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Abstract

The investigation of uncertainty is of major importance in risk-critical appli-
cations, such as medical image segmentation. Belief function theory, a formal
framework for uncertainty analysis and multiple evidence fusion, has made
significant contributions to medical image segmentation, especially since the
development of deep learning. In this paper, we provide an introduction to
the topic of medical image segmentation methods using belief function the-
ory. We classify the methods according to the fusion step and explain how
information with uncertainty or imprecision is modeled and fused with belief
function theory. In addition, we discuss the challenges and limitations of
present belief function-based medical image segmentation and propose ori-
entations for future research. Future research could investigate both belief
function theory and deep learning to achieve more promising and reliable
segmentation results.
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1. Introduction

The precise delineation of the target lesion on the medical image is essen-
tial for optimizing disease treatment. In clinical routine, this segmentation
is performed manually by physicians and has shortcomings. First, the pixel
or voxel-level segmentation process is time-consuming, especially with 3D
images. Second, the segmentation performances are limited by the quality of
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medical images, the difficulty of the disease, and the domain knowledge of the
experts. Thus, physicians always diagnose a disease by summarizing multiple
sources of information. The advances in medical imaging machines and tech-
nology now allow us to obtain medical images in several modalities, such as
Magnetic Resonance Imaging (MRI)/Positron Emission Tomography(PET),
multi-sequence MRI, or PET/ Computed Tomography (CT). The different
modalities provide different information about cancer and other abnormal-
ities in the human body. Combining these modalities makes it possible to
segment the organ and lesion region in a reliable way.

Classical medical image segmentation approaches [1, 2, 3, 4, 5, 6, 7] focus
on low-level feature analysis, e.g., gray and textual features or hand-crafted
features. Those approaches have limitations in terms of segmentation accu-
racy, efficiency, and reliability, which creates a big gap between experimental
performance and clinical application. More recently, the success of deep
learning in the medical domain brought a lot of contributions to medical im-
age segmentation tasks [8, 9, 10, 11, 12, 13, 14]. It first solves the segmenta-
tion efficiency problem, allowing for large-scale medical image segmentation,
which contributes greatly to its accuracy.

Despite the excellent performance of deep learning-based medical image
segmentation methods, doubts about the reliability of the segmentation re-
sults still remain [15], which explains why their application to therapeutic
decision-making for complex oncological cases is still limited. A reliable seg-
mentation model should be well calibrated, i.e., its confidence should match
its accuracy. Figure 1 shows an example of an over-confidence segmenta-
tion model that outputs a result with high segmentation accuracy and low
confidence. Therefore, a trustworthy representation of uncertainty is desir-
able and should be considered a key feature of any deep learning method,
especially in safety-critical application domains, e.g., medical image segmen-
tation. In general, deep models have two sources of uncertainty: aleatory
uncertainty and epistemic uncertainty [16, 17]. Aleatory uncertainty refers
to the notion of randomness, i.e., the variability in an experiment’s outcome
due to inherently random effects. In contrast, epistemic uncertainty refers to
uncertainty caused by a lack of knowledge (ignorance) about the best model,
i.e., the ignorance of the learning algorithm or decision-maker. As opposed to
uncertainty caused by randomness, uncertainty caused by ignorance can be
reduced based on additional information or the design of a suitable learning
algorithm.

In medical image segmentation, the uncertainty can be decomposed into
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Figure 1: Example of a reliability diagram of an overconfidence model.

x

y

confidence

ac
cu
ra
cy

y=x

three levels [18]. Pixel/voxel-level uncertainty is useful for interaction with
physicians by providing additional guidance for correction segmentation re-
sults. Instance-level is the uncertainty aggregate by pixel/voxel-level un-
certainty, which can be used to reduce the false discovery rate. Subject-
level uncertainty offers information on whether the segmentation model is
reliable. Early approaches to quantify the segmentation uncertainty quan-
tification were based on Bayesian theory [19, 20]. The popularity of deep
segmentation models has revived research on model uncertainty estimation
and has given rise to specific methods such as variational dropout [21, 22],
and model ensembles [18, 23]. However, probabilistic segmentation models
capture knowledge in terms of a single probability distribution and cannot
distinguish between aleatory and epistemic uncertainty, which limits the ex-
ploitation of the results. In this paper, we review a different approach to
uncertainty quantification based on belief function theory (BFT) [24, 25, 26]
with a specific focus on medical image segmentation. BFT can model epis-
temic uncertainty directly, which makes it possible to explore the possibility
of improving the model’s reliability based on the existing uncertainty. Re-
searchers from the medical image segmentation community have been ac-
tively involved in the research on BFT for handling uncertain information
modeling and fusion, an approach that has been shown to be very promising
for segmenting imperfect medical images [27, 28, 29].

The rest of the paper will provide an overview of the BFT-based medical
image segmentation methods. Recent review work on medical image segmen-
tation focus on deep learning-based methods [30, 31, 32], with emphasis on
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deep feature extraction [33], multimodal information fusion [34], embracing
imperfect dataset [35], etc. This paper will focus on discussing:

(1) how imperfect medical images can be modeled by assigning them the
degree of belief and uncertainty directly;

(2) how multiple sources of evidence (with conflict) can be fused by BFT;

(3) how the above advantages can be merged with the popular deep learn-
ing methods to get an accurate and reliable deep segmentation model.

To the best of our knowledge, this is the first review that summarizes the ex-
isting medical image segmentation methods with uncertainty quantification
and multiple evidence fusion. We hope this review will raise the community’s
awareness of the existing solutions for imperfect medical image data segmen-
tation and further inspire researchers to explore the possibility of exploiting
the benefits of both BFT and deep learning to make automatic segmentation
methods reliable and interpretable.

We organize this paper as follows: Section 2 summarizes the develop-
ment of existing medical image segmentation methods and their limitations.
Section 3 introduces the fundamentals of BFT. Section 4 introduces the BFT-
based methods to model uncertainty, with Sections 4.1 and 4.2 present super-
vised and unsupervised methods to model uncertainty, respectively. Section
5 gives an overview of BFT-based medical image segmentation methods with
Sections 5.1 and 5.2 present the BFT-based medical image segmentation
with, respectively, single and multiple classifiers or clustering algorithms.
Section 6 concludes this review and gives some potential research directions.

Search criterion. To identify related contributions, we mainly retrieved
papers containing “medical image segmentation” and “belief function theory”
or “Dempster–Shafer theory” or “evidence theory” in the title or abstract
from IEEE, Springer, PubMed, Google Scholar, and ScienceDirect. Addi-
tionally, conference proceedings for NIPS, CVPR, ECCV, ICCV, MICCAI,
and ISBI were searched based on the titles of papers. Papers that do not
primarily focus on medical image segmentation problems were excluded.

2. Medical image segmentation

Medical image segmentation involves the extraction of regions of interest
(ROI) from 2D/3D image data (e.g., pathological or optical imaging with
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color mages, MRI, PET, and CT scans. The main goal of segmenting medi-
cal images is to identify areas of cancer and other abnormalities in the human
body, for example, brain tissue and tumor segmentation, the interior of the
human body (such as lung, spinal canal, and vertebrae), skin and cell le-
sion segmentation with optical imaging with color. Previously, segmenting
medical images was time-consuming for physicians, while recent advances
in machine learning techniques, especially deep learning, make it easier to
perform routine tasks.

2.1. Traditional approaches to medical images segmentation

Early image segmentation methods used the information provided by the
image itself, e.g., gray, textual, contrast and histogram features, and segment-
ing ROI-based threshold [1], edge detection [2], graph partitioning [3], and
clustering [4]. More recently, researchers have been interested in hard-crafted
features, e.g., Scale Invariant Feature Transform (SIFT) [36], Features from
Accelerated Segment Test (FAST) [37] and Geometric hashing [38], and seg-
menting ROI using machine learning-based methods such as support vector
machine (SVM) [5], random forest (RF) [6] and logistic regression (LR) [7].
Those methods have attracted great interest for a while, but their accuracy
cannot meet clinical application requirements.

2.2. Deep learning-based methods

Long et al. [39] were the first authors to show that a fully convolutional
network (FCN) could be trained end-to-end for semantic segmentation, ex-
ceeding the state-of-the-art when the paper was published in 2015. UNet [8],
a successful modification and extension of FCN, has become the most pop-
ular model for medical image segmentation in recent years. Based on UNet,
research for deep learning-based medical image segmentation can be summa-
rized in two major directions: feature representation and model optimization.

To better represent input information, well-designed DNNs with encoder-
decoder architecture (e.g., 3D UNet [40], Res-UNet [41], Dense-UNet [42],
MultiResUNet [43], Deep3D-UNet [44], V-Net [45], nnUNet [10]) have been
proposed and have achieved good performance. Recently, popular ideas such
as, e.g., residual connection [46], attention mechanism [11] and transformer
mechanism [12, 13, 14], have achieved promising performance with DNNs,
which also led to the contributions in medical image domain, e.g., Residual-
UNet [8, 41], Attention UNet [47, 48] and Transformer UNet [49, 50, 51].
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As for the optimization of the DNN-based medical image segmentation
models, researchers in the medical image segmentation domain tend to use
the Dice Loss or a combination of Dice loss and cross-entropy as a total
loss [45] instead of the classical loss functions (e.g., Cross-Entropy Loss, Mean
Square Loss) to handle the unbalanced label distribution problem, with more
focuses on mining the foreground area. Based on the Dice loss, some variants,
such as the Generalized Dice Loss [52], Tversky’s Loss [53] and Contrastive
Loss [54], have been proposed to further solve the unbalanced label problem.

Dice score, Sensitivity, and Precision are the most commonly used evalu-
ation criteria to assess the quality of deep medical image segmentation meth-
ods. They are defined as follows:

Dice(P, T ) =
2 × TP

FP + 2 × TP + FN
, (1)

Sensitivity(P, T ) =
TP

TP + FN
, (2)

Precision(P, T ) =
TP

TP + FP
, (3)

where TP , FP , and FN denote, respectively, the numbers of true positive,
false positive, and false negative voxels. (See Figure 2). The Dice score,
considering the intersection region of the predicted tumor region and the
actual tumor region, is a global measure of segmentation performance. It is
the most popular evaluation criterion for medical image segmentation tasks.
Sensitivity is the proportion, among actual tumor voxels, of voxels correctly
predicted as tumors. Precision is the proportion, among predicted tumor
voxels, of voxels that actually belong to the tumor region. These two criteria,
thus, have to be considered jointly. A more comprehensive introduction to
the evaluation criteria for medical image segmentation can be found in [55].

