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Abstract

A hierarchical clustering approach is proposed for reducing the number of focal ele-
ments in a crisp or fuzzy belief function, yielding strong inner and outer approxima-
tions. At each step of the proposed algorithm, two focal elements are merged, and the
mass is transfered to their intersection or their union. The resulting approximations
allow the calculation of lower and upper bounds on the belief and plausibility degrees
induced by the conjunctive or disjunctive sum of any number of belief structures.
Numerical experiments demonstrate the effectiveness of this approach.

Keywords: Belief functions, Dempster-Shafer theory, Fuzzy belief structures, Ap-
proximation.



1 Introduction

In the last twenty years, the theory of belief functions (BF’s), sometimes referred to
as “Dempster-Shafer Theory”, has gained increasing recognition as one of the major
frameworks for representing and manipulating uncertain and partial knowledge. The
seminal work of Dempster [4] and Shafer [23] has been followed by a large of number
of important theoretical and practical contributions. In particular, the Transferable
Belief Model (TBM) introduced by Smets [28] has emerged has a coherent, well-
founded interpretation of the mathematical apparatus of BF’s, with clear axiomatic
justification. Belief functions have been applied to a wide range of problems including
medical diagnosis, data fusion, pattern recognition and function approximation [29,
5,7, 21].

Despite its success as a model of human reasoning under uncertainty, one of the
arguments often raised against the theory of BF’s is its relatively high computational
complexity, specially as compared to other approaches such as Bayesian probability
theory or Possibility theory. Indeed, the complexity of combining BF’s while aggregat-
ing pieces of evidence increases exponentially with the number of sources [33], which
may lead to serious problems when both the number of steps in the reasoning process
and the size of the frame of discernment become large.

The problem of limiting the complexity of BF manipulation has, of course, been
addressed by many authors. Existing approaches rely either on efficient procedures for
performing exact computations, or on approximation techniques. In the first category,
an optimal algorithm for computing Dempster’s rule of combination was described by
Kennes [16], and efficient algorithms for manipulating restricted classes of BF’s were
proposed by several authors [1, 24]. The second category of approaches is composed
of Monte-Carlo techniques [32, 20, 19], and BF approximation procedures. The latter
approach is adopted in this paper.

Several techniques have been proposed for approximating a BF bel by a “simpler”
BF bel’. A first strategy is to constrain bel’ to belong to a predefined class B of BF’s
having a relatively simple form. Such a strategy was advocated by Voorbraak [31],
Dubois and Prade [11], and, more recently, by Grabisch [12], the set B being com-
posed, respectively, of probability functions, possibility measures, and k-additive BF’s
(i.e., BF’s whose focal elements are at most of size k). This approach is particularly
interesting when it is regarded as a means to build a bridge between BF theory and
another theory, as is the case in Dubois and Prade’s work. A nice property of Voor-
braak’s method is that it commutes with Dempster’s rule of combination; however, a
lot of information is usually lost when approximating a general BF by a probability
function. The set of k additive BF’s is larger, but its relevance in the context of
uncertainty modeling remains to be clarified [12].

Another strategy is to simplify a BF by removing and/or aggregating focal ele-
ments, without imposing a priori a particular structure for the approximating BF.
Reducing the number of focal elements is generally a good strategy because the
combination of two BF’s bel; and bels can be performed in time proportional to
| F(bely)||F(bely) |||, where F(bel;) is the set of focal elements of bel; (i = 1,2), and
Q) is the frame of discernment. One of the simplest way to reduce the complexity of a
BF is to replace the k focal elements with the smallest mass by their union, leaving the
other focal elements unchanged. This is the principle of the summarization method



introduced by Lowrance et al [14]. More sophisticated methods were subsequently
proposed by Tessem [30], Bauer [2|, Harmanec [13] and Petit-Renaud and Denceux
[21]. In particular, Harmanec and Petit-Renaud independently introduced the idea
of using a systematic clustering strategy for grouping similar or unimportant focal
elements. This idea will be further explored in this paper.

An important feature of an approximation method is the way in which a BF bel is
related to its approximation bel’. When the associated plausibility functions pl and pl’
are such that pl < pl’, then bel’ is said to be less committed than (or to weakly include)
bel: in some sense, it is less informative than bel, and it thus constitutes a “cautious”
or conservative approximation. In particular, the summarization algorithm [14], the
possibilistic outer approximation method [11] as well as the procedures described in
[13] generate conservative approximations.

In this paper, we propose a technique for approximating any crisp or fuzzy BF
bel by two BF’s bel™ and bel’, called strong inner and outer approximations [11],

such that 517 <pl <L 51+. The interesting feature of this approach is that it allows
the calculation of lower and upper bounds on belief and plausibility degrees when
combining BF’s in a conjunctive or disjunctive fashion, allowing the user to control
the quality of the approximation. Our approach thus partially shares the same goals
as the possibilistic techniques proposed by Dubois and Prade. However, it does not
impose any particular constraint on the structure of the BF’s, allowing more precise
approximations, and our method may be applied to belief structures with fuzzy focal
elements.

