappings defined in Section 3.1.1, it is clear
that we must conclude ΓA(h

1) ∩ ΓB(h
2) when the sources are in state (h1, h2) ∈ H12.

Hence, the mapping ΓA,B is defined by

ΓA,B(h) = ΓA(h
1) ∩ ΓB(h

2),

for all h ∈ H12.

3.2.2 Behavior-based fusion scheme

Following the same path as that of Section 2.2, we can generalize the above approach
by allowing both the information provided by the source and our meta-knowledge about
the source to be uncertain.

Let us assume that S1 and S2 provide information on Y in the form of two mass
functions mY

1 and mY
2 , respectively, and that they are independent. If we know that

hypothesis H ⊆ H12 holds, then the mass mY
1 (A)m

Y
2 (B) should be transferred to the

set
C = ΓA,B(H) =

⋃

(h1,h2)∈H

(ΓA(h
1) ∩ ΓB(h

2)).
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The result of the fusion ofmY
1 andmY

2 givenH ⊆ H12 is then the mass functionmX(·|H)
defined by:

mX(C|H) =
∑

A,B:C=ΓA,B(H)

mY
1 (A) m

Y
2 (B), (24)

for all C ⊆ X. When meta-knowledge on H12 is represented by a mass function mH12 ,
we then get:

mX(C) =
∑

H

mX(C|H)mH12(H)

=
∑

H

mH12(H)
∑

A,B:C=ΓA,B(H)

mY
1 (A) m

Y
2 (B), (25)

for all C ⊆ X. Equation (25) will be referred to as Behavior-Based Fusion (BBF). It
is clearly a generalization of the general combination rule proposed in Section 2.2.5. A
more formal derivation of this rule will be presented in Section 4.2 (Lemma 2).

As a final remark in this section, we may note that the fusion process can be cast in
more general settings than those considered here. In particular, one may face problems
where sources Si, i = 1, ..., n, provide information on different frames Yi and admit
different numbers Ni of elementary states. It is interesting to note that in such a setting,
an equation similar to (25) can easily be obtained and a result similar to the one that
will be shown in the next section still holds. Although this setting is more general, we
have refrained from introducing it in this paper in order to improve readability.

4 Commutativity between correction and fusion schemes

with meta-independent sources

As we did at the end of Section 2.2.4, let us now assume sources are meta-independent,
i.e., that the mass function mH12 expressing our uncertain meta-knowledge satisfies (10).
Under this assumption, we may wonder whether it is equivalent to combine two mass
functions mY

1 and mY
2 using the BBF rule, or to apply the BBC procedure to mY

1 and
mY

2 , and combine the transformed mass functions by the unnormalized Dempster’s rule
(Figure 1). In order to answer this question, we need first to recall the definitions of
some operations related to the use of belief functions defined on product spaces.

4.1 Operations on product spaces

Let mX×Y denote a mass function defined on the Cartesian product X × Y of the
domains of two parameters x and y. The marginal mass function mX×Y ↓X is defined as

mX×Y ↓X(A) =
∑

{B⊆X×Y,(B↓X)=A}

mX×Y (B), ∀A ⊆ X,

where (B ↓ X) denotes the projection of B onto X.
Conversely, let mX be a mass function defined on X. Its vacuous extension [22] on

X × Y is defined as:

mX↑X×Y (B) =

{

mX(A) if B = A× Y for some A ⊆ X,

0 otherwise.
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m1
Y BBC

mH1,  { A, A! Y}

m1
X

mX

m2
Y BBC

mH2,  { A, A! Y}

m2
X

"

m1
Y

BBF

mH12,  { A, A! Y}

mX

m2
Y

Figure 1: Two ways of combining two mass functions mY
1 and mY

2 using meta-knowledge
about the sources: using the BBC procedure (left) and using the BBF rule (right). The
equivalence between these two methods under the meta-independence assumption is
proved in this section.