2.3. Limitations

The above research focuses on improving the accuracy of segmentation
performance under the assumption of adequate and perfect input informa-
tion and accurate and appropriate prior knowledge. However, in reality, es-
pecially in the medical image segmentation domain, both the input informa-
tion and prior knowledge are imperfect and contain a degree of uncertainty.
Figure 3a illustrates uncertain information taking a brain tumor segmen-
tation task as an example. Let X be the type of tumor of a voxel, and
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Figure 2: Interpretation of the true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) used for the definition of evaluation criteria.
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Figure 3: (a) Example of a segmentation task with uncertain information. (b) Example of
a segmentation task with multiple sources of information (c) Example of a segmentation
task with conflicting sources of information
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Ω = {ED,ET,NCR,Others}, corresponding to the possibilities: edema,
enhancing tumor, necrotic core, and others. Let us assume that a specialist
provides the information X ∈ {ED,ET}, but there is a probability p = 0.1
that the information is unreliable. How to represent this situation by a prob-
ability function is a challenging problem. Another situation is when we have
multiple information sources tainted with uncertainty, as illustrated in Fig-
ure 3b; how can we model that kind of uncertainty and fuse the evidence?
Furthermore, if the information sources are in conflict and contain uncer-
tainty as well, i.e., Figure 3c, it is difficult to represent and summarize that
information by probabilistic models. Thanks to BFT, these challenges can be
addressed by designing new frameworks for modeling, reasoning, and fusing
imperfect (uncertain, imprecise) information. In the next section, we will
give a brief introduction to BFT.

7



Figure 4: An example of three class assignments: (1) Probabilistic model and (2) BFT
model. In contrast with the probabilistic model, the BFT model can quantify uncertainty
and assign it to the focal set {a, b}, {a, c}, {b, c} and {a, b, c} to represent its uncertainty
or ignorance (here, m is the evidence (mass function) about a variable ω taking values in
Ω, which will be introduced in Section 3.1).
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3. Fundamentals of belief function theory

BFT is a generalization of Bayesian theory, but it is more flexible than the
Bayesian approach and suitable under weaker conditions [56], i.e., imperfect
(uncertain, imprecise, partial) information. Figure 4 shows the difference
between a probabilistic model and a BFT model when applied to a three-
class classification task (Ω = {a, b, c}). For input x, the probabilistic model
outputs the probability that x belongs to classes a, b, and c as 0.4, 0.5, and
0.1, respectively. In contrast, the BFT model can represent degrees of belief
that x belongs specifically to any subset of Ω, e.g., {a, b}, {b, c}. Compared
with the probabilistic model, the BFT model has more degrees of freedom
to represent uncertainty.

In the past decades, BFT has generated considerable interest and has
had great success in diverse fields, including uncertain reasoning [57, 58,
59, 60, 61], classification [62, 63, 64] and clustering [65, 66], etc. It was first
originated by Dempster [24] in the context of statistical inference in 1968 and
was later formalized by Shafer [25] as a theory of evidence in 1976. In 1986,
Dubois and Prade proposed an approach to the computerized processing of
uncertainty [67]. In 1978, Yager proposed a new combination rule of the
belief function framework [58]. In 1990, BFT was further popularized and
developed by Smets [57] as the ’Transferable Belief Model’ with the pignistic
transformation for decision making. Since then, booming developments have
been made. More detailed information about the development of BFT in
40 years can be found in [68].

We will first briefly introduce the basic notions of BFT in Section 3.1,
which includes evidence representation (mass functions, belief, and plausibil-
ity functions). Second, we introduce Dempster’s combination rule to explain
the operations of multiple sources of evidence in Section 3.2. Third, we intro-
duce the discounting operation for unreliable sources in Section 3.3. Fourth,
we introduce some commonly used decision-making methods in Section 3.4.

3.1. Representation of evidence

Let Ω = {ω1, ω2, . . . , ωC} be a finite set of all possible hypotheses about
some problem, called the frame of discernment. Evidence about a variable ω
taking values in Ω can be represented by a mass function m, from the power
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set 2Ω to [0, 1], such that ∑
A⊆Ω

m(A) = 1, (4a)

m(∅) = 0. (4b)

Mapping m can also be called basic belief assignment (BBA). The methods
used in medical image segmentation to generate mass functions will be in-
troduced in Section 4. Each subset A ⊆ Ω such that m(A) > 0 is called a
focal set of m. The mass m(Ω) represents the degree of ignorance about the
problem. If all focal sets are singletons, then m is said to be Bayesian. It
is equivalent to a probability distribution. The information provided by a
mass function m can be represented by a belief function Bel or a plausibility
function Pl from 2Ω to [0, 1] defined, respectively, as

Bel(A) =
∑
B⊆A

m(B) (5)

and
Pl(A) =

∑
B∩A ̸=∅

m(B) = 1 −Bel(Ā), (6)

for all A ⊆ Ω. The quantity Bel(A) can be interpreted as a degree of support
to A, while Pl(A) can be interpreted as a measure of lack of support given
to the complement of A.

3.2. Dempster’s rule

In BFT, the belief about a certain question is elaborated by aggregating
different belief functions over the same frame of discernment. Given two
mass functions m1 and m2 derived from two independent items of evidence,
the final belief that supports A can be obtained by combining m1 and m2

with Dempster’s rule [25] defined as

(m1 ⊕m2)(A) =
1

1 − κ

∑
B∩D=A

m1(B)m2(D), (7)

for all A ⊆ Ω, A ̸= ∅, and (m1 ⊕m2)(∅) = 0. The coefficient κ is the degree
of conflict between m1 and m2, it is defined as

κ =
∑

B∩D=∅

m1(B)m2(D). (8)
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3.3. Discounting

In (8), if m1 and m2 are logically contradictory, we cannot use Dempster’s
rule to combine them. Discounting strategies can be used to combine highly
conflicting evidence [25, 69, 70]. Let m be a mass function on Ω and ξ a
coefficient in [0, 1]. The discounting operation [25] with the discount rate ξ
transforms m into a weaker, less informative mass function defined as follows:

ξm(A) = (1 − ξ)m(A), ∀A ⊂ Ω, (9a)
ξm(Ω) = (1 − ξ)m(Ω) + ξ. (9b)

Coefficient 1 − ξ represents the degree of belief that the source generating
m is reliable. In the medical domain, the discounting operation is widely
used in multimodal evidence fusion as it makes it possible to consider source
reliability in the fusion process.

3.4. Decision-making

After combining all the available evidence in the form of a mass function,
it is necessary to make a decision. In this section, we introduce some classical
BFT-based decision-making methods.

Upper and lower expected utilities. Let u be a utility function. The lower
and upper expectations of u with respect to m are defined, respectively, as
the averages of the minima and the maxima of u within each focal set of m:

Em(u) =
∑
A⊆Ω

m(A) min
ω∈A

u(ω), (10a)

Em(u) =
∑
A⊆Ω

m(A) max
ω∈A

u(ω). (10b)

When m is Bayesian, Em(u) = Em(u). If m is logical with focal set A,
then Em(u) and Em(u) are, respectively, the minimum and maximum of u
in A. The lower or upper expectations can be chosen for the final decision
according to the given task and decision-maker’s attitude.
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Figure 5: Overview of BBA methods.
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Pignistic criterion. In 1990, Smets proposed a pignistic transformation [57]
that distributes each mass of belief distributed equally among the elements
of Ω. The pignistic probability distribution is defined as

BetP (ω) =
∑
ω∈A

m(A)

| A |
, ∀ω ∈ Ω, (11)

where |A| denotes the cardinality of A ⊆ Ω.
Besides the above methods, there are various decision-making methods

proposed for BFT, such as Generalized OWA criterion [71], Generalized mini-
max regret [72], Generalized divergence [73], etc. More details about decision-
making with BFT can be found in the review paper [74].

4. Methods to generate mass functions

To model segmentation uncertainty, the first step is to generate mass
functions. In this section, we introduce the BBA methods applied to medical
image segmentation. Figure 5 is an overview of BBA methods. In general,
those methods can be separated into supervised and unsupervised methods
according to whether annotations are used to optimize the parameters of
BBA models or not.

4.1. Supervised BBA methods

Supervised BBA methods can be classified into two categories. One is
the likelihood-based methods, such as Shafer’s model [25] and Appriou’s
model [75, 76]. The other category is composed of distance-based methods,
such as the evidential KNN rule [62], the evidential neural network classi-
fier [63] and Radial basis function networks [74]. It should be noted that
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the distance-based BBA methods can easily be merged with popular deep
segmentation models and have shown promising results [29, 77].

4.1.1. Likelihood-based BBA methods

Shafer’s model. In [25], Shafer proposed a likelihood-based evidential model
to calculate mass functions. Assuming that conditional density functions
f(x | ωc) are known, then the conditional likelihood associated with the
pattern X is defined by ℓ(ωc | x) = f(x | ωc). The mass functions are
defined according to the knowledge of all hypotheses ω1, . . . , ωC . Firstly, the
plausibility of a simple hypothesis ωc is proportional to its likelihood. The
plausibility is thus given by

Pl({ωc}) = ℏ · ℓ(ωc | x), ∀ωc ∈ Ω, (12)

where ℏ is a normalization factor with ℏ = 1/maxω∈Ω ℓ(ω|x). The plausibility
of a set A is thus given by

Pl(A) = ℏ · max
ωc∈A

ℓ(ωc | x). (13)

Appriou’s model. Same as Shafer’s one, Appriou [75, 76] proposed two likelihood-
based models to calculate mass functions with the frame of discernment
Ω = {ωc,¬ωc}. For the first model, the mass functions are defined by

m({ωc}) = 0, (14a)

m({¬ωc}) = αc(1 − ℏ · ℓ(ωc | x)), (14b)

m(Ω) = 1 − αc(1 − ℏ · ℓ(ωc | x)), (14c)

where αc is a reliability factor depending on the hypothesis ωc and on the
source information. The second model is defined as

m({ωc}) = αc · ℏ · ℓ(ωc | x)/(1 + ℏ · ℓ(ωc | x)), (15a)

m({¬ωc}) = αc/(1 + ℏ · ℓ(ωc | x)), (15b)

m(Ω) = 1 − αc. (15c)

4.1.2. Distance-based BBA methods

Evidential KNN (EKNN) rule. In [62], Denœux proposed a distance-based
KNN classifier for classification tasks. Let NK(x) denote the set of the K
nearest neighbors of x in learning set Z. Each xi ∈ NK(x) is considered as
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a piece of evidence regarding the class label of x. The strength of evidence
decreases with the distance between x and xi. The evidence of (xi, yi) support
class c is represented by

mi({ωc}) = φc(di)yic, 1 ≤ c ≤ C, (16a)

mi(Ω) = 1 − φc(di), (16b)

where di is the distance between x and xi, which can be Euclidean or other
distance function; and yic = 1 if yi = ωc and yic = 0 otherwise. Function φc

is defined as
φc(d) = α exp(−γd2), (17)

where α and γ are two tuning parameters. The evidence of the K nearest
neighbors of x is fused by Dempster’s rule:

m =
⊕

xi∈NK(x)

mi. (18)

The final decision is made according to maximum plausibility. The de-
tailed optimization of these parameters is described in [78]. Based on this
first work, Denœux et al. proposed the contextual discounting evidential
KNN rule [70] with partially supervised learning to address the annotation
limitation problem.