The rest of this paper is structured as follows. Section 2 summarizes the main
concepts related to crisp and fuzzy belief functions. The notions of weak and strong
inclusions between belief structures are then recalled in Section 3, where some new
results are also established. Finally, our approach to BF approximation is described
in Section 4, and experimental results are presented in Section 5. Section 6 concludes
the paper.

2 Background

Let © denote a finite set called the frame of discernment. A belief structure (BS) is a
function m from 29 to [0, 1], verifying:

> m(A) =1. (1)

ACQ

The subsets A of 2 such that m(A) > 0 are the focal elements of m. A BS m such

that m(()) = 0 is said to be normal. This condition was originally imposed by Shafer

[23], but it is relaxed in the TBM, the allocation of a positive belief number to the

empty set being interpreted as a consequence of the open-world assumption [25].
The BF induced by m is the function bel : 2 + [0, 1] verifying:

bel(A) £ > m(B). (2)
p#£BCA

for all A C Q. Such a function may be shown to have the property of complete
monotonicity [23]. Its use for representing degrees of belief was justified by Smets



on an axiomatic basis [27]. Whereas bel(A) represents the amount of support given
to A, the potential amount of support that could be given to A is represented by the
plausibility of A defined as:

pl(A) £ bel(Q) — bel(A) (3)

where A denotes the complement of A. There is therefore a kind of duality between
belief and plausibility functions.

Two BS’s representing distinct items of evidence may be combined using the con-
junctive sum N or the disjunctive sum U operations defined, respectively, as:

(minmo)(A) £ > mi(B)ma(C), (4)
BNC=A
(miUm)(A) 2 > mi(B)ma(C) (5)

BuC=A

for all A C ). These operations are commutative and associative. The choice of one
of them for aggregating evidence may be guided by “metaknowledge” concerning the
reliability of the two sources [26]. Note that the conjunctive sum as described by Eq.
(4) may produce a subnormal BS (i.e., it is possible to have (miNms)(@) > 0). Under
the closed-world assumption, some kind of normalization thus has to be performed.
The Dempster normalization procedure converts a subnormal BS m into a normal BS
m* by dividing each belief number by 1 — m(0) [23].

The above concepts may be generalized to allow the assignment of degrees of
beliefs to ambiguous propositions such as typically expressed in verbal statements,
and represented by fuzzy subsets of the frame of discernment. As defined by Zadeh
[38] and Yager [34], a fuzzy belief structure (FBS) may be defined as a function m
assigning belief numbers to a finite set of fuzzy focal elements F;, i = 1,...,n. As in
the standard case, the condition

> m(F) =1
=1

is imposed. A FBS is normal iff its focal elements are normal fuzzy sets (i.e., they
have unit height). Following Zadeh [38], the concept of plausibility of a fuzzy subset
A may then be generalized! as the expectation of the conditional possibility measure
of A given Fj, defined as:

pl(A) £ m(F)TI(A|F,) (6)
i=1

with
T(AJF;) = maxminfa(w), pr (@)

Similarly, the credibility of a fuzzy subset A induced by a FBS m may be defined as
the expectation of the conditional necessity of A:

bel(4) £ Y " m(F)N(A|F,), (7)
=1

!Other generalizations are possible, such as the one proposed by Yen [37]. The comparison of these
generalizations is outside the scope of this paper.



where the conditional necessity of A given F; is defined as
N(A|F) 2 I(Q|F;) — (A F), (8)

to account for the possible subnormality of Fj, as suggested by Dubois and Prade [9].
Note that (7) is then a valid generalization of (2).

As proposed by Yager [35], the conjunctive and disjunctive sums may be readily
extended to fuzzy belief structures by replacing the crisp intersection and union in (4)
and (5) by fuzzy counterparts, defined, for example, using the min and max operations.
Note that the conjunctive combination of two normal FBS’s may produce a subnormal
FBS. If necessary, the normalization of a FBS m may be performed using Yager’s soft
normalization procedure [36] generalizing Dempster’s normalization and defined as:

s SpahBm(B)
) = S rom MB)M(B)

where h(B) = max,, up(w) denotes the height of B, B* is the normal fuzzy set defined
by up+(w) = pup(w)/h(B), and F(m) is the set of focal elements of m.

9)

3 Inclusion of belief structures

The set S(Q2) of crisp or fuzzy BS’s on Q can be equipped with partial ordering
relations, which may be used to assess the coherence of two BS’s and compare their
“information content” [8, 11, 26]. Although such ordering relations were initially
proposed for crisp BS’s, they can be extended without any difficulty to FBS’s. In
the sequel, no distinction will be made between crisp and fuzzy BS’s, unless explicitly
stated.

Let m and m’ be two elements of S(2). Then m is said to be more committed
than m/, or to be weakly included in m/, iff the associated plausibility functions verify
pl < pl'. When m and m’ are normal, this condition is equivalent to bel > bel’.
This weak inclusion relation (hereafter noted <) plays a central role in the TBM,
in which the Principle of Least Commitment [26] (commanding to choose the least
committed belief function compatible with a set of constraints) plays a role similar to
the Maximum Entropy principle in Bayesian theory.