Given two mass functions mX
1 and mY

2 , their combination by the unnormalized
Dempster’s rule on X × Y can be obtained by combining their vacuous extensions on
X × Y . Formally:

mX
1 ∩©mY

2 = m
X↑X×Y
1 ∩©m

Y ↑X×Y
2 .

Let mU and mV be two mass functions on product spaces U and V . The following
property, referred to as “Distributivity of marginalization over combination” [25], holds:

(mU
∩©mV )↓U = mU

∩©mV ↓U∩V , (26)

where U ∩V denotes, by convention, the Cartesian product of frames common to U and
V .

4.2 Meta-independence result

Let us consider again the setting of Section 3.1, in which three distinct pieces of evidence
are defined:

1. A mass function mY
S on Y provided by source S;

2. A mass functionmH onH = {h1, ..., hN} representing our uncertain meta-knowledge
on the source;

3. For each A ⊆ Y , a multivalued mapping ΓA from H to X indicating how to
interpret on X the piece of information y ∈ A ⊆ Y provided by the source in each
configuration h ∈ H.

The last piece of evidence defines a relation between spaces H, Y and X, which may be
represented by the following categorical mass function on H× Y ×X:

mH×Y×X
Γ





⋃

h∈H,A⊆Y

({h} ×A× ΓA(h))



 = 1. (27)
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Figure 2: Evidential networks corresponding to the BBC procedure (a) and the BBF
rule (b).

The three mass functions mY
S , m

H and mH×Y×X
Γ can be seen as defining an evidential

network, as shown in Figure 2a. As will be shown below, the BBC procedure is equivalent
to combining these three mass functions using Dempter’s rule, and marginalizing the
result on X.

By combiningmY
S withmH×Y×X

Γ and marginalizing onH×X, we get a mass function
mH×X

SΓ on H×X, defined by:

mH×X
SΓ

[

⋃

h∈H

({h} × ΓA(h))

]

= mY
S (A), ∀A ⊆ Y. (28)

For instance, letH be the spaceH = R×T , let Y = X and let the multivalued mappings
ΓA be defined by (19) for all A ⊆ Y . The mass function mH×X

SΓ is then given by

mH×X
SΓ (({h1} ×A) ∪ ({h2} ×A) ∪ ({h3} ×X) ∪ ({h4} ×X)) = mY

S (A),

for all A ⊆ Y .
The following lemma states that the mass function given by the BBC (21) can be

obtained by combining mH×X
SΓ with mH, and marginalizing on X.

Lemma 1. We have, for all B ⊆ X

(

mH×X
SΓ ∩©mH

)↓X
(B) = mX(B),

where mX is the mass function defined by (21).

Proof. Let mH×X = mH×X
SΓ ∩©mH. It can be computed as follows:

mH×X (C) =

{

mH(H) ·mY
S (A) if C = (

⋃

h∈H {h} × ΓA(h)) ∩ (H ×X),

0 otherwise.
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Now, for all H ⊆ H and all A ⊆ Y ,

[(

⋃

h∈H

{h} × ΓA(h)

)

∩ (H ×X)

]

↓ X =
⋃

h∈H

ΓA(h) = ΓA(H).

Therefore, mH×X↓X(B) for any B ⊆ X can be obtained by summing over all H ⊆ H
and all A ⊆ Y such that ΓA(H) = B:

mH×X↓X(B) =
∑

H,A:ΓA(H)=B

mH(H) ·mY
S (A),

which is equivalent to (21).

This lemma shows that BBC, and thus deconditioning methods, the discounting
operation, the complement of a belief function and the correction scheme introduced
in Section 2, can be obtained by defining an evidential network on H × Y ×X and by
propagating uncertainty in this network using the unnormalized Dempster’s rule.