Evidential neural network (ENN). The success of machine learning encour-
aged the exploration of applying belief function theory with learning meth-
ods. In [63], Denœux proposed an ENN classifier in which mass functions
are computed based on distances to prototypes.

The ENN classifier is composed of an input layer of H neurons, two
hidden layers, and an output layer. The first input layer is composed of I
units, whose weights vectors are prototypes p1, . . . , pI in input space. The
activation of unit i in the prototype layer is

si = αi exp(−γid
2
i ), (19)

where di = |x− pi| is the Euclidean distance between input vector x and
prototype pi, γi > 0 is a scale parameter, and αi ∈ [0, 1] is an additional pa-
rameter. The second hidden layer computes mass functions mi representing
the evidence of each prototype pi, using the following equations:

mi({ωc}) = uicsi, c = 1, . . . , C (20a)

mi(Ω) = 1 − si, (20b)
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where uic is the membership degree of prototype i to class ωc, and
∑C

c=1 uic =
1. Finally, the third layer combines the I mass functions m1, . . . ,mI using
Dempster’s rule. The output mass function m =

⊕I
i=1mi is a discounted

Bayesian mass function that summarizes the evidence of the I prototypes.

Radial basis function (RBF) network. In [77], Huang et al. confirmed that
RBF network can be an alternative approach to ENN based on the aggre-
gation of weights of evidence. Consider an RBF network with I prototype
(hidden) units. The activation of hidden unit i is

si = exp(−γid
2
i ), (21)

where, di = |x− pi| is the Euclidean distance between input vector x and
prototype pi, and γi > 0 is a scale parameter. Here we only show an example
of binary classification task C = 2 and Ω = {ω1, ω2} (The multi-class example
can be found in [79]). Let vi be the weight of the connection between hidden
unit i and the output unit, and let wi = sivi be the product of the output
of unit i and weight vi. The quantities wi can be interpreted as weights of
evidence for class ω1 or ω2, depending on the sign of vi. To each prototype i
can be associated with the following simple mass function:

mi = {ω1}w
+
i ⊕ {ω2}w

−
i ,

where {ω}w is the notation for the simple mass function focussed on {ω}
with weight of evidence w, and w+

i , w−
i denote, respectively, the positive and

negative parts of wi. Combining the evidence of all prototypes in favor of ω1

or ω2 by Dempster’s rule, we get the mass function m =
⊕I

i=1 mi with the
following expression:

m({ω1}) =
[1 − exp(−w+)] exp(−w−)

1 − κ
, (22a)

m({ω2}) =
[1 − exp(−w−)] exp(−w+)

1 − κ
, (22b)

m(Ω) =
exp(−w+ − w−)

1 − κ
=

exp(−
∑I

i=1 |wi|)
1 − κ

, (22c)

where κ is the degree of conflict between {ω1}w
+

and {ω2}w
−

given by

κ = [1 − exp(−w+)][1 − exp(−w−)]. (23)

15



4.2. Unsupervised BBA methods

The goal of unsupervised BBA methods is to generate mass functions
without any label information. In earlier BBA studies, Fuzzy C-means
(FCM) [80] was the most popular algorithm used to generate membership
values (MVs). Based on MVs, the authors can obtain mass functions accord-
ing to some domain knowledge, e.g., threshold [81], or user-specific parame-
ters [82]. The sigmoid and one-sided Gaussian function can also be used to
generate MVs [83]. The notion of credal partition [65], an extension of fuzzy
partition, enables us to generate mass functions directly [84]. Besides these
two popular BBA methods, mass functions can also be generated from the
Gaussian distribution of the input to the cluster center [85].

4.2.1. MVs-based BBA methods

FCM. Considering that there are some BFT-based methods that use FCM
to generate MVs, we introduce it here to offer a basic view for readers.
With FCM, any x has a set of coefficients wk(x) representing the degree of
membership in the kth cluster. The centroid of a cluster is the mean of all
points, weighted by the m-th power of their membership degree,

ck =

∑
x wk(x)mx∑
x wk(x)m

, (24)

where m is the hyper-parameter that controls how fuzzy the cluster will be.
The higher it is, the fuzzier. Given a finite set of data, the FCM algorithm
returns a list of cluster centers P = {c1, . . . , cC} and a partition matrix
W = (ωij), i = 1, . . . , N, j = 1, . . . , C,

wij =
1∑C

k=1

(
∥xi−cj∥
∥xi−cc∥

) 2
m−1

, (25)

where wij, is the degree of membership of xi to cluster cj. The objective
function is defined as

arg max
P

N∑
i=1

C∑
j=1

wm
ij ∥xi − cj∥ . (26)

Zhu’s model. In [81], Zhu et al. proposed a method to determine mass func-
tions using FCM and neighborhood information. The mass assigned to simple
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Figure 6: (a) Construction of triangular membership functions and (b) maximum ambi-
guity case: υc(g) = υc+1(g) = 0.5.
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hypothesis {ωc} is directly obtained from the filtered membership functions
υc(g) of the gray level g(x, y) to cluster c as m({ωc}) = υc(g). For a given
gray level, the piece of evidence of belonging to the cluster c is, thus, di-
rectly given by its degree of membership to the same cluster. If there is a
high ambiguity in assigning a gray level g(x, y) to cluster c or c + 1, that
is, |υc(g) − υc+1(g)| < ε, where ε is a thresholding value, then a double hy-
pothesis is formed. The value of the threshold ε is chosen depending on the
application. The authors suggested fixing ε at 0.1. Once the double hypothe-
ses are formed, their associated mass is calculated according to the following
formula:

m({ωc, ωc+1}) =
S[υc(g), υc+1(g)]

2Smax

, (27)

where S represents the surface of a triangle and Smax is the maximum of
ambiguity. The surface of such a triangle depends both on the degrees of the
membership functions of g(x, y) to clusters c and c + 1 and on the conflicts
between these MVs. Figure 6a shows how the triangle is constructed and how
the mass of double hypotheses {ωc, ωc+1} is derived from the surface of the
triangle. The vertical axis of Figure 6a represents the MVs. The surfaces of
the two dotted triangles define two so-called triangular membership functions
corresponding to classes c and c+1. The two triangles are isosceles and have
the same length for their bases. The heights of the triangles are equal to
m({ωc}) and m({ωc+1}), respectively. The overlapping surface S of the two
triangles represents the MV to the double hypothesis {ωc, ωc+1}. Therefore,
the mass value attributed to the double hypothesis {ωc, ωc+1} can be directly
calculated from the surface S. Figure 6b shows the condition of the maximum
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ambiguity case.

Ratio MV (RMV) transformation. In [82], Ghasemi et al. proposed a ratio
membership value transformation method to calculate mass functions. The
FCM algorithm was first used to generate MVs fωc for each pixel. Then
the MVs are used to build the mass functions. For this purpose, the three
ratios of the available MVs are calculated, corresponding to three situations:
no-uncertainty (NU), semi-uncertainty (SU), and perfect-uncertainty (PU).
First, PU is a critical situation in which the RMVs are smaller than α,
then the mass function is calculated as m({ω1}) = m({ω2}) = m(Ω) =
(fω1 + fω2)/3. Second, two thresholds α and β with α = 1.5 and β = 3 are
selected to control the boundary between SU and PU, and between NU and
SU, separately. For example, with

fω1 = 0.18, fω2 = 0.81, RMV = fω1/fω2 = 4.5, RMV > β,

the two MVs fall in the NU category. If

fω1 = 0.25, fω2 = 0.65, RMV = fω1/fω2 = 2.6, α < RMV < β,

the two MVs are in the SU category. The mass functions are calculated as

m({ω1}) = fω1 −
λω1,ω2

2
, (28a)

m({ω2}) = fω2 −
λω1,ω2

2
, (28b)

m(Ω) = λω1,ω2 , (28c)

where λ is an uncertainty distance value defined as λω1,ω2 =
|fω1−fω2|

β−α
.

4.2.2. Evidential C-means (ECM)

In [65], Denœux et al. proposed an evidential clustering algorithm, called
EVCLUS, based on the notion of credal partition, which extends the existing
concepts of hard, fuzzy (probabilistic), and possibilistic partition by allocat-
ing to each object a “mass of belief”, not only to single clusters but also to
any subsets of Ω = {ω1, . . . , ωC}.
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A m1(A) m2(A) m3(A) m4(A) m5(A)
{∅} 1 0 0 0 0
{a} 0 0 1 0.5 0.6
{b} 0 0 0 0.3 0.4
{a, b} 0 1 0 0.2 0

Table 1: Example of credal partition

Credal partition. Assuming there is a collection of five objects for two classes,
mass functions for each source are given in Table 1. They represent different
situations: the mass function of object 1 indicates strong evidence that the
class of object 1 does not lie in Ω; the class of object 2 is completely unknown,
and the class of object 3 is known with certainty; the cases of objects 4 and 5
correspond to situations of partial knowledge (m5 is Bayesian). The EVCLUS
algorithm generates a credal partition for dissimilarity data by minimizing a
cost function.