Although weak inclusion has a simple definition, it is difficult to work with, because
the condition m < m’ is difficult to express as a function of the belief numbers. This
is one of the reasons why a more “operational” definition of inclusion, called strong
inclusion, was proposed by Yager and discussed by Dubois and Prade [10], among
others. Let m and m’ be two BS’s with focal elements F(m) = {Fi,...,F,} and
F(m') = {F{,...,F;}. Then m is said to be strongly included in m’, or to be a
specialization of m’ (noted m C m’), iff there exists a non-negative matrix W with
entries w;; (1 =1,...,n;j =1,...,¢q) such that

q
Y wy=m(F), i=1,...,n, (10)



and
Wy >O:>F,~QFJ{.

The relationship between m and m’ may be seen as a transfer of mass from each
focal element F; of m to supersets FJ’ D F;, the quantity w;; denoting the part of
m(F;) transferred to Fj’ Alternatively, one may define a matrix G whose general term
9ij = wij/m(F;) denotes the relative proportion of m(F;) assigned to F;j. Matrix G is
called a generalization matriz by Klawonn and Smets [17]. It verifies

q
dgg=1 i=1,...n
j=1

and it allows to give a simple expression of m’ as a function of m:

Zm gi; J=1,...,q

The terms “strong” and “weak” inclusion are justified by the following proposition.

PROPOSITION 1
For any two BSson Q, m Cm/ = m < m’.

Proof: The proof was given by Dubois and Prade [10] for the crisp case. It may easily
be extended to the more general case of fuzzy BS’s as follows. Using the definition of
the plausibility of a fuzzy event given by (6) and the definition of matrix G, we have,
for all crisp or fuzzy subset A of €2

pr(4) = Zm II(A|F))
= ZZm ) gi IL(A|F})

For all g;; > 0, we have F; C FJ’ , and consequently
H(A]F]') > 1I(A|F;).

Hence,
Z 9i; 1L(A[F}) > TI(A|F}),
J
and

pl(4) = 3 m(F) Zgw (AIF)) >Zm MA|F) = pl(4).  (12)

O
Strong inclusion also has an interesting property with regard to conjunctive and
disjunctive combination, as expressed by the following proposition.



PROPOSITION 2
Let m and m’ be two BS’s such that m C m’. Then, for all m"” € §(Q),

(mnm™”) C (m'nm”), and
(mum’”) C (m' um”).

Proof: We give only the proof for the conjunctive case. Since m C m’, there exists a
matrix W with general term (wj;) verifying Eqgs. (10) and (11). Let F;, F}, and F/
denote the focal elements of m, m’ and m”, respectively. Similarly, let Dy, h =1,...,r
be the focal elements of m Nm”,and Cy, ¢ = 1,...,s the focal elements of m’ N m".
Let U denote the matrix of size r x s, with general term

Upy = Z Z wijm”(F,é’).

4.3 {k|FinF}/ =Dy, FiNF}/=Ce}

We have
doune = Y > wigm” (Fy)
h i.j h {k|F;NF}'=Dy,FiNF'=Cy}
SN SR
.5 {k|FjnF=Cy}
SOOI S 0 o1 P
J {kIFINF!=C} \ i
=YY )
i A{k|IFjnE/=C}
— (mlmm//)(ce)’
and

une = > ) > wijm" (Fy/)

¢ i,j € {k|F,NF}'=Dy,FiNF'=Cy}

= > > wym'(F)

i,j {k|F;NF}/=Dy}

= > > > wij | m"(FY)

i {K|F:NF/=Dp} \ Jj

= > Y mE)mME)
i {k|FNF/'=Dy}

= (mnm")(Dy).

Moreover, upy > 0 implies the existence of ¢, j and k such that D, = F; N F{,
Cp= Fj’ NE/, and F; C FJ(, and hence that D), C C,.
This completes the proof that (m N m”) is strongly included in (m’ N m’). O



REMARK 1 As mentioned above, the strong inclusion relation is a partial ordering
which allows to compare the “information content” of BS’s. However, this interpre-
tation poses some difficulty in the case of subnormal BS’s, as shown by the following
example. Let us assume that we have a BS mi({wo}) = 1 for some wy € Q, and a BS
my such that ma({wo}) = 0.5 and ma(0) = 0.5. Then, my is strictly included in m4 (in
the strong sense), i.e., ma C m;. However, under the usual interpretation of the mass
given to the empty set [28], my cannot be considered as more informative than my,
whose information content is maximal (it corresponds to complete certainty). Hence,
some caution should be exercised when interpreting strong inclusion between m; and
meo in terms of information content, in the general case where mq(0) # ma(()). The
same remark applies in the case of BS’s with subnormal fuzzy focal elements.

4 Approximation of belief structures

4.1 Clustering approximations of a BS

The idea of grouping, or clustering similar elements of a large set is central to many
abstraction and information compression mechanisms. As already mentioned in the
introduction, the conjunctive or disjunctive combination of two belief structures m;y
and mg can be performed in time proportional to the sizes of F(m1) and F(ms). A
natural way to decrease the complexity of the combination is therefore to decrease
the number of focal elements by grouping similar, or unimportant ones. This was
already the strategy employed in the summarization method [14], in which the focal
elements with the smallest mass were aggregated, the sum of their belief numbers being
transfered to their union. Recently, more sophisticated schemes for approximating
a belief structure by clustering its focal elements were proposed independently by
Harmanec [13] and Petit-Renaud and Denceux [21, 22]. The basic mechanism for
obtaining strong inner and outer approximations from a partition of the focal elements
is explained in the sequel.

Let F(m) = {Fy,..., F,} be the set of (crisp or fuzzy) focal elements of m € S(2).
Let P ={I1,...,Ix} be a partition of N,, = {1,...,n}, i.e., a family of subsets of N,,
such that

Nl =0 Vk#¢

and
K
U I = N,.
k=1

An approximation of m may be constructed by transferring each belief number m(F;)
such that i € I, to
G = U F;. (13)
Jely
We then obtain a new BS m}, with (at most) K focal elements F(m}) = {G1,...,Gk}
and
mp(Gr) =Y m(F) k=1,.. K.

i€},



As remarked by Harmanec [13] and Petit-Renaud [21], ., strongly includes m: it is
a strong outer approximation of m according to the terminology of Dubois and Prade
[11].

In the same way, given a partition P’ = {I1,..., I} of Ny, it is possible to define
a strong inner approximation m,, with focal elements

Hy = m F;,
i€y,

and such that
Mp (Hy) =Y m(F) k=1,...,K.

i€l

It is clear that mp, C m.

EXAMPLE 1 Let us consider the following BS on Q = {a, b, c,d, e}, taken from [2]:

Flz{a,c,d} (Fl):O
Fy={c,d}  m(Fz)=0.0
F5={c} m(F3) =0.1
Fy={d,e} m(Fy)=0.0
Fs ={a,b}  m(F5) =05

Let P = {11, I, I3} be the following partition of Nj:

L = {1,4}
I, = {2,3}
I = {5}

The strong outer approximation fﬁ$ induced by P is defined by
G1=FUF,={a,c,d, e}, m5(G1) = m(Fy) + m(Fy,) = 0.35,
Go=FRUF={cd},  mp(Gz2)=m(Fp)+m(F;)=0.15,
G3 = Fy, mh(Gs) = m(F5) = 0.5.

Similarly, the strong inner approximation m,, induced by P is defined by
Hi=FiNF={d}, p(H)=m(R)+m(F) =035
Hy=FnF=1{c}, ip(H) =m(F)+m(F) = 0.15,

Hs = F5, mp(H3) = m(F5) = 0.5.



4.2 Determination of inner and outer clustering approximations

As shown above, given two partitions P and P’ of N,, in K classes, it is possible to
define two BS’s m,, and ﬁ@$ with at most K focal elements, and such that

mP,CmC 73

It may then be wondered how to choose P and P’ so as to obtain “good” approxima-
tions of m. Clearly, 7/7\1:,'; is less specific, or less precise than m. Klir [18] and Harmanec
[13] proposed to measure this loss of precision between m and ﬁ@;g by:

Dia(m. i) 2 3 bel(4) — belp(A),
ACQ

— + Y .
where belp denotes the belief function induced by m;g. The use or this error measure
requires the normality assumption, because weak inclusion of bel in belp then implies

—~+
bel > belp. An alternative measure could be

N ~+
Dp(m,mf) = > plp(A) —pl(4)
ACQ

= 219[bel, () — bel(Q)] + Dyl (m, i),

which remains valid even in case of subnormality of m or its approximation. Both
distance measures are obviously equivalent under the normality assumption.

A different approach to measure the quality of an approximation is to use some
measure of imprecision or “information content” of belief functions. In [11], Dubois
and Prade propose to measure the imprecision of a BS m by its generalized cardinality,
defined as

m| £ Zm ) |3, (14)

where |F;| is the number of elements in Fj, or its sigma-count cardinality if F; is fuzzy.
Since m C i, obviously implies |m| < ||, the following criterion can be used to
measure the quality of the approximation of m by ﬁﬁg:

A(ingp, m) = |imp| — m| = ZZ ) (IGx| = [Fil),

k= l’LEIk

where, as before, I, ..., Ik are the elements of partition P, and Gy, is defined by (13).
Note that, in the above expression, cardinality could be replaced by other measures
of uncertainty, such as nonspecificity [18]. In the sequel, cardinality will be preferred
for its simplicity.

A similar line of reasoning may be used to measure the quality of the inner ap-
proximation. Clearly, mz, is more specific than m. However, this gain of precision
is spurious because it is not supported by any evidence. It should therefore be mini-
mized, which may be achieved by minimizing A(m,my,) = |[m| — [mp,|.