Let us now consider the setting of Section 3.2. We consider two sources S1 and S2,
which provide items of evidence mY

1 and mY
2 on Y , respectively. Let mH12 be a mass

function on H12 = H1 ×H2 representing our uncertain meta-knowledge on the sources.
As before, the mappings ΓA for all A ⊆ Y induce mass functions mHi×Y×X

Γi , i = 1, 2 of
the form (27). These mass functions define the evidential network shown in Figure 2b.
By combining mHi×Y×X

Γi with mY
i and marginalizing on Hi ×X, we get mass functions

mHi×X
iΓ , i = 1, 2 with the following expressions:

mHi×X
iΓ





⋃

h∈Hi

({h} × ΓA(h))



 = mY
i (A), ∀A ⊆ Y.

As expressed by the following lemma, the mass function mX computed by the BBF
rule (25) can be obtained by combining mass functions mHi×X

iΓ , i = 1, 2 with mH12 , and
marginalizing the result on X:

Lemma 2. We have, for all B ⊆ X

(

mH1×X
1Γ ∩©mH2×X

2Γ ∩©mH12

)↓X
(B) = mX(B), (29)

where mX is the mass function defined by (25).

Proof. Let mH12×X
12Γ be the mass function obtained by combining the first two mass

functions in (29). We have, for all A,B ⊆ Y :

mH12×X
12Γ (C) =











mY
1 (A) ·m

Y
2 (B) if C =

⋃

(h1,h2)∈H12

{(h1, h2)} × (ΓA(h
1) ∩ ΓB(h

2))

0 otherwise.

By combining the above mass function with mH12 , we get a new mass function mH12×X

defined by
mH12×X(C) = mH12(H) ·mY

1 (A) ·m
Y
2 (B)

18



if

C =





⋃

(h1,h2)∈H12

{

(h1, h2)
}

× (ΓA(h
1) ∩ ΓB(h

2))



 ∩ (H ×X)

and mH12×X(C) = 0 otherwise.
Now, for all H ⊆ H12 and for all A,B ⊆ Y ,









⋃

(h1,h2)∈H12

{

(h1, h2)
}

× (ΓA(h
1) ∩ ΓB(h

2))



 ∩ (H ×X)



 ↓ X

=
⋃

(h1,h2)∈H

(ΓA(h
1) ∩ ΓB(h

2)) = ΓA,B(H).

Therefore, mH12×X↓X(C) for C ⊆ X can be obtained by summing over all H ⊆ H1×H2

and all A,B ⊆ Y such that ΓA,B(H) = C:

mH12×X↓X(C) =
∑

H,A,B:ΓA,B(H)=C

mH12(H) ·mY
1 (A) ·m

Y
2 (B)

which is equivalent to (25).

This lemma shows that the BBF rule, and thus the generalization of the unnormal-
ized version of Dempster’s rule to all Boolean connectives, can be obtained by defining
an evidential network on H12 × Y × X and by propagating uncertainty in this net-
work using the unnormalized Dempster’s rule. In addition, this implies that the fusion
schemes studied in this paper can be recovered using the unnormalized Dempster’s rule
and marginalization.

Theorem 1. With meta-independent sources, it is equivalent to combine the uncertain
information mY

1 and mY
2 by the BBF rule or to combine by the unnormalized Dempster’s

rule each of these pieces of information corrected using the BBC procedure.

Proof. Let mH1 and mH2 represent our uncertain meta-knowledge on the behaviors of
two sources S1 and S2, respectively. Meta-independence of S1 and S2 is equivalent to
mH12 = mH1

∩©mH2 , wheremH12 represent our uncertain meta-knowledge on the sources.
Under this assumption, we thus have, with the same notations as above:

mH1×X
1Γ ∩©mH2×X

2Γ ∩©mH12 = mH1×X
1Γ ∩©mH2×X

2Γ ∩©mH1
∩©mH2 .