Evidential C-Means (ECM). The ECM algorithm [84] is another method for
generating a credal partition from data. In ECM, a cluster is represented by
a prototype pc. For each non-empty set Aj ⊆ Ω, a prototype p̄j is defined
as the center of mass of the prototypes pc such that ωc ∈ Aj. Then the
non-empty focal set is defined as F = {A1, . . . , Af} ⊆ 2Ω \ {∅}. Deriving
a credal partition from object data implies determining, for each object xi,
the quantities mij = mi(Aj), Ai ̸= ∅, Aj ⊆ Ω, in such a way that mij is low
(resp. high) when the distance between xi and the focal set p̄j is high (resp.
low). The distance between an object and any nonempty subset of Ω is then
defined by

d2ij = ∥xi − p̄j∥2 . (29)

4.2.3. Gaussian distribution (GD)-based model

Besides the FCM-based and credal partition-based BBA method, the
mass functions can also be generated from GD [85]. The mass of simple
hypotheses {ωc} can be obtained from the assumption of GD according to
the information xi of a pixel from an input image to cluster c as follows:

m({ωc}) =
1

σc

√
2π

exp
−(xi − µc)

2

2σ2
c

, (30)
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where µc and σ2
c represent, respectively, the mean and the variance of the

cluster c, which can be estimated by

µc =
1

nc

nc∑
i=1

xi, (31)

σ2
c =

1

nc

nc∑
i=1

(xi − µc)
2, (32)

where nc is the number of pixels in the cluster c. The mass of multiple
hypotheses {ω1, ω2, . . . , ωT} is determined as

m({ω1, ω2, . . . , ωT}) =
1

σt

√
2π

exp
−(xi − µt)

2

2σ2
t

, (33)

where µt = 1
T

∑T
i=1 µi, σt = max(σ1, σ2, . . . , σT ), 2 ≤ T ≤ C, C is the number

of clusters.

4.2.4. Binary frames of Discernment (BFOD)

Under the assumption that the membership value is available, Safranek
et al. introduced a BFOD-based BBA method [83] to transform membership
values into mass functions. The BFOD is constructed as Ω = {ω,¬ω} with
a function cf(ν), taking values in [0, 1] that assigns confidence factors. The
sigmoid and one-sided Gaussian functions are the most appropriate func-
tions for defining cf(ν) according to the authors. Once a confidence value
is obtained, the transformation into mass functions can be accomplished by
defining appropriate transfer functions:

m({ω}) =
B

1 − A
cf(ν) − AB

1 − A
, (34a)

m({¬ω}) =
−B

1 − A
cf(ν) + B, (34b)

m(Ω) = 1 −m({ω}) −m({¬ω}), (34c)

where A and B are user-specific parameters. In (34a) and (34b), the left-
hand side stays clamped at zero when the right-hand side goes negative. The
parameter A is the confidence-factor axis intercept of the curve that depicts
the dependence of m({ω}) on confidence factors, and B is the maximum
support value assigned to m({ω}) or m({¬ω}).
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4.3. Discussion

If segmentation labels are available, we suggest using the supervised
BBA methods to generate mass functions, especially the distance-based BBA
methods, because these methods can be merged easily with the popular deep
learning methods and construct a learnable end-to-end deep segmentation
model. An example of this approach can be found in [77], where the authors
first apply the idea of merging the ENN or RBF model with a deep medical
image segmentation model by mapping feature vectors into mass functions
instead of using the softmax transformation to map them into probabilities.

If the segmentation labels are not available or only partially available, we
can still generate mass functions using unsupervised BBA methods, e.g., us-
ing ECM for tumor segmentation [86]. To our best knowledge, there is
no research on combining unsupervised BBA methods with deep segmen-
tation models even though some studies already make the end-to-end neural
network-based evidential clustering model possible, e.g., [87]. We believe it
is a good choice for researchers who work on unlabeled datasets and wish
to directly quantify segmentation uncertainty, they can consider applying
unsupervised BBA methods to deep segmentation models.

5. BFT-based medical image segmentation methods

To summarize the BFT-based medical image segmentation methods, we
can either classify them by the input modality of the images or by the specific
clinical application. Figure 7a shows the proportion of types of medical im-
ages applied in the segmentation task and Figure 7b displays the proportions
of application in the medical image segmentation task.

We presented the common BBA methods to generate mass functions for
medical images in Section 4. The most interesting way to analyze those
methods is to classify them according to the stage at which they fuse mass
functions. Figure 8 gives an overview of the BFT-based medical image seg-
mentation methods classified according to the fusion operation they perform.
We first classify methods by the number of classifiers/clusterers, i.e., whether
the fusion of mass functions is performed at the classifiers/clusterers level.
Then we consider the number of input modalities, i.e., whether the fusion of
mass functions is performed at the modality level. It should be noted that
the medical image segmentation with single modal input and single clas-
sifier/clusterer can also have a fusion operation, which is performed at the
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Figure 7: (a) Distribution of input modalities of medical images, (b) Distribution of specific
medical applications.

(a) (b)
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Figure 8: Overview of BFT-based medical image segmentation methods.
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pixel/voxel level. Figure 9 gives the proportions of the BFT-based segmenta-
tion methods if multiple classifiers/clusterers or multimodal medical images
are used. 76% of the methods use a single classifier or cluster. Among these
methods, 18% take single modal medical images as input, and 58% take
multimodal medical images as input. The remaining 24% of the methods
use several classifiers or clusterers. Among those methods, 21% take single
modal medical images as input, against 3% for multimodal medical images.
In Sections 5.1 and 5.2 we give more details about the fusion operations and
discuss their performances.

5.1. BFT-based medical image segmentation with a single classifier or clus-
terer

The medical image segmentation methods summarized in this section
focus on using a single classifier or clusterer. To simplify the introduction,
we classify them into single-modality and multimodal inputs and introduce
them in Sections 5.1.1 and 5.1.2, respectively.

5.1.1. Single-modality evidence fusion

Figure 10 shows the framework of single-modality evidence fusion with a
single classifier (we only take the classifier as an example in the rest of our
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Figure 9: The composition of the proportion of modalities and classifiers/clusterers.

paper to simplify the explanation). The inputs of the framework are single-
modality medical images. The segmentation process comprises three steps:
mass calculation (including feature extraction and BBA), feature-level mass
fusion, and decision-making. Since decision-making is not the focus of this
paper, we will not go into details about it and readers can refer to Ref. [74]
for a recent review of decision methods based on belief functions.

(1) First, the mass calculation step assigns each pixel/voxel K mass func-
tions based on the evidence of K different BBA methods, K input
features, K nearest neighbors, or K prototype centers.

(2) Dempster’s rule is then used for each pixel/voxel to fuse the feature-
level mass functions.

(3) Finally, decisions are made to obtain the final segmentation results.

Here, the feature extraction method is used to generate MVs (correspond-
ing to traditional medical image segmentation methods) or deep features
(corresponding to deep learning-based medical image segmentation meth-
ods). The feature extraction method could be intensity-based methods such
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Figure 10: Example framework of single modal evidence fusion with single classifier. The
segmentation process is composed of three steps: (1) image information is transferred into
the feature extraction block, and some BBA methods are used to get feature-level mass
functions; (2) Dempster’s rule is used to fuse feature-level mass functions; (3) decision-
making is made based on the fused mass functions to output a segmented mask. We take
only one pixel zi as an example and show how BFT works on pixel-level evidence fusion
under a binary segmentation task to simplify the process. For each pixel zi, we can obtain
K mass functions from BBA. After feature-level evidence fusion, a fused mass function is
assigned to pixel zi to represent the degree of belief this pixel belongs to classes a, b and
ignorance.
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as threshold intensity, probabilistic-based methods such as SVM, fuzzy set-
based methods such as FCM, etc. There are various BBA methods, therefore
we introduce them in specific tasks in the following. In general, the meth-
ods introduced in this section focus on feature-level evidence fusion. Table
2 shows the segmentation methods with a single modal input and classi-
fier/cluster that focus on feature-level evidence fusion.

In [88], Suh et al. developed a knowledge-based endocardial and epicar-
dial boundary detection and segmentation system with cardiac MR image
sequences. Pixel and location information were mapped into mass functions
by Shafer’s model [25] (see Section 4.1.1). The mass functions from the two
sources were fused by using Dempster’s rule. Experiments were applied to
cardiac short-axis images and obtained an excellent success rate (> 90%).
However, this work only focused on cardiac boundary detection and did not
discuss the details of the heart. In [90], Vauclin et al. proposed a BFT-based
lung and spinal canal segmentation model. The k-means clustering algorithm
was first used to perform a pre-segmentation. Then a 3D filter exploits the
results of the pre-segmentation to compute the MVs from spatial neighbors
using Shafer’s model. Segmentation results showed the credal partition per-
mits the reduction of the connection risks between the trachea and the lung
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Table 2: Summary of BFT-based medical image segmentation methods with single modal
inputs and a single classifier/clusterer

Publications Input image type Application BBA method
Suh et al. [88] MR images cardiac segmentation Shafer’s model
Gerig et al.[89] MR images brain tissue segmentation BFOD
Vauclin et al. [90] CT lung and spinal canal segmentation Shafer’s model
Vannoorenberghe et al. [91] CT thoracic segmentation EKNN
Derraz et al. [92] optical imaging with color cell segmentation Appriou’s model
Derraz et al. [93] optical imaging with color retinopathy segmentation Appriou’s model
Derraz et al. [92] optical imaging with color retinopathy segmentation Appriou’s model
Lian et al. [94] FDG-PET/CT lung tumor segmentation ECM
Lian et al. [95] FDG-PET lung tumor segmentation ECM
Huang et al. [96] PET-CT lymphoma segmentation ENN
Huang et al. [77] PET-CT lymphoma segmentation ENN+RBF

when they are very close and between the left and right lungs at the anterior
or posterior junctions.

In [89], Gerig et al. presented a method for automatic segmentation and
characterization of object changes in time series of 3D MR images. A set of
MVs was derived from time series according to brightness changes. BFOD
transformation [83] was used here to map the obtained features into mass
functions. Then the set of evidence was combined by using Dempster’s rule.
Experiments visually compared with results from alternative segmentation
methods revealed an excellent sensitivity and specificity performance in the
brain lesion region. The author also pointed out that better performance
could be obtained with multimodal and multiple time-series evidence fusion.
Simulation results showed that about 80% of the implanted voxels could be
detected for most generated lesions.