Let Pk (N,,) denote the set of all partitions of N, in K classes. Adopting the
cardinality difference A as a quality criterion, the best inner and outer clustering
K-approximations of m can then be defined as m,_ and M. such that:

A(m,mp ) = Pegl;?Nn) A(m,mp)
and
sk = i )

It is well known that the number S(n, K) of partitions of a set of n elements in K

classes is p
1 K—1i K -n
1) = 7 S0 ()

which rapidly explodes even for moderate values of n [15]. Consequently, an exhaustive
search in the space of all partitions becomes quickly prohibitive, even for small values
of n, and one has to resort to heuristic search techniques. Among these, hill-climbing
strategies, converging to local minima of the objective function, are possible candi-
dates. Such an approach was tested by Harmanec [13], but its efficiency seemed to be
limited for this problem. An alternative technique is to use a hierarchical clustering
algorithm [15], an approach successfully applied by Petit-Renaud [21] and Harmanec
[13], whose “pair approximation” algorithm is implicitly based on the hierarchical
clustering principle. In this approach, pairs of focal elements are grouped sequentially
to decrease the complexity of the belief structure, until the desired number of focal
elements has been reached. A similar idea was proposed by Moral and Salmeron [19]
as an approximate pre-computation step in a Monte Carlo algorithm.

More precisely, this approach may be described, in the case of outer approxima-
tion, as follows. In order to decide which focal elements will be aggregated first,
a distance, or dissimilarity has first to be defined. For each pair (Fj, F;) of focal
elements, transferring the mass m(F;) + m(Fj) to F; U F} increases the cardinality by

0u(Fy, Fy) = [m(Fy) + m(Fy)]|F; U Fj| — m(Fy)|Fi| — m(Fy)|F.

This quantity measures the impact of replacing F; and F}; by their union, and can
therefore be interpreted as a “distance” between these two focal elements. It may also
be written

ou(Fi, Fj) = m(F)(|F; U Fj| — |Fi|) + m(F;)(|F; U Fj| — [F})
= m(F;)du(F; U Fj, F) + m(F;)dg (F; U Fj, Fj),

where dpy(-,-) denotes the Hamming distance. The quantity oy (F;, Fj) can thus be
viewed as a weighted sum of the Hamming distances from F; and F} to their union.
Once a distance between focal elements has been defined, a simple clustering pro-
cedure is then to compute the n(n — 1)/2 distances, aggregate the two closest focal
elements, and iterate until the predefined number of focal elements has been reached
(or until the acceptable quality of approximation has been reached). Needless to say,

10



Table 1: Hierarchical clustering algorithm for computing a strong outer approximation
of a BS with a fixed number K of focal elements.

Store belief structure as list m = {[F;, m(F})],i =1,...,n}

Pick K = maximum number of focal elements.

Initialize ~Dissimilarity matrix dy(F;, F;) for i,5 € {1,...,n}
mhat=m

Iterate Whilen > K,
Find ¢* and j* such that oy (Fj«, Fj+) = Hin Su(Fi, Fy)
i

Delete [Fj«, m(Fj+)] and [Fj=, m(Fj+)] from mhat
Add [Fz* U Fj* , TTL(E*) + m(F’]*)] to mhat
n<n-—1
Update dissimilarity matrix

End While

exactly the same approach may be used to construct an inner approximation, the dis-
tance between F; and F} being then measured by the decrease of cardinality resulting
from the transfer of m(F;) + m(Fj) to the intersection of F; and Fj:

0n(Fi, Fy) = m(F3)| Fy| + m(F5)|Fj| = [m(F:) +m(F;)]|Fi 0 Fyl,

which is also a weighted sum of the Hamming distances from F; and F} to their inter-
section. A detailed description of the algorithm in the case of the outer approximation
is given in Table 1. Note that the stopping criterion used in this algorithm (based on
the number of focal elements) may be replaced by a condition on the approximation
quality, measured, e.g., by the relative increase of cardinality. This variant of the
algorithm is described in Table 2.

REMARK 2 Note that this hierarchical clustering procedure does not yield just a single
partition, but a hierarchy, i.e., a family of partitions linked by inclusion relations (each
aggregation of two focal elements yields a new, finer partition). Denoting ¢, (m) and
cp;(m) the inner and outer approximations of m with k focal elements obtained by
the above method, we have

p1(m) C...C o, 1(m)SmC el (m)C...Cof(m).

If F1, ..., F, denote the focal elements of m, then the BS’s m  and m] with only one
focal element are defined, respectively, as

y (m) (ﬂ F) =1
1

<.
I



Table 2: Hierarchical clustering algorithm for computing a strong outer approximation
of a BS with a maximum approximation error.

Store belief structure as list m = {[F;, m(F})],i =1,...,n}

Pick € = maximum approximation error.

Initialize ~Dissimilarity matrix éu(Fj, F;) for i,j € {1,...,n}
mhat= m, mhatl=m

Iterate Begin Loop
Find ¢* and j* such that oy (Fj«, Fj«) = H;éln Su(Fi, Fy)
i#j

Delete [Fj«, m(F)] and [Fj«, m(F}+)] from mhat1
Add [Fi= U Fj«, m(Fj) + m(Fj«)] to mhat1
Compute approximation error err between m and mhat1
if err > ¢,
stop
else
mhat < mhatl
Update dissimilarity matrix dy
Endif
End Loop

REMARK 3 As shown in Section 3, we have, for any inner and outer approximations
m~ and mT: 51_ <pl < 1;1+, but we do not have in general bel < bel < bel in
the case of subnormal belief structures. However, a bracketing of bel may be obtained
even in this case by noticing that

bel(A) = pl(Q) — pl(A) VA e [0,1]%

from which we can derive the following inequalities for all A € [0, 1]%:

bel(A) < bel(A) < bel(A) (15)
with - .
bel(4) = max[0, pl () —pl (A)] (16)
and
bel(4) = pl (Q) — pl (). (17)

REMARK 4 As a consequence of Remark 1, an outer approximation gog(m) of m is not
necessarily less informative in a strict sense if m(@)) > 0, because the mass assigned
to the empty set may have disappeared in the course of the hierarchical clustering
process. A simple remedy for this problem might be to modify the inner and outer
approximation algorithms, so as to prevent any change to the mass given to the
empty set. However, a similar problem occurs in the case of fuzzy BS’s, with no such
obvious solution. Anyway, our main objective when approximating BS’s is to speed
up the combination process (as will be shown in Section 4.3), and these subnormality
problems need not be considered in this context.

12



Table 3: Construction of strong inner approximations of a BS by hierarchical clustering
of focal elements. The matrices of dissimilarities dn(Fj, F;) between focal elements at
each step are displayed on the right-hand side of the table, the lowest dissimilarity
being shown in bold characters. The two focal elements merged at each step are
marked by an asterisk.

F; m(F;) on(£5, 1))
Step 1 {a,c,d} 0.3 - - - -
* e, d} 005 | 0.3 - -

{c} 01 |06 005 - - -
{d, e} 0.05 | 065 01 02 - -
{a,b} 05 |11 11 1.1 1.1 -

Step 2 {a,c,d} 0.3 - - - -
* fde}l 005 |065 - - -

{a, b} 05 | 1.1 11 - -
* {c} 0.15 | 0.6 0.25 125 -
Step 3 | * {a,c,d} 0.3 - - -
{a,b} 05 | 11 - .
0 02 |09 1 -
Step 4 | *  {a,b} 0.5
* 0.5
’ Step 5 ‘ 0 1 ‘

EXAMPLE 2 Let us consider the construction of an inner hierarchy ¢; (m) C ... C
©,,_1(m) € m for the BS of Example 1. The four steps of the algorithm are described
in Table 3. At the first step, F5 and F3 have the smallest § distance and are replaced
by their intersection F» N F3 = {c}, yielding an inner approximation ¢, (m) with 4
focal elements. In a second step, Fy is grouped with {c} to form the empty set, which
subsequently absorbs F; and F5. The highest level of the hierarchy thus corresponds to
a BS focused on the intersection of the focal elements of m, the empty set in this case.
The final result is summarized in Table 4. Similar results for the outer approximation
procedure are shown in Table 5.

4.3 Approximate combination of BS’s

The above scheme may be used to compute strong inner and outer approximations for
the conjunctive or disjunctive sum of any number of belief structures. Let us assume

that we have N belief structures m!, ..., m", and we want to approximate

m=m'V...vm"

where V € {N,U} is a combination operator. A simple procedure to compute strong
inner and outer approximations of m is combine the BS’s one at a time, and perform
the approximations at each step, for a predefined maximal number K of focal elements.

13



Table 4: Successive strong inner approximations of a belief structure using the hier-
archical clustering approach.

m {c} | {e,d} | {d,e} | {a,c,d} | {a,b}
0.1 | 0.05 0.05 0.3 0.5
¢y (m) {c} {d,e} | {a,c,d} | {a,b}
0.15 0.05 0.3 0.5
P3 (m) 0 {a7 ) d} {a7 b}
0.2 0.3 0.5
©y (m) 0 {a, b}
0.5 0.5
1 (m) 0
1

Table 5: Successive strong outer approximations of a belief structure using the hier-
archical clustering approach.

m {a,c,d} | {c,d} | {c} | {d,e} | {a,b}
0.3 0.05 | 0.10 | 0.05 0.5

w5 (m) {a,c,d} {c} | {d,e} | {a,b}
0.35 0.10 | 0.05 0.5

gp?{(m) {a,c,d} {d,e} | {a,b}
0.45 0.05 0.5

w3 (m) {a,c.d, e} {a, b}
0.5 0.5

o7 (m) {a,b,c,d, e}
1

14



Table 6: Algorithm for the combination of N belief structures, with a predetermined
maximal number K of focal elements.

Store m!,...,m" N belief structures to be combined.

Pick V = conjunctive or disjunctive sum operator

K = maximum number of focal elements.
T

Initialize m~ < m
mt < m!
Iterate For i =2: N,
M~ @r (M~ Vm?)
mt <+ ol (mTVm?)
Next ¢

The corresponding algorithm is described in Table 6. It follows immediately from
Proposition 2 that m~ C m C m™.