Marginalizing on H1 ×X, we get, using (26):

(

mH1×X
1Γ ∩©mH2×X

2Γ ∩©mH1
∩©mH2

)↓H1×X

= mH1×X
1Γ ∩©mH1

∩©

(

mH2×X
2Γ ∩©mH2

)↓X
,

which, after further marginalization on X, becomes:

(

mH1×X
1Γ ∩©mH2×X

2Γ ∩©mH1
∩©mH2

)↓X
=
(

mH1×X
1Γ ∩©mH1

)↓X
∩©

(

mH2×X
2Γ ∩©mH2

)↓X
.

The theorem then follows from Lemmas 1 and 2.
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Let us note that a similar theorem holds for the case of N sources instead of 2. This
is a direct consequence of Lemma 2 being straightforwardly generalizable to the case of
N sources.

This theorem leads to an interesting remark: the method, often used in applications,
that consists in discounting sources and then combining them by the unnormalized
Dempster’s rule, can be seen as a particular case of the BBF rule. Indeed, without lack
of generality, consider the case of two sources S1 and S2. The discount and combine
method corresponds to truthful sources with independent probabilities p1 and p2 of
relevance, i.e., to a meta-knowledge mH12 on the sources such that mH12 = mH1

∩©mH2 ,
with mH1 , mH2 and mH12 defined by (11)-(16).

Another popular method for taking into account meta-knowledge on the reliability
of the sources is to compute a weighted average of the mass functions to be combined.
Indeed, as remarked by Shafer [22, p. 253], this methods yield results similar to those
obtained by Dempster’s rule applied to equally discounted mass functions, when the
discount rate tends to 1. Interestingly, the weighted average rule is also a special case
of the BBF rule. The mass function m resulting from the weighted average of two
mass functions m1 and m2 provided by two sources S1 and S2 is defined by m =
w · m1 + (1 − w) · m2, w ∈ [0, 1], where w is the relative reliability of S1. It is clear
that the weighted average results from meta-knowledge on the sources described by the
following mass function

mH12({(R1, T1,¬R2, T2)}) = w,

mH12({(¬R1, T1, R2, T2)}) = 1− w,

which is clearly different from that defined by (13)-(16) and associated to the discount
and combine method.

5 Relation to previous work

The idea of exploiting meta-knowledge about the sources of information for correcting
or combining belief functions has been explored by several researchers. This section
discusses the relation between the notions introduced in Sections 2 and 3 and previous
work on similar topics.

5.1 Related work on information correction

As already mentioned, the approach developed in Section 2.1 extends the discounting
operation, introduced by Shafer [22] and formalized by Smets [27]. This basic model
corresponds to the case where the source is known to be truthful, but has only a prob-
ability of being relevant. In [30], Smets proposed a counterpart to this model, in which
the source is relevant but may not be truthful. Smets described a scenario in which
a “deceiver agent” may replace a belief function by its complement, and he proposed
solutions to detect and remedy such a situation. The model introduced in Section 2.1
clearly subsumes these two basic models.

An extension of the discounting operation, called contextual discounting, was intro-
duced by Mercier et al. in [18]. In this approach, a binary frame R for the relevance of
the source is introduced as in classical discounting. Additionally, a coarsening Θ of X is

20



defined, and conditional mass functions mR(·|θ) on R given θ, for each θ ∈ Θ, are pos-
tulated. A discounted mass function on X is obtained by combining the mass function
mX

S provided by the source with the conditional mass functions mR(·|θ), θ ∈ Θ. In [17],
Mercier et al. further generalize this model by allowing the user to specify conditional
mass functions mR(·|A) for any A ⊆ X. A crucial assumption in the contextual dis-
counting model and its variants is that of independence between the items of evidence
introduced in the model. This correction scheme is, in a sense, simpler than the one
introduced in Section 2.1, in that it has no “truthfulness” component. On the other
hand, it is based on more complex meta-knowledge about the source, as beliefs on R
are assessed conditionally on different contexts, corresponding to different hypotheses
about the variable x of interest. A more complex model incorporating both R and T
components, and conditional mass functions on R×T given hypotheses about X could
obviously be defined, if required by applications.