In [91], Vannoorenberghe et al. presented a BFT-based thoracic image
segmentation method. First, a K-means algorithm performed coarse segmen-
tation on the original CT images. Second, the EKNN rule [62] was applied
by considering spatial information and calculating feature-level mass func-
tions. The authors claimed that using this segmentation scheme leads to a
complementary approach combining region segmentation and edge detection.
Experimental results showed promising results on 2D and 3D CT images for
lung segmentation.

In [92], Derraz et al. proposed an active contour (AC)-based [97] global
segmentation method for vector-valued image that incorporated both prob-
ability and mass functions. All features issued from the vector-valued image
were integrated with inside/outside descriptors to drive the segmentation re-
sults by maximizing the Maximum-Likelihood distance between foreground
and background. Appriou’s second model [76] was used to calculate the
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imprecision caused by low contrast and noise between inside and outside de-
scriptors issued from the multiple channels. Then the fast algorithm based
on Split Bregman [98] was used for final segmentation by forming a fast
and accurate minimization algorithm for the Total Variation (TV) problem.
Experiments were conducted on color biomedical images (eosinophil, lym-
phocyte, eosinophil, monocyte, and neutrophil cell [99]) and achieve around
6% improvements by using F-score on five image groups. In the same year,
Derraz et al. proposed a new segmentation method [93] based on Active Con-
tours (AC) for the vector-valued image that incorporates Bhattacharyya’s
distance [100]. The only difference is that the authors calculate the probabil-
ity functions by Bhattacharyya distance instead of the Maximum-Likelihood
distance in this paper. The performance of the proposed algorithm was
demonstrated on the retinopathy dataset [101, 102]and with an increase of
3% in F-score compared with the best-performed methods.

In [94], Lian et al. introduced a tumor delineation method in fluo-
rodeoxyglucose positron emission tomography (FDG-PET) images by using
spatial ECM [103] with adaptive distance metric. The authors proposed the
adaptive distance metric to extract the most valuable features, and spatial
ECM was used to calculate mass functions. Compared with ECM and spa-
tial ECM, the proposed method showed a 14% and 10% increase in Dice
score when evaluated on the FDG-PET images of non-small cell lung cancer
(NSCLC) patients, showing good performance.

In [96], Huang et al. proposed a 3D PET/CT lymphoma segmentation
framework with BFT and deep learning. This is the first work that applied
BFT with a deep neural network for medical image segmentation. In this
paper, the PET and CT images were concatenated as a signal modal input
method and transferred into UNet to get high-level semantic features. Then
the ENN classifier was used to map high-level semantic features into mass
functions by fusing the contribution of K prototypes. Moreover, the seg-
mentation uncertainty was considered in this paper with an uncertainty loss
during training. The reported quantitative and qualitative results showed
that the proposal outperforms the state-of-the-art methods. Based on the
first work, Huang et al. verified the similarity of RBF and ENN in uncer-
tainty quantification and merged them with the deep neural network (UNet)
for lymphoma segmentation [77]. The segmentation performance confirmed
that RBF is an alternative approach of ENN [79] to act as an evidential clas-
sifier and showed that the proposal outperforms the baseline method UNet
and the state-of-the-art both in accuracy and reliability.
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Before 2020, the BFT-based medical image segmentation methods with
single modal medical used low-level image features, e.g., grayscale and shape
features, to generate mass functions, which limits the segmentation accuracy.
Moreover, None of them discussed the reliability of the segmentation results.
Huang et al. first merge BFT with a deep segmentation model (UNet) and
learn the representation of mass functions with some learning algorithms [96].
Based on this, Huang et al. further discuss the relationship between segmen-
tation accuracy and reliability in [77], which takes a new direction to study
reliable medical image segmentation methods and bridge the gap between
experimental results and clinical application.

5.1.2. Multimodal evidence fusion

Single-modality medical images often do not contain enough information
to present the information about the disease and are often tainted with uncer-
tainty. In addition to feature-level evidence fusion, the fusion of multimodal
evidence is also important to achieve accurate and reliable medical image
segmentation performance. Approaches for modality-level evidence fusion
can be summarized into three main categories according to the way they cal-
culate the evidence: probabilistic-based fusion, fuzzy set-based fusion, and
BFT-based fusion. The development of convolution neural networks (CNNs)
further contributes to the probabilistic-based fusion methods [34], which
can be summarized into image-level fusion (e.g., data concatenation [104]),
feature-level fusion (e.g., attention mechanism concatenation [105, 106]), and
decision-level fusion (e.g., model ensembles [107]). However, none of those
methods considers the conflict of source evidence, i.e., the modality-level un-
certainty is not well studied, which limits the reliability and explainability of
the performance.

This section focuses on the BFT-based segmentation methods with modality-
level evidence fusion. Figure 11 shows an example framework of multimodal
evidence fusion with a single classifier. We separate the segmentation pro-
cess into four steps: masses calculation, feature-level evidence fusion (al-
ternative), modality-level evidence fusion, and decision-making. Compared
with single-modality evidence fusion reviewed in Section 5.2.1, multimodal
evidence fusion focuses here not only on feature-level but also on modality-
level evidence fusion (It should be noted that feature-level evidence fusion is
not necessary in this case). Multimodal evidence fusion is the most popular
application for BFT in the medical image segmentation domain. Therefore
we classify those methods according to their input modal for better analy-
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Figure 11: Example framework of multimodal evidence fusion with a single classifier.
The segmentation process is composed of four steps: (1) for each modal input, image
features are fed into the classifier, and some BBA methods are used to get feature-level
mass functions; (2) inside each modal, the calculated feature-level mass functions are
fused by using Dempster’s rule to generate modality-level mass functions; (3) between the
modalities, the calculated modality-level mass functions are fused by using Dempster’s
rule again; (4) decision-making is made based on the fused mass functions to output a
segmented mask. To simplify the introduction, we show the segmentation example of the
same located pixels z1i and zMi obtained from modal 1 and M . The same located pixels
from different modalities are transferred separately into one classifier, and some BBA is
used to get pixel-level mass functions. Similar to Figure 10, for each pixel, assume we can
obtain K mass functions. After feature-level and modality-level evidence fusion, a fused
mass function is assigned to the pixel zi to represent the degree of belief this pixel belongs
to classes a, b and ignorance.
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sis. Table 3 summarizes the segmentation methods with multimodal inputs
and a single classifier/cluster with the main focus on modality-level evidence
fusion.

Fusion of multimodal MR images. In [109], Bloch first proposed a BFT-
based dual-echo MR pathological brains tissue segmentation model with un-
certainty and imprecision quantification. The author assigned mass functions
based on a reasoning approach that uses gray-level histograms provided by
each image to choose focal elements. After defining mass functions, Demp-
ster’s rule combined the mass from dual-echo MR images for each pixel.
Based on the first work with BFT, in [112], Bloch proposed to use fuzzy
mathematical morphology [125], i.e., erosion and dilation, to generate mass
functions by introducing imprecision in the probability functions and esti-
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Table 3: Summary of BFT-based medical image segmentation methods with multimodal
inputs and single classifier/clusterer

Publications Input image type Application BBA method
Vannoorenberghe et al. [108] optical imaging with color skin cancer segmentation GD-based model
Bloch [109] multimodal MR images brain tissue segmentation prior knowledge
Taleb-Ahmed [110] multimodal MR images vertebrae segmenta threshold+contour distance
Chaabane et al. [111] optical imaging with color cell lesion segmentation Appriou’s model
Zhu et al. [81] multimodal MR images brain tissue segmentation Zhu’s model
Bloch [112] multimodal MR images brain tissue segmentation prior knowledge
Chaabane et al. [113] optical imaging with color cell lesion segmentation Aprrious’s method
Ghasemi et al. [82] multimodal MR images brain tissue segmentation RMV
Harrabi et al. [114] optical imaging with color breast cancer segmentation GD-based model
Lelandais et al. [115] PET biological target tumor segmentation ECM
Wang et al. [116] multimodal MR images cerebral infraction segmentation Zhu’s model
Ghasemi et al. [117] multimodal MR images brain tumor segmentation RMV
Lelandais et al. [103] multi-tracer PET biological target tumor segmentation ECM
Makni et al. [118] multi-parametric MR image prostate zonal anatomy ECM
Derraz et al. [119] PET/CT lung tumor segmentation Appriou’s model
Trabelsi et al. [120] optical imaging with color skin lesion segmentation None
Xiao et al. [121] multimodal MR images vascular segmentation GD-based model
Lian et al. [122] FDG-PET/CT lung tumor segmentation ECM
Lian et al. [86] FDG-PET/CT lung cancer segmentation ECM
Tavakoli et al. [123] multimodal MR images brain tissue segmentation RMV
Lima et al. [124] multimodal MR images brain tissue segmentation RMV
Lian et al. [27] PET/CT lung tumor segmentation ECM

mating compound hypotheses. Then Dempster’s rule is used to fuse mass
functions from multimodal images. It should be noted that in this paper,
the strong assumption is made that it is possible to represent imprecision
by a fuzzy set, also called the structuring element. Application examples on
dual-echo MR image fusion showed that the fuzzy mathematical morphology
operations could represent either spatial domain imprecision or feature space
imprecision (i.e., gray levels features). The visualized brain tissue segmenta-
tion results show the robustness of the proposed method.

As we mentioned in Section 4.2.1, Zhu et al. proposed modeling mass
functions in BFT using FCM and spatial neighborhood information for im-
age segmentation. The visualized segmentation results on MR brain images
showed that the fusion-based segmented regions are relatively homogeneous,
enabling accurate measurement of brain tissue volumes compared with single
modal input MR image input.

In [82], Ghasemi et al. presented a brain tissue segmentation approach
based on FCM and BFT. The authors used the FCM to model two different
input features: pixel intensity and spatial information, as membership values
(MVs). Then for each pixel, the RMV transformation [82] was used to map
MVs into mass functions. Last, the authors used Dempster’s rule to fuse
intensity-based and spatial-based mass functions to get final segmentation
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results. Compared with FCM, the authors reported an increase in Dice and
accuracy. As an extension of [82], Ghasemi et al. proposed an unsupervised
brain tumor segmentation method that modeled pixel intensity and spatial
information into mass functions with RMV transformation and fused the two
mass functions with Dempster’s rule in [117].

In [116], Wang et al. proposed a lesion segmentation method for infarc-
tion and cytotoxic brain edema. The authors used a method similar to Zhu’s
model to define simple and double hypotheses. FCM [126] was used first to
construct the mass functions of simple hypotheses {a} and {b}. Then masses

were assigned to double hypotheses as m({a, b}) = 1
4
× min(m({a}),m({b}))

m({a})+m({b}) . Fi-
nally, the authors used Dempster’s rule for modality-level evidence fusion.
The results showed that infarction and cytotoxic brain edema around the
infarction could be well segmented by final segmentation.

In [118], Makni et al. introduced a multi-parametric MR image seg-
mentation model by using spatial neighborhood in ECM for prostate zonal
anatomy. The authors extended ECM with neighboring voxels information
to map multi-parametric MR images into mass functions. Then they used
prior knowledge related to defects in the acquisition system to reduce uncer-
tainty and imprecision. Finally, the authors used Dempster’s rule to fuse the
mass functions from the multi-parametric MR images. The method achieved
good performance on prostate multi-parametric MR image segmentation.

In [123], Tavakoli et al. proposed a segmentation method based on the
evidential fusion of different modalities (T1, T2, and Proton density (PD))
for brain tissue. The authors used FCM to get MVs and used the RMV
transformation [82] to transform the clustering MVs into mass functions.
The authors first formed the belief structure for each modal image and used
Dempster’s rule to fuse the three modalities’ mass functions of T1, T2, and
PD. Compared with FCM, this method achieved a 5% improvement in the
Dice score. Based on Tavakoli’s method [123], Lima et al. proposed a mod-
ified brain tissue segmentation method in [124]. The authors tested their
method with four modality inputs: T1, T2, PD, and Flair. The reported
results outperformed both the baseline method FCM and Tavakoli’s method
with four-modality evidence fusion.

In [121], Xiao et al. proposed an automatic vascular segmentation al-
gorithm, which combines the grayscale and shape features of blood vessels
and extracts 3D vascular structures from the head phase-contrast MR an-
giography dataset. First, grayscale and shape features are mapped into mass
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functions by using the GD-based method. Second, a new reconstructed vas-
cular image was established according to the fusion of vascular grayscale
and shape features by Dempster’s rule. Third, a segmentation ratio coeffi-
cient was proposed to control the segmentation result according to the noise
distribution characteristic. Experiment results showed that vascular struc-
tures could be detected when both grayscale and shape features are robust.
Compared with traditional grayscale feature-based or shape feature-based
methods, the proposal showed better performance in segmentation accuracy
with the decreased over-segmentation and under-segmentation ratios by fus-
ing two sources of information.

Since Bloch’s early work fully demonstrated the advantages of BFT in
modeling uncertain and imprecision, introducing partial or global ignorance,
and fusing conflicting evidence in a multimodal MR images segmentation
task, researchers in this domain have gone further to explore the advantages
of BFT in multi MR image fusion. Among these research works, FCM is
the most popular clustering algorithm to map input information into MVs.
Ration MV transformation or Zhu’s model is usually used to generate mass
functions from MVs. Apart from these two-step methods, the GD-based
model can also be used to generate mass functions directly.

Fusion of RGB channels. In [108], Vannoorenberghe et al. pointed out that
taking the R, G, and B channels as three independent information sources
can be limited and nonoptimal for medical image tasks and proposed a color
image segmentation method based on BFT. They calculated the degree of
evidence by mapping R, G, and B channel intensity into mass functions using
the Gaussian distribution information (similar to GD-based model [85]) with
an additional discounting operation). Then three pieces of evidence were
fused with Dempster’s rule. The proposed segmentation method was applied
to biomedical images to detect skin cancer (melanoma). Experiments showed
a significant part of the lesion is correctly extracted from the safe skin. The
segmentation performance is limited by feature representation, e.g., some
regions correspond to pixels that cannot be classified as either the safe skin or
the lesion because only the pixel-level feature is insufficient for hard-example
segmentation.

In [111] Chaabane et al. proposed a color medical image segmentation
method based on fusion operation. Compared to [108], the authors first
modeled probabilities for each region by a Gaussian distribution, then used
Appriou’s second model (see Section 15) to map probability into mass func-
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tions. Dempster’s rule then combined the evidence from the three color chan-
nels. Compared with single-channel segmentation results, the fused results
achieved a 10% increase in segmentation sensitivity.

Different from the methods described in [108] and [111] that decompose
color images into R, G, B channels, Harrabi et al. [114] presented a color
image segmentation method that represents the color image with 6 color
spaces (RGB, HSV, YIQ, XYZ, LAB, LUV). The segmentation operation
is based on multi-level thresholding and evidence fusion techniques. First,
the authors identified the most significant peaks of the histogram by multi-
level thresholding with the two-stage Otsu optimization approach. Second,
the GD-based model was used to calculate the mass functions for each color
space. Then the authors used Dempster’s rule to combine six sources of
information. Compared with single color spaces, such as RGB and HSV,
the combined result taking into account six color spaces, has a significant
increase in segmentation sensitivity, for example, an increase of 4% and 7%
as compared to RGB and HSV, respectively.

In [120], Trabelsi et al. applied BFT in optical imaging with color to
improve skin lesion segmentation performance. The authors decomposed
color images into R, G, and B channels and applied the FCM method on
each channel to get probability functions for pixel x in each color space. In
this paper, the authors take the probability functions as mass functions and
calculate the orthogonal sum of the probability functions from the three-
channel images. Even though experiments showed about 10% improvements
in segmentation accuracy compared with single-channel results, this work
does not harness the full power of BFT as it only considers Bayesian mass
functions.

In general, the BFT-based RGB medical image segmentation approaches
are used to generate mass functions from possibility distributions, e.g., Gaus-
sian distribution and Possibility C-means distribution, and fuse them by
Dempster’s rule. Though the authors claimed they could get better perfor-
mance compared with single color input, the segmentation performance is
limited by features because gray-scale and intensity features are not robust
and efficient in representing image information. Further research could take
both feature extraction and uncertainty quantification into consideration,
e.g., a deep feature extraction model with an evidential classifier, to improve
the performance.
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Fusion of PET/CT. In [115], Lelandais et al. proposed a BFT-based multi-
trace PET images segmentation method to segment biological target volumes.
First, the authors used a modified FCM algorithm with the discounting algo-
rithm to determine mass functions. The modification integrated a disjunctive
combination of neighboring voxels inside the iterative process. Second, the
operation of reduction of imperfect data was conducted by fusing neighbor-
ing voxels using Dempster’s rule. Based on this first work, Lelandais et
al. proposed an ECM-based fusion model [103] for biological target volume
segmentation with multi-tracer PET images. The segmentation method in-
troduced in this paper is similar to the one introduced in [118] with a different
application.

In [119], Derraz et al. proposed a multimodal tumor segmentation frame-
work for PET and CT inputs. Different from Lelandais et al.’s work that
uses ECM or optimized ECM to generate mass functions directly, the au-
thors construct mass functions in two steps. They first proposed a NonLocal
Active Contours (NLAC) based variational segmentation framework to get
probability results. Then, similar to the authors’ previous work [92, 93],
they used Appriou’s second model [76] to map MVs into mass functions.
Then Dempster’s rule was used to fuse the mass functions from PET and
CT modalities. The framework was evaluated on a lung tumor segmentation
task. Compared with the state-of-the-art methods, this framework yielded
the highest Dice score for tumor segmentation.

Based on Lelandais et al.’s work, Lian et al. proposed a tumor seg-
mentation method [122] using Spatial ECM [103] with Adaptive Distance
Metric [94] in FDG-PET images with the guidance of CT images. Based on
the first work, Lian et al. proposed a co-segmentation method of lung tumor
segmentation [27, 86]. They took PET and CT as independent inputs and
use ECM to generate mass functions. At the same time, an adaptive distance
metric was used to quantify clustering distortions and spatial relationships
during the evidential clustering procedure. Then Dempster’s rule was used
to fuse mass functions from PET and CT modalities. The quantitative and
qualitative evaluation results showed superior performance compared with
single modal segmentation results with an increase of 1% and 58% in PET
and CT in Dice scores, respectively.

ECM is the most common BBA method to generate mass functions for
PET/CT medical image segmentation approaches. Similar to the BFT-based
RGB medical image segmentation methods, the segmentation performance
here is limited by feature extraction methods. Further research could build
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Table 4: Summary of BFT-based medical image segmentation methods with single modal
inputs and several classifiers/clusterers

Publications Input image type Application BBA method
Capelle et al. [127] MR images brain tumor segmentation EKNN
Capelle et al. [128] MR images brain tumor segmentation EKNN+Shafer’s model + Appriou’s model
Barhoumi et al. [129] optical imaging with color skin lesion malignancy tracking None
Guan et al. [130] MR images brain tissue segmentation Zhu’s model
Ketout et al. [131] optical imaging with color endocardial contour detection Threshold
Wen et al. [132] MR images brain tissue segmentation Zhu’s model+GD-based model
George et al. [133] optical imaging with color breast cancer segmentation Discounting
Huang et al. [96] PET-CT lymphoma segmentation ENN

on recent advancements in deep feature representation and combine ECM
with deep neural networks to learn mass feature representation. A good
example of neural-network approach to evidential clustering can be found
in [87].

5.2. BFT-based medical image segmentation with several classifiers or clus-
terers

It is common practice that two or more physicians cooperate for dis-
ease diagnosis, which can minimize the impact of physicians’ misjudgments.
Similarly, combining the results from multiple decision mechanisms as well
as addressing the conflicts is critical to achieving a more reliable diagnosis.
This section introduces the BFT-based medical image segmentation meth-
ods with several classifiers or clusterers. We follow the same approach as in
Section 5.1 and separate the methods into single-modality and multimodal
evidence fusion reviewed, respectively, in Sections 5.2.1 and 5.2.2.

5.2.1. Single-modality evidence fusion

Compared with the methods presented in Section 5.1.1, the methods in-
troduced in this section focus on feature-level and classifier-level evidence
fusion, which aims to minimize the impact of misjudgments caused by a sin-
gle model’s inner shortcomings. Figure 12 shows an example of a medical
image segmentation framework with single-modality input and several classi-
fiers. We separate the segmentation process into four steps: mass calculation,
feature-level evidence fusion (optional), classifier-level evidence fusion, and
decision-making. Table 4 summarizes the segmentation methods with single-
modality inputs and several single classifiers/clusterers with the main focus
on classifier/clusterer level evidence fusion.

In [127], Capelle et al. proposed a segmentation scheme for MR images
based on BFT. The authors used the Evidential K-NN rule [62] to map image
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Figure 12: Example framework of single modal evidence fusion with several classifiers.
The segmentation process is composed of four steps: (1) for each pixel, image features are
transferred into the different classifiers, and some BBA methods are used to get feature-
level mass functions; (2) inside each classifier, the calculated feature-level mass functions
are fused by using Dempster’s rule to generate classifier-level mass functions; (3) between
the classifiers, the calculated classifier-level mass functions are fused by using Dempster’s
rule again; (4) decision-making is made based on the final fused mass functions and output
a segmented mask. We take pixel zi as an example. Similar to Figure 10, we assume for
each pixel, we can obtain K mass functions by one classifier. After feature-level evidence
fusion, for each pixel zi, we can get H mass functions corresponding to H classifiers. Then
we fuse the H mass functions and assign a fused mass function to the pixel zi, representing
the degree of belief this pixel belongs to classes a, b and ignorance.
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features into mass functions. Then, they applied the evidential fusion process
to classify the voxels. Based on this first work, Capelle et al. later proposed
an evidential segmentation scheme of multimodal MR images for brain tumor
detection in [128]. This work focused on analyzing different evidential model-
ing techniques and on the influence of the introduction of spatial information
to find the most effective brain tumor segmentation method. Three different
BFT-based models: the distance-based BFT model (EKNN) [63], the likeli-
hood function-based BFT method (Shafer’s model [25]), and Appriou’s first
model [75] were used to model information, and Dempster’s rule was used to
combine the three mass functions. This study concluded that neighborhood
information increases the evidence of class membership for each voxel, thus
making the final decision more reliable. Experimental results showed better
segmentation performance compared with the state-of-the-art methods when
the paper was published.

In [110], Taleb-Ahmed proposed a segmentation method for MR sequences
of vertebrae in the form of images of their multiple slices with BFT. The au-
thors used three different classifiers to calculate three kinds of mass functions.
Firstly, the authors used gray-level intensity and standard deviation infor-
mation to calculate two pixel-level mass functions with two fixed thresholds.
Then the distance between two matching contours of consecutive slices (P
and Q) was used to calculate contour-level mass functions as follows:

m({SPQ}) =

{
1 − e−η|d(Pi,Qi)−β| if d(Pi, Qi) ∈ [ρ, β],

0 otherwise
(35a)

m({SPQ}) =

{
1 − e−η|d(Pi,Qi)−β| if d(Pi, Qi) ∈ (β,+∞),

0 otherwise
(35b)

m(Ω) = e−η|d(Pi,Qi)−β|, (35c)

where Pi and Qi are two matching points of the slices P and Q, d(Pi, Qi)
is the corresponding distance; Ω = {SPQ, SPQ}, SPQ means that points Pi

and Qi both belong to cortical osseous. Parameter β represents the tolerance
that the expert associates with the value d(Pi, Qi), ρ is the inter-slice distance
and η makes it possible to tolerate a greater inaccuracy in the geometrical
resemblance of two consecutive contours. Dempster’s rule was then used to
combine the three mass functions for final segmentation.

In [129], Barhoumi et al. introduced a new collaborative computer-aided
diagnosis system for skin malignancy tracking. First, two diagnosis opinions
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were produced by perceptron neural network classification and content-based
image retrieval (CBIR) schemes. Then Dempster’s rule was used to fuse the
two opinions to achieve a final malignancy segmentation. Simulation results
showed that this BFT-based combination could generate accurate diagnosis
results. In this work, the frame of discernment is composed of two elements,
and the mass functions are Bayesian.

In [130], Guan et al. proposed a human brain tissue segmentation method
with BFT. The authors first used Markov random forest (MRF) [134] for spa-
tial information segmentation and then a two-dimensional histogram (TDH)
method of fuzzy clustering [135] to get a vague segmentation. Then a redun-
dancy image was generated, representing the difference between the MRF
and TDH methods, and Zhu’s model [81] was used to calculate mass func-
tions. Finally, Dempster’s rule fused the two segmentation results and the
generated redundancy image to handle controversial pixels. The visual seg-
mentation results showed that this method has higher segmentation accuracy
compared with the state-of-the-art.

As discussed in Section 3.2, Dempster’s rule becomes numerically unsta-
ble when combining highly conflicting mass functions. In this case, the fused
results can be unreliable, as a small changes in mass functions can result
in sharp changes of the fusion results. Researchers in the medical domain
have also recognized this limitation. In [131], Ketout et al. proposed a mod-
ified mass computation method to address this limitation and applied their
proposal to endocardial contour detection. First, the outputs of each active
contour model (ACM) [136] were represented as mass functions. Second, a
threshold was proposed to check if the evidence m conflicts with others. If
there was conflict, a modifying operation was used on the conflicting evi-
dence. Finally, the results of edge set-based segmentation [137] and region
set-based segmentation [138] were fused by using the “improved BFT” [139]
to get a more accurate contour of the left ventricle. Experimental results
showed that the fused contour is closer to the ground truth than the contour
from the edge or region. False detection of the two contours was suppressed
in the resulting image by rejecting the conflicting events by the fusion al-
gorithm. Meanwhile, the proposed method could detect the edges of the
endocardial borders even in low-contrast regions.

In [132], Wen et al. proposed an improved MR image segmentation
method based on FCM and BFT. First, the authors fused two modality
images A and B with function F (x, y) = w1gA(x, y) + w2gB(x, y), where x
and y are image pixels and w1 and w2 are weighs used to adjust the influ-
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ence of different images on the final fusion result and verifying w1 + w2 = 1.
Second, the authors calculated the MV by FCM and calculated the mass
functions of simple and double hypotheses by Zhu’s model [81] (see Section
4.2.1) without the neighboring pixel information. Third, the authors gen-
erated another mass functions by weighting those of its neighboring pixels
with the GD-based model and used Zhu’s model again to construct simple
and double hypotheses mass functions. Finally, the authors used Dempster’s
rule to complete the fusion of the two mass functions to achieve the final seg-
mentation. Compared with the FCM-based method, the proposed method
can better decrease the conflict in multiple sources to achieve easy conver-
gence and significant improvement by using Dempster’s rule for classifier-level
evidence fusion.

Besides, with the development of CNNs, the research community used
Dempster’s rule for the fusion of multiple CNN classifiers. In [133], George
et al. proposed a breast cancer detection system using transfer learning and
BFT. This first work first applied BFT in multiple evidence fusion with deep
learning. High-level features were extracted using a convolutional neural net-
work such as ResNet-18, ResNet-50, ResNet-101, GoogleNet, and AlexNet.
A patch-based feature extraction strategy was used to avoid wrong segmen-
tation of the boundaries and provide features with good discriminative power
for classification. The extracted features were classified into benign and ma-
lignant classes using a support vector machine (SVM). A discounting opera-
tion was applied to transfer probability-based segmentation maps into mass
functions. The discounted outputs from the different CNN-SVM frameworks
were then combined using Dempster’s rule. This work takes advantage of
deep learning and BFT and has achieved good performance. Compared with
majority voting-based fusion methods, BFT-based fusion showed superior
segmentation accuracy. Compared with a single classifier, such as ResNet-
101, the fused framework achieved an increase of 1%, 0.5%, 3%, and 2% for,
respectively, sensitivity, specificity, and AUC. Also, the authors compared
their results with the state-of-the-art method and achieved comparable seg-
mentation accuracy.

Apart from using BFT to combine the discounted probabilities from the
CNN classifiers [133], another solution is to construct a deep evidential seg-
mentation framework directly. In [29], Huang et al. proposed a BFT-based
semi-supervised learning framework (EUNet) for brain tumor segmentation.
This work applied BFT in a deep neural network to quantify segmenta-
tion uncertainty directly. During training, two kinds of evidence were ob-
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Table 5: Summary of BFT-based medical image segmentation methods with multimodal
inputs and several classifiers/clusterers

Publications Input image type Application BBA method
Gautier et al. [140] multimodal MR images lumbar sprain segmentation Prior knowledge
Lajili et al. [141] CT breast segmentation Threshold
Huang et al. [142] PET/CT lymphoma segmentation None
Huang et al. [143] multimodal MR images brain tumor segmentation ENN

tained: the segmentation probability functions and mass functions generated
by UNet and EUNet, respectively. Dempster’s rule was then used to fuse the
two pieces of evidence. Experimental results showed that the proposal has
better performance than state-of-the-art methods. It achieved around 10%,
4%, and 2% increase in Dice score, Positive predictive value, and sensitiv-
ity, respectively, compared with the baseline (UNet). Moreover, the authors
showed how BFT exceeds probability-based methods in addressing uncer-
tainty boundary problems. This is the first work that embeds BFT into
CNN and achieves an end-to-end deep evidential segmentation model.

The approaches introduced in this section use several classifiers or clus-
terers to generate different mass functions and fuse them by Dempster’s rule.
Among those approaches, George et al. [133] first applied Dempster’s rule
to combine the discounted probabilities from different deep segmentation
models. Huang et al. [29] merged ENN with UNet to construct an end-to-
end segmentation model and fuse two kinds of evidence by Dempster’s rule.
Compared to George et al.’s approach [133], Huang et al.’s approach [29] can
generate mass functions directly from a deep segmentation model, which is
more promising.

5.2.2. Multimodal evidence fusion

Figure 13 shows an example of a medical image segmentation framework
with several classifiers and multimodal inputs, which is more complex than
the frameworks introduced in Sections 5.1.1, 5.1.2 and 5.2.1. The segmenta-
tion process comprises five steps: mass calculation, feature-level evidence fu-
sion (optional), classifier-level evidence fusion, modality-level evidence fusion,
and decision-making. Pixels at the same position from different modalities
are fed into different classifiers and different BBA methods to get pixel-level
mass functions. Dempster’s rule is used first for feature-level evidence fusion,
then to fuse classifier-level evidence, and last to fuse modality-level evidence.
Table 5 summarizes the segmentation methods with multimodal inputs and
several classifiers or clusterers, focusing on classifier or clusterer fusion and
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Figure 13: Example framework of multimodal evidence fusion with several classifiers. The
segmentation process is composed of five steps: (1) for each modality input, image features
are fed into different classifiers, and some BBA methods are used to get feature-level mass
functions; (2) inside each classifier, the feature-level mass functions are fused by Dempster’s
rule to get classifier-level mass functions; (3) inside each classifier, the calculated classifier-
level mass functions are fused by Dempster’s rule to get modality-level mass function; (4)
inside each modal, the calculated modality-level mass functions are fused by Dempster’s
rule; (5) decision-making is made based on the final fused mass functions and outputs a
segmented mask. Here we show the segmentation example of the same located pixels z1i
and zMi that are obtained from modal 1 and M . The same pixel from different modalities
is transferred separately into H classifiers, and some BBAs are used to get pixel-level
mass functions. Similar to Figure 10, we assume we can obtain K mass functions with one
classifier for each pixel. After the fusion of feature-level, classifier-level, and modality-level
evidence fusion, a final mass function is assigned to the pixel zi to represent the degree of
belief this pixel belongs to class a, b and ignorance.
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modality-level evidence fusion.
In [140], Gautier et al. proposed a method for helping physicians monitor

spinal column diseases with multimodal MR images. At first, an initial seg-
mentation was applied with active contour [144]. Then several mass functions
were obtained from expert opinions on constructing the frame of discernment.
Thus, the mass functions were human-defined. Finally, Dempster’s rule was
then used to fuse the mass functions from different experts. The method
yielded the most reliable segmentation maps when the paper was published.

Based on their previous work on multimodal medical image fusion with
a single cluster [111], Chaabane et al. presented another BFT-based seg-
mentation method with several clusterers [113]. First, possibilistic C-means
clustering [145] was used on R, G, and B channels to get three MVs. Then
the MVs were mapped into mass functions with focal sets of cardinality 1
and 2 using Zhu’s model [81]. Dempster’s rule was used first to fuse three
mass functions from three corresponding color spaces. Based on the initial
segmentation results, another mass function was calculated for each pixel
and its neighboring pixels for each color space. Finally, the authors used
Dempster’s rule again to fuse the two mass functions from two corresponding
clusterers. Experimental segmentation performance with cell images showed
the effectiveness of the proposed method. Compared with the FCM-based
segmentation method, the proposal increased by 15% the segmentation sen-
sitivity.

In [141], Lajili et al. proposed a two-step evidential fusion approach
for breast region segmentation. The first evidential segmentation results
were obtained by a gray-scale-based K-means clustering method, resulting
in k classes. A sigmoid function was then used to define a mass function
on the frame Ω = {Breast,Background} at each pixel z depending on its
class. For local-homogeneity-based segmentation, the authors modeled the
uncertainty with a threshold value α, by defining m({Breast}) = 1 − α,
m({Background}) = 0, m(Ω) = α, where α represents the belief mass
corresponding to the uncertainty on the membership of the pixel z. A fi-
nal fusion strategy with Dempster’s rule was applied to combine evidence
from the two mass functions. Experiments were conducted on two breast
datasets [146, 147]. The proposed segmentation approach yielded more ac-
curate results than the best-performed method. It extracted the breast region
with correctness equal to 0.97, which was 9% higher than the best-performing
method.

In [142], Huang et al. proposed to consider PET and CT as two modalities

42



and used to UNet model to segment lymphoma separately. Then the two
segmentation masks were fused by Dempster’s rule. Although this is the
first work that applied BFT in multimodal evidence fusion with several deep
segmentation models, a limitation of this work is that only Bayesian mass
functions are used for evidence fusion. To improve this first work, Huang
et al. proposed a multimodal evidence fusion framework with contextual
discounting for brain tumor segmentation [143]. In this work, using four
modules for feature extraction and evidential segmentation, the framework
assigns each voxel a mass function. In addition, a contextual discounting
layer is designed to take into account the reliability of each source when
classifying different classes. Finally, Dempster’s rule is used to combine the
discounted evidence to obtain a final segmentation. This method can be used
together with any state-of-the-art segmentation module to improve the final
performance.

Few studies have considered multimodal medical images as independent
inputs and used independent classifiers to generate mass functions. The
performance of this kind of approach is limited by the representation of image
features and the ability to quantify the model uncertainty. Huang et al. [143]
first merge ENN with UNet for the fusion of multimodal MR images with
contextual discounting. It enables the model to generate a learned reliability
metric from input modalities during different segmentation tasks, which can
potentially make the results more explainable.

5.3. Discussion

The choice of using single modal or multimodal depends on the dataset.
Generally, the more source data we have, the more reliable segmentation
results we will get. The choice of a single or several classifiers/clusterers
depends on the limitation of the computation source and the requirement of
computation efficiency. Considering the main advantages of using multiple
classifiers for multimodal medical images, as shown in the work of [143], a
potential research direction based on this approach could be promising.

Prior to 2020, BFT-based medical image segmentation methods limited
segmentation accuracy due to the use of low-level image features, such as
grayscale and shape features, to generate mass functions. Moreover, none of
them considered the segmentation reliability. Since the application of deep
learning in medical image segmentation has been very successful, the use of
BFT in deep neural networks should be a promising research direction, in
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particular, to quantify the uncertainty and reliability of the segmentation
results.

6. Conclusion and future work

6.1. Conclusion

The main challenges in medical image segmentation are: (1) the limited
resolution of medical images, (2) noisy labeling, and (3) unreliable segmenta-
tion models due to imperfect data and annotations. This leads to epistemic
segmentation uncertainty and has resulted in a gap between experimental
performance and clinical application for a while. For example, traditional
medical image segmentation methods are limited by the use of low-level image
features for decision making [2, 4, 3], leading to poor segmentation accuracy.
Machine learning techniques, especially deep learning such as UNet [8] and
its variants [48, 49, 50], have contributed to increasing segmentation accu-
racy thanks to their ability to extract high-level semantic features. However,
the clinical applicability of a deep segmentation model depends not on its
segmentation accuracy but also its reliability, which is critical in the medical
domain.

The issue of uncertainty and reliability of machine learning methods has
recently come to the forefront [15], and has incited researchers in the medical
image segmentation domain to study both accurate and reliable segmenta-
tion methods [148, 149, 150, 151]. This review has provided a comprehen-
sive overview of BFT-based medical image segmentation methods. We first
showed how uncertainty can be modeled in the BFT framework using mass
functions, and how unreliable or conflicting sources of information can be
combined to reach reliable fusion results. The segmentation methods re-
viewed cover a wide range of human tissues (i.e., heart, lung) and tumors
(i.e., brain, breast, and skin). In particular, we first briefly introduced med-
ical image segmentation methods in Section 2 by describing the traditional
and deep learning medical segmentation methods and by discussing their
shortcomings and limitations. We then summarized the main concepts of
BFT in Section 3. Section 4 comprehensively introduced the BBA methods
used to represent uncertainty (generate mass functions) in medical image
segmentation tasks. Finally, Section 5 introduced the BFT-based medical
image segmentation methods in detail by grouping them according to the
number of input modalities and classifiers used to generate mass functions.
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In many applications, BFT-based methods have the potential to outper-
form probability-based methods by modeling information more effectively
and combining multiple evidence at different stages, namely, at feature,
modality, and classifier levels. We hope that this review can increase aware-
ness and understanding of BFT theory and how it can contribute to the
development of more accurate and reliable medical image segmentation tech-
niques.

6.2. Future work

Despite the advantages of BFT for medical image segmentation, existing
methods still have limitations that need to be addressed. Some directions
for further research are discussed below.

First, most of the existing BFT-based medical image segmentation meth-
ods still use low-level features and do not fully exploit the advantages of deep
learning. Combining BFT with deep segmentation networks should allow us
to develop both accurate and reliable segmentation models, particularly in
medical image segmentation tasks for which medical knowledge is available
and can be modeled by mass functions. Ref. [133] is the first successful appli-
cation of Dempster’s rule for the fusion of different CNNs. Ref. [77] confirmed
the similarity of ENN and RBF when acting as an evidential classifier and
integrated both classifiers within a deep segmentation network to improve
the segmentation accuracy and reliability. We believe that more promising
results will be obtained by blending BFT with the existing powerful deep
medical image segmentation models [48, 49, 50].

Second, even though the BFT-based fusion methods have considered the
conflict of multiple sources of evidence, a problem still remains in that mul-
timodal medical images may have different degrees of reliability when seg-
menting different regions. For example, for the BRATS brain tumor dataset1,
domain knowledge from the physicians tells us that areas corresponding to
the enhancing tumor are described by faint and enhancement on T1Gd MR
images, and edema is recognized by the abnormal hyperintense signal enve-
lope on the FLAIR modality [152]. Multimodal medical image fusion may fail
if some source of information is unreliable or partially reliable for performing
different segmentation tasks. In [143], Huang et al. proposed a new method
to learn reliability coefficients conditionally on different segmentation tasks in

1http://braintumorsegmentation.org/
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a deep neural network. Another interesting research direction, accordingly,
is to estimate task-specific reliability and to enhance the explainability of
deep evidential neural networks using contextual discounting for multimodal
or cross-modal medical image segmentation tasks.

Third, acquiring large amounts of labeled training data is particularly
challenging for medical image segmentation tasks and has become the bottle-
neck of learning-based segmentation performance. The successful application
of unsupervised BBA methods to medical image segmentation points to a new
direction to address the lack of annotated data. As far as we know, there
is no published paper dealing with the combination of unsupervised BBA
methods with deep learning. The neural-network-based evidential cluster-
ing method described in [153] and the EKNN rule with partially supervised
learning introduced in [70] are two steps in these directions. These works
provide insights into how to use unsupervised or semi-supervised learning to
quantify segmentation uncertainty with unannotated or partially annotated
data sets.

We hope this review will increase awareness of the challenges of existing
BFT-based medical image segmentation methods and call for future contri-
butions to bridge the gap between experimental performance and clinical
application, as well as to develop accurate, reliable, and explainable deep
segmentation models.
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