Note that, if m is subnormal, normalizing m~ and m™ does not, in general, yield
inner or upper approximations of the normalized form m* of m. However, if m is
crisp, it may be noticed that

. _ bel(A)
bel*(A) = o)
and 1(A)
w4 D
pl (A) = m,

for all A C Q. Consequently, we have, using (15):

pl () —pl (A)

max(0, pl (%) ~pl" (4)] _ bel*(4) < P

SMG) pl (Q)
and
D) ey < B
pl (2) pl (2)

EXAMPLE 3 Let us consider a data fusion experiment in which six sensors deliver six
trapezoidal possibility distributions 7" = (a*, b, ¢",d"),7 = 1,6 about some parameter
of interest in = {1,2,...,32}. For all w € Q, we thus have

0 wé [a®, d']

. ;:Zi w € [a’,b)
(W) = 1 w € b, c)
\ ;ZZ :Z w € [¢,d]

Each of these possibility distributions can be transformed into a consonant belief
structure m'. To take into account one’s knowledge regarding the reliability of the
sensors, each BS m! is discounted by some factor o’. The problem is to approximate
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Table 7: Parameters of the possibility distributions and discounting factors used in
Example 3.

1.55 10.39 16.04 25.58 0.51
0.53 9.21 12.00 23.93 0.87
-0.77 10.03 14.39 24.62 0.72
-3.26 7.03 13.37 2485 0097
4.71 1341 1773 27.66 0.73
-1.49 9.01 13.16 24.65 0.71

09

0.8

0.7r

0.6

05

bel([1,0])

0.4

0.3

0.2

0.1

35

Figure 1: Degree of belief bel({1,...,w}) as a function of w € Q (solid line), as well as
its lower and upper approximations (dashed line) computed using (15), for the data
of example 3.

the conjunctive sum of the six discounted belief structures, using only a small number
of focal elements.

The parameters of the possibility distributions as well as the discounting factors
are shown in Table 7. The final BS m = m!' N...Nm5 contains 139 focal elements.
Figures 1 and 2 show, respectively, bel({1,...,w}) and pl({1,...,w}) as a function of
w € (Q, as well as their lower and upper bounds computed using the above algorithm,
with only K = 15 focal elements.

5 Numerical experiments

Numerical experiments were conducted to verify the effectiveness of the proposed
scheme for BF approximation, as compared to simpler approaches. To provide a
simple reference method against which to compare our approach, we considered the
following variants of the summarization method. Let m be a crisp or fuzzy BS with

16
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Figure 2: Degree of plausibility pl({1,...,w}) as a function of w € € (solid line), as
well as its lower and upper approximations (dashed line), for the data of example 3.

focal elements F1,. .., F, such that m(Fy) > m(F) > ... > m(F,). For any integer
K < n, we define the inner summarization of m with K focal elements as the BS mg
such that

mg(F;) =m(F;) i=1,..., K -1

and . .
mg( () F)= > mF).
i=K+1 i=K+1

The outer summarization mg is obtained using the usual summarization method as

ms(F)=m(F) i=1,...,K—1

and . .
s B)= > mE)
i=K+1 i=K+1

It is clear that mg and ﬁlg are, respectively, inner and outer clustering approximations
of m.

Another reference approximation method that does not generate inner or outer ap-
proximations is Bauer’s D1 algorithm, which was shown in [2] to outperform Tessem’s
k-1-x method [30] as well as the summarization procedure according to several error
criteria based on pignistic probabilities.

Following Tessem [30], Bauer [2] and Harmanec [13], we used a probabilistic model
to randomly generate BS’s on a frame of size |2| = 32. Our model is close to Bauer’s,
except for the generation of focal elements. All three aforementioned authors generate
the focal elements in a purely random fashion (i.e., each non empty subset of €2 has the
same probability of becoming a focal element of m), which induces much more conflict
among focal elements than usually encountered in real applications. To alleviate this
problem, we propose a procedure in which:

17



Table 8: Algorithm for randomly generating crisp belief structures.

Pick n = number of focal elements
q = size of frame.
1, 0 = parameters for the generation of focal elements.
Initialize For i =1:gq, p; + 0.8 x exp[—(i — u)?/(2 x 0°)], Next i
For k=1:n, Fj, + () Next k
r+1
Iterate For k=1:n,
generate g realizations x1,...,z4 of X ~ u[o,l]
For:=1:gq,
if x; < p;, Fp < Fp, U {w,} Endif
Next
generate a realization u from U ~ Upg 1
If k <n,
m(Fy) < w-r
r <1 —m(Fg)
Else
m(Fy) < r
Endif
Next k

1. a probability p; € [0,1] is assigned to each element w; of Q;

2. a focal element F' is constructed by drawing each element w; from €2 with prob-
ability p;;

3. the process is iterated until the desired number of focal elements is reached.

Using this procedure, elements w; with larger probability p; have more chance to be
included in F', and tend to appear more often in the focal elements of the generated
structure m. In our simulations, the p; were defined as

(i — 16)}

A——— =1,...,32.
50

p; = 0.8 exp [—
For generating BS’s with fuzzy focal elements, we used a variant of this method in
which the membership degree pp(w;) of each w; € Q to F is randomly generated
using a uniform distribution on the interval [0, p;], after which F' is normalized. The
complete algorithm used for generating crisp BS’s is summarized in Table 8.

To simulate the common situation in which BF’s independently provided by several
experts are combined, we generated 5 BS’s with n = 10 focal elements on a frame of
size |Q2] = 32 using the above procedure, and combined them using the conjunctive
sum operation. The exact result was compared to the inner and outer approximations
with K = 15 focal elements computed using the procedure described in Table 6, as
well as to the D1 approximation with the same number of focal elements, computed
in a similar way.
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Table 9: Results with crisp BS’s. The three methods are: hierarchical clustering (HC),
summarization (S), and Bauer’s method (D1). The mean and standard deviation (std)
of 50 trials are given for each of the three error criteria (see details in text).

D~ Dt D
mean std mean std mean std
HC 0.095 (0.052) 0.091 (0.061) 0.026 (0.016)
S 0.156 (0.057) 0.183 (0.107) 0.076 (0.044)
D1 0.027 (0.021)

Since degrees of belief are usually of main interest when working with BF’s, we
measured the quality of a pair (m~,m™) of inner and outer approximations of a BS
m as the mean differences between bel(A) and its lower and upper bounds computed
from (15), for all A C Q:

D~ (m,m~,m*) =219 " bel(A) — bel(A) (18)
ACQ

D¥(m, ™, m") =271 " bel(A) — bel(A) (19)
ACQ

with bel(A) and bel(A) defined according to Eqs (16) and (17), respectively.
An additional error measure is obtained by comparing each degree of belief bel(A)
to the center of its approximating interval, which is a meaningful point approximation:

bel(A) + bel(A)
2

Dim, =it =271 37
ACQ

- bel(A)’ : (20)

For the D1 method which only generates a point approximation m, we used

D(m,m) =2"23" ]@(A) ~ bel(A)
ACQ

9

where bel is the belief function induced by m. The exact computation of the above
error measures requires the calculation of 219 degrees of belief, which for | =32 s
not practically feasible. So, each error measure was estimated by an average computed
over 100 randomly selected subsets of (2.

The results are summarized in Tables 9 and 10 for the crisp and fuzzy case, respec-
tively (results for the D1 are not available for the fuzzy case, because the method has
been developed for the approximation of crisp BS’s only). Our hierarchical clustering
method clearly outperforms the summarization method according to all three criteria,
and appears to be roughly equivalent to the D1 method as far as point approximation
of crisp BS’s is concerned. Results for a particular trial in the crisp case are shown
graphically in Figures 3 to 5.
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Table 10: Results with fuzzy BS’s. The three methods are: hierarchical clustering
(HC) and summarization (S). The mean and standard deviation (std) of 50 trials are
given for each of the three error criteria (see details in text).

D~ D+t D
mean std mean std mean std
HC 0.076 (0.021) 0.185 (0.080) 0.057 (0.033)
S 0.089 (0.023) 0.391 (0.126) 0.154 (0.061)
Beliefs — crisp case
1 ; ; ;

0.9}

0.8}
<07
g %%
§ 0.6 <
§ 0.5
g ol T
g 0.4+ X il
g MK -
203 :~ .

0.2 - WM‘ ,&*‘XKX

017 - - hierarchical clustering

L - x summarization
00 “61“’"“ 012 013 014 015 o‘.e 017 018 1
bel(A)

Figure 3: Lower and upper bounds on bel(A) as a function of bel(A) for 100 randomly

selected subsets A of 2.
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Figure 4: Lower and upper bounds on pl(A) as a function of pl(A) for 100 randomly
selected subsets A of (2.
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Figure 5: Point approximations of bel(A) as a function of bel(A) for 100 randomly
selected subsets A of ), using the hierarchical clustering, summarization and D1
methods.
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6 Conclusions

Whereas the belief functions elicited from experts or inferred from observation data
are usually simple, their combination often leads to a proliferation of focal elements
which causes an exponential increase of computation time. A natural way to reduce the
complexity of a BS is to merge “similar” or “unimportant” focal elements, and replace
them by their union or their intersection, leading, respectively, to a strong outer or
inner approximation of the original belief function. This process may be iterated until
a given complexity level (or a given approximation quality) has been reached. When
combining several BS’s, this approach can be applied at each intermediate step of
the computation, which allows to obtain lower and upper bounds on the belief and
plausibility degrees at a reasonable computational cost.

The idea of joining pairs of focal elements for approximation purposes was already
present in the work of Petit-Renaud and Denceux [21], Harmanec [13], and Moral and
Salmeron [19], and the concepts of inner and outer approximations were first proposed
by Dubois and Prade [11]. These two ideas have been combined in this paper, leading
to the notions of inner and outer clustering approximations, which were applied to
both crisp and fuzzy BS’s. A different, but related approach to the simplification
of BS’s consists in reducing the size of the frame €2 by clustering its elements. This
approach, the investigation of which has just started [3], may be a valuable alternative
to the technique presented in this paper, especially when the number of focal elements
is very large.
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