In [16], Mercier et al. also proposed another extension of the discounting operation,
in which uncertain meta-knowledge on the source S is quantified by a mass function mH

on the space H = {h1, . . . , hN} of possible states of the source. The interpretation of
those states h ∈ H is given by transformations mX

h of mX
S : if the source is in state h

and if it provides the mass function mX
S , then we must adopt mX

h as the representation
of our state of belief. This is formalized using conditional mass function by postulating
that mX(·|h,mX

S ) = mX
h , where mX(·|h,mX

S ) represents our uncertainty on X in a
context where h holds and the source provides information mX

S . This correction scheme
is comparable to BBC introduced in Section 3.1, in that it expresses meta-knowledge
about the source in a frame of N arbitrary states. The two models coincide in the
special case where the mass function mH on H is Bayesian, and mX

h is defined as from
mX

S using multivalued mappings ΓA as:

mX
h (B) =

∑

A:ΓA(h)=B

mY
S (A), ∀B ⊆ X,

in which case both models yield

mX =
∑

h∈H

mH({h}) ·mX
h .

However, the two models are distinct in the general case, and the choice of one model
or another should be guided by the nature of available knowledge in each specific appli-
cation.

Finally, we should also mention in this section the work of Haenni and Hartmann
[12], who proposed a model of partially relevant information sources. In this model, each
source Si is assumed to provide information on a binary variable HY P in the form of a
binary report REPi. Each source generates its report according to s independent vari-
ables, possibly including the hypothesis HY P in question. Based on various hypotheses
about the relation between REPi and the underlying variables, a taxonomy of models is
generated. Although, at first glance, this formalism seems to be different from ours, our
approach happens upon closer examination to be more general. Consider, for instance,
the PD model, which is one of the most complex models described in [12]. In this model,
the report is generated by the source as follows: if the source is reliable (REL = 1), then
REP = HY P . IF REL = 0, then REP is equal to random variable P if HY P = 1,
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Table 1: Mappings ΓA corresponding to the PD model of Haenni and Hartmann [12].

h Γ{0}(h) Γ{1}(h)

100 {0} {1}
110 {0} {1}
101 {0} {1}
111 {0} {1}
000 {0, 1} ∅
010 {0} {1}
001 {1} {0}
011 ∅ {0, 1}

and it is equal to a random variable Q if HY P = 0. The three random variables
REL, P and Q are assumed to be independent, and the model has three parameters
ρ = Pr(REL = 1), p = Pr(P = 1) and q = Pr(Q = 1). With our notations, this model
can be translated as follows. Let Y = {0, 1} the frame of REP , and H = {0, 1}3 the
frame of the triple (REL,P,Q). The joint probability distribution of this triple defines
a Bayesian mass function mH on H; for instance, mH({(1, 0, 1)}) = ρ(1 − p)q. Finally,
the mappings ΓA for A = {0} and A = {1} are given in Table 1. All other models
described by Haenni and Hartmann could be translated in a similar way.

5.2 Related work on information fusion

The idea of defining alternatives to Dempster’s rule by replacing intersection with other
set-theoretic operations can be traced to Smets’ 1978 thesis [26], in which he introduced
the disjunctive rule of combination together with the Generalised Bayes Theorem (see
also [27] for a more accessible reference). This approach was generalized to arbitrary
set operations by Dubois and Prade [7] and Yager [32]. In [11], Haenni noticed that
the disjunctive rule could be deduced by defining an evidential network with two binary
frames R1 and R2 for the reliability of the two sources, and combining mass functions
mX

1 and mX
2 with a categorical mass function on R1 ×R2 expressing that at least one

of the two sources is reliable. The model defined in Section 2.2 is clearly an extension
of this simple framework.

In [28], Smets introduced two families of combination rules depending on a pa-
rameter α, which he called α-conjunctions and α-disjunctions. These two families are
basically the only sets of linear operators with a commutative monoid structure. The
α-conjunctions include the unnormalized Dempster’s rule (for α = 1) and admit the
vacuous mass function as neutral element. The α-disjunctions range between the dis-
junctive rule and a rule corresponding to the exclusive OR, and admit the contradiction
(m(∅) = 1) as neutral element. In [28], Smets derived these rules from axiomatic re-
quirements, but admitted that they lacked a clear interpretation for α ∈ (0, 1). In
[19, 21], Pichon provided such an interpretation in terms of truthfulness of the sources.
For instance, he showed that the α-conjunction results from the following assumptions:

1. The two sources are relevant, and either both truthful, or both non truthful (i.e.,
the operator ⊗ is logical equivalence);
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2. The degree of belief in the hypothesis that at least one of sources is truthful,
conditionally to each value x ∈ X, is equal to α.

Under these assumptions, the α-conjunction can be obtained by defining a belief network
in T1×T2×X, and combining all pieces of evidence, assumed to be independent. The α-
disjunction can be obtained in a similar way, starting from different assumptions about
the truthfulness of the sources.

As shown in Section 4, the approach developed in Section 2.2, and extended in
Section 3.2 can also be derived from uncertainty propagation in an evidential network,
in which some variables may be related to the truthfulness of the sources. Although
each of the two families of α-junctions relies on a single parameter, the interpretation of
this parameter is not easy to disclose, and the independence assumptions involved in the
model do not seem very natural. In contrast, the model developed in this paper allows
us to represent richer forms of meta-knowledge and it lends itself to easier interpretation.

6 Conclusion

We have proposed a general approach to the correction and fusion of belief functions,
which integrates an agent’s meta-knowledge on the truthfulness and relevance of the
sources of information. This formalism considerably extends Shafer’s discounting op-
eration, which deals only with the relevance of sources, as well as the unnormalized
Dempster’s rule. The obtained results can be applied, in particular, to all domains
where information sources are intelligent agents able to lie, independently of their com-
petence to provide information.

We have further extended this approach by allowing for general source behavior
assumptions that go beyond the notions of relevance and truthfulness. This extension is
potentially useful for various applications and, in particular, those involving information
sources defined on different frames.

We have then shown that the correction and fusion schemes introduced in this paper
can be obtained by defining particular evidential networks and by propagating uncer-
tainty in these networks using the unnormalized Dempster’s rule. Using a well-known
property of belief functions defined on product spaces, we have proved that commuta-
tivity between correction and fusion processes holds, when the behaviors of the sources
are independent.

Finally, the proposed formal representation of meta-knowledge on the behavior of
information sources turns out to be somewhat similar to, but arguably more general and
flexible than other approaches introduced in the Dempster-Shafer framework.

One line for further research is to extend the framework to the case of sources
reporting to the agent what other sources reported to them. In other words, instead
of considering several parallel testimonies, one may consider a series of agents, each
reporting to the next one what the previous agent reported. There are then several
uncertain information distortion steps in a row by sources having uncertain behavior.
Interestingly, this alternative line of research is already present in the entry “Probabilité”
in D’Alembert and Diderot Encyclopedia. Recently, Cholvy [2] also investigated this
issue. Eventually one may consider the case of series-parallel networks of more or less
reliable sources with uncertain information flows.
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Another interesting perspective is the possibility to learn the behavior of sources by
comparing the pieces of information provided by those sources with the ground truth,
as done in a simple framework for discounting [10] and contextual discounting [18].
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[6] D. Dubois and T. Denœux. Pertinence et sincérité en fusion d’informations. In Rencontres Fran-
cophones sur la Logique Floue et ses Applications (LFA 2009), pages 23–30, Annecy, France, 2009.
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