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Abstract

In this article, we propose a general framework for the development of external
evaluation measures for soft clustering. Our proposal is based on the interpreta-
tion of soft clustering as representing uncertain information about an underlying,
unknown hard clustering. We present a general construction, based on optimal
transport theory, by which any evaluation measure can be naturally extended to
soft clustering. The proposed “transport-based measure” provides an objective,
interval-valued comparison index that represents the range of compatibility be-
tween two soft clusterings. We study the metric and complexity properties of
the proposed approach, as well as its relationship with other existing propos-
als. We also propose approximation and bounding algorithms that make the
approach practical for large datasets. Finally, we illustrate the application of
the proposed method through two computational experiments.

Key words: Clustering analysis, Soft clustering, Evaluation, Validation,
Comparison

1. Introduction

Clustering analysis is an important task within machine learning and data
analysis. Intuitively, the aim of clustering analysis is to detect, in an unsuper-
vised fashion, a grouping of objects within categories, called clusters. Clustering
analysis has important applications in different settings, including anomaly de-
tection [1], community detection [26], and biological data analysis [35].

One of the most important steps in clustering analysis regards the evaluation
of the obtained results [49]. Two main evaluation approaches can be distin-
guished. Internal validation indices [34, 25] evaluate the quality of a clustering
result with reference to intrinsic properties of the result itself (e.g., separation
of clusters). By contrast, external evaluation methods [32] objectively assess
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the quality of a clustering result, by means of a comparison between two or
more clusterings, one of which is usually assumed to be the correct one. In this
article, we refer exclusively to external evaluation.

In the case of hard clustering, that is clustering methods in which each object
is unambiguously assigned to a single cluster (e.g., k-means), several evaluation
criteria have been considered [2]. These include the Rand index [40], purity [42],
information-theoretic measures [47], or the partition distance [11]. By contrast,
how to properly evaluate the results of a clustering analysis is much less clear
in the case of soft clustering methods, i.e., techniques that provide an explicit
representation of uncertainty [39, 22]. Several soft clustering methods have
been proposed in the literature, each of which represents clustering uncertainty
in different ways. In rough [33] clustering, clusters are represented as pairs of
sets containing the objects that certainly or only possibly belong to the cluster.
In probabilistic [7] and fuzzy [4, 6, 41] clustering, the object-cluster assignment is
represented through a probability distribution or fuzzy partition. In possibilistic
[31, 41] clustering, uncertainty is represented through possibility distributions.
Finally, in evidential [17, 20, 14, 15] clustering, the uncertain object-cluster
assignment is represented by belief functions. Remarkably, evidential clustering
has been shown to generalize all the above mentioned methodologies [18].

In the literature, the development of soft clustering evaluation measures has
mainly focused on the extension of common measures, notably the Rand index,
to the setting of fuzzy clustering [2, 10, 24, 27], while only recently a formulation
of this approach has been introduced for the more general case of evidential
clustering [18]. Most proposals in the literature, however, have been shown to
be severely lacking in terms of satisfied properties [18, 27]. For example, most
measures fail to be semi-metrics, hence cannot be used to check the equivalence
between two clusterings. Additionally, the question of which appropriate metric
properties an evaluation measure should satisfy has scarcely been studied and,
consequently, the existing metrics can be hard to interpret or apply.

As a second, and most remarkable limitation, existing measures fail to prop-
erly quantify and distinguish different types of uncertainty that can arise in soft
clustering [18]. In particular, two relevant types of uncertainty can be distin-
guished: ambiguity, i.e., the inability to uniquely assign an object to a single
cluster (typical of rough clustering); and partial assignment, i.e., the assignment
of objects to multiple clusters, each with a given degree of membership (typical
of fuzzy and probabilistic clustering). Existing evaluation measures, however,
conflate these two different types of uncertainty. This issue is especially prob-
lematic for more general types of soft clustering, such as evidential clustering
[18], in which the two forms of uncertainty coexist.

We claim that the above mentioned limitations stem from a lack of under-
standing concerning the following two natural questions: What should be quan-
tified by an evaluation measure for soft clustering? Which properties should
such a measure have? In this article, following previous accounts in the liter-
ature [9, 18, 27], we argue that such measures have two possible aims. Since
we interpret soft clustering as describing the uncertainty with respect to an
underlying but unknown hard clustering, a first aim is to provide a picture of
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the uncertainty within the two soft clusterings to be compared. Second, such
a measure should provide a way to objectively compare two clusterings or to
assess the quality of a clustering with respect to a ground truth. By drawing
from the previous literature [9, 18], in this article we argue that a natural re-
quirement is to adopt interval-valued measures that satisfy certain reasonable
metric properties. Intuitively, the lower bound of the interval should quantify
the compatibility between two soft clusterings, i.e., whether there exists a hard
clustering compatible with both soft clusterings [18]. By contrast, the upper
bound should quantify their similarity, i.e., to which degree the two clusterings
are strictly equivalent, penalizing any possible ambiguity. To provide a formal
translation of these principles, we require that the lower bound should be a
consistency, while the upper bound should be a metric (see Section 2.1).

In this article, we propose a general approach to address the above men-
tioned questions and limitations, by introducing a mathematical construction
that can be applied to extend any clustering evaluation measure to the case of
soft clustering. The proposed transport-based distance (see Section 3.2) relies
on the interpretation of soft clustering as representing a distribution over hard
clusterings (see Section 3.1). We then use construction methods from optimal
transport theory [46] to provide interval-valued comparison indices that can be
used to objectively compare two soft clusterings in terms of their mutual con-
sistency and equality, while providing an account of the uncertainty involved in
the comparison. We provide an in-depth study of the proposed method, with re-
spect to both its computational complexity and metric properties. Furthermore,
we describe approximation techniques that can be used to reduce the compu-
tational complexity of the method and we show that some known measures
previously proposed in the literature emerge as special cases of our framework
(see Section 4). Finally, we illustrate the application of our approach through
two simple computational experiments (see Section 5).

2. Background and Related Work

In the following section, we first provide basic background on metric spaces
and related structures in Section 2.1. Then, we summarize some important
notions related to clustering in Section 2.2. Finally, a brief review of clustering
evaluation measures for soft clustering is provided in Section 2.3. Background
material on belief function theory is presented in Appendix A.

2.1. Metric Spaces

Let us first recall some basic notions on metric spaces [45]. Let X be a
countable set. A metric over X is a function d : X ×X 7→ R+ s.t.:

(M1) ∀x ∈ X, d(x, x) = 0;

(M2) ∀x, y ∈ X, x ̸= y =⇒ d(x, y) > 0;

(M3) ∀x, y ∈ X, d(x, y) = d(y, x);
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(M4) ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Metric d is normalized if maxx,y∈X d(x, y) = 1. If d is a normalized metric, then
its dual s = 1−d is called a similarity over X. Several weakenings of the notion
of metric have been considered in the literature. Here we recall the following:

• d is a pseudo-metric iff it satisfies (M1), (M3) and (M4);

• d is a semi-metric iff if satisfies (M1), (M2) and (M3);

• d is a meta-metric iff it satisfies (M2), (M3) and (M4);

• d is a ρ-relaxed metric (with ρ ∈ R+) iff it satisfies (M1), (M2), (M3) and

∀x, y, z ∈ X, d(x, z) ≤ ρ (d(x, y) + d(y, z)) .

Obviously, combinations of the above concepts can be considered (e.g., a semi-
pseudo-metric is a function satisfying only (M1) and (M3)). If d is a normalized
pseudo- (resp., semi-, meta- ρ-relaxed) metric, then s = 1−d is called a pseudo-
(resp., semi-, meta- ρ-relaxed) similarity. For simplicity, in the following, we
will refer to any semi-pseudo similarity as a consistency.

A metric d over X can be extended to a metric over 2X . The resulting metric
dH is called the Hausdorff metric based on d, defined as

dH(A,B) = max{max
a∈A

d(a,B),max
b∈B

d(A, b)}, (1)

where d(a,B) = minb∈B d(a, b) and d(A, b) = mina∈A d(a, b). If d is a (pseudo-,
meta-, semi-) metric, then dH satisfies the same properties.

Similarly, a metric d over X can be extended to a metric over the space
P(X) of probability measures over X. The resulting metric, denoted as dW , is
called the Wasserstein metric (also known as Kantorovich-Rubinstein metric)
[29, 46] based on d. It is formally defined, for any two probability measures Pr1
and Pr2 on X, as

dW (Pr1, P r2) = min
σ

∑
(x1,x2)∈X2

σ(x1, x2)d(x1, x2) (2)

s.t.
∑
x2∈X

σ(x1, x2) = Pr1(x1)∑
x1∈X

σ(x1, x2) = Pr2(x2)∑
(x1,x2)∈X2

σ(x1, x2) = 1

∀(x1, x2) ∈ X,σ(x1, x2) ≥ 0.

If d is a (pseudo-, meta-, semi-) metric then dW satisfies the same properties.
The Wasserstein metric is the minimal expected distance between two distribu-
tions Pr1 and Pr2 for all joint distributions whose marginals are Pr1 and Pr2.
It can also be seen as the minimal cost of transforming one distribution into the
other by moving the probability masses.
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2.2. Clustering

Let X = {x1, ..., xn} be a set of objects. A hard clustering is a unique
assignment of objects in X to clusters. Formally, a hard clustering is a mapping
C : X 7→ Ω, where Ω = {ω1, ..., ωk} is a set of clusters. This representation is
called object-based. By an abuse of notation we identify cluster ωi with the set
{x ∈ X : C(x) = ωi}. We denote by χωi the indicator function corresponding
to ωi. Any two clusterings C1, C2 that are equivalent up to a relabeling of the
clusters are considered to be identical. We denote the corresponding equivalence
relation by C1 ∼ C2.

Example 2.1. Let X = {x1, . . . , x5} and Ω = {ω1, ω2, ω3}. Then, the mapping
C : X 7→ Ω s.t. C(x1) = C(x5) = ω1, C(x2) = C(x3) = ω2 and C(x4) = ω3 is
a hard clustering. For simplicity, we represent C as the tuple c = (1, 2, 2, 3, 1),
where ci = j iff C(xi) = ωj.

Given a hard clustering C, its relational representation is the equivalence
relation [C] ⊆ X × X such that ∀(x, y) ∈ X2, (x, y) ∈ [C] ⇔ C(x) = C(y).
Obviously, C1 ∼ C2 iff [C1] = [C2].

Example 2.2. The clustering defined in Example 2.1 can be equivalently de-
scribed by its relation representation

[C] = {(x1, x5), (x5, x1), (x2, x3), (x3, x2)}.

As mentioned in Section 1, in soft clustering the unique assignment assump-
tion is relaxed: the intuition is that we allow uncertainty in the assignment of
objects to clusters. With reference to evidential clustering, which represents
the most general framework among the ones we consider, the uncertainty about
cluster assignment is represented as a Dempster-Shafer mass function (see Ap-
pendix A). Formally, using the object-based representation, an evidential clus-
tering is a set M = {mx}x∈X , where each mx is a mass function, i.e., a mapping
mx : 2Ω 7→ [0, 1] such that

∑
A⊆Ω mx(A) = 1.

Example 2.3. Let X and Ω be as in Example 2.1. Then M = {mxi
}xi∈X

defined as: mx1
({ω1}) = 1; mx2

({ω2}) = 1; mx3
({ω2, ω3}) = mx3

(Ω) = 0.5;
mx4({ω3}) = 1; mx5(Ω) = 0.5,mx5({ω1}) = mx5({ω2}) = mx5({ω3}) = 1/6 is
an evidential clustering.

If the mass functions mx are logical, i.e., if they are such that mx(A) = 1
for some subset A ⊆ Ω, then, the collection R = {mx}x∈X is said to be a rough
clustering. For each x ∈ X, we denote the unique A ⊆ Ω s.t. mx(A) = 1
as R(x). A rough clustering can be equivalently represented by associating
with each cluster ω a pair (l(ω), u(ω)) of subsets of X verifying l(ω) ⊆ u(ω).
Intuitively, l(ω) contains the elements that “certainly” belong to the cluster,
while u(ω) contains the elements that “possibly” belong to the cluster. The
set u(ω) \ l(ω), called the boundary of the cluster, contains the elements whose
assignment to cluster ω is uncertain. Finally, a rough clustering can be seen as
a set of hard clusterings. Namely, a hard clustering C is compatible with R if
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for all x ∈ X, C(x) ∈ R(x). Then, we identify R with the set C(R) = {C :
C is compatible with R}.

Example 2.4. Let X and Ω be defined as in Example 2.1. Then R defined by
R(x1) = ω1, R(x2) = ω2, R(x3) = {ω2, ω3}, R(x4) = ω3, R(x5) = Ω is a rough
clustering. Using the tuple-based notation introduced in Example 2.1, R can be
equivalently represented by the set

C(R) = {(1, 2, 3, 3, 3), (1, 2, 3, 3, 2), (1, 2, 3, 3, 1),
(1, 2, 2, 3, 3), (1, 2, 2, 3, 2), (1, 2, 2, 3, 1)}.

For simplicity, we denote C(R) as (1, 2, {2, 3}, 3, {1, 2, 3}).

If all mx are Bayesian, then the collection F = {mx}x∈X is a fuzzy or
probabilistic clustering. Finally, if all mx are consonant, then the collection
P = {mx}x∈X is a possibilistic clustering. Both fuzzy and possibilistic clustering
can be represented as a collection of cluster membership vectors F = {µx}x∈X ,
where µx(ω) =

∑
A∋ω mx(A). In possibilistic clustering it is assumed that, for

all x ∈ X, maxω∈Ω µx(ω) ≤ 1, while in fuzzy clustering it is usually assumed
that for all x ∈ X,

∑
ω∈Ω µx(ω) = 1.

Example 2.5. Let X and Ω be defined as in Example 2.1. Then, F defined
as µx1

(ω1) = 1, µx2
(ω2) = 1, µx3

(ω2) = µx3
(ω3) = 0.5, µx4

(ω3) = 1 and
µx5

(ω1) = µx5
(ω2) = µx5

(ω3) =
1
3 is a fuzzy clustering.

P defined as µx1
(ω1) = 1, µx2

(ω2) = 1, µx3
(ω2) = µx3

(ω3) = 1, µx4
(ω3) = 1

and µx5
(ω1) = µx5

(ω2) = 1, µx5
(ω3) = 0.8 is a possibilistic clustering.

Similarly to the case of hard clustering, a relational representation can be
defined also for the case of evidential clustering [18]. In this case, let Θ = {s,¬s}
be the frame where s denotes that two objects are in the same cluster, and ¬s
denotes the opposite event. Given an evidential clustering M , the corresponding
relational representation can be obtained, for any two distinct objects (x, y) ∈
X2, by combining mx and my by Dempster’s rule [43], and computing the
restriction of the resulting mass function to Θ [18]. The resulting mass function
mx,y is then defined by

mx,y({s}) =
∑
ω∈Ω

mx(ω)my(ω) (3a)

mx,y({¬s}) =
∑

A∩B=∅

mx(A)my(B)−m(∅) (3b)

mx,y(Θ) =
∑

A∩B ̸=∅

mx(A)my(B)−m(s) (3c)

mx,y(∅) = mx(∅) +my(∅)−mx(∅)my(∅). (3d)

Obviously, it holds that mx,x({s}) = 1.

Example 2.6. Let M be the evidential clustering defined in Example 2.3. Then,
the relational representation [M ] of M is defined as the reflexive (i.e., mx,x(s) =
1) and symmetric (i.e., mx,y = my,x) closure of the relation shown in Table 1.
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Table 1: Relational representation of the evidential clustering defined in Example 2.3.

Pair m(∅) m(s) m(¬s) m(Θ)
(x1, x2) 0 0 1 0
(x1, x3) 0 0 0.5 0.5
(x1, x4) 0 0 1 0

(x1, x5) 0 1
6

1
3

0.5

(x2, x3) 0 0 0 1
(x2, x4) 0 0 1 0

(x2, x5) 0 1
6

1
3

0.5

(x3, x4) 0 0 0 1

(x3, x5) 0 0 1
12

11
12

(x4, x5) 0 1
6

1
3

0.5

For the case of fuzzy and possibilistic clustering, two alternative approaches
to obtain a relational representation have been considered. In the first approach,
proposed by Campello et al. [10], µx,y is defined, based on a t-norm ∧ and the
dual t-conorm ∨ as

µx,y(s) =
∨
ω∈Ω

µx(ω) ∧ µy(ω) (4a)

µx,y(¬s) =
∨

ω1 ̸=ω2∈Ω

µx(ω1) ∧ µy(ω2). (4b)

When ∧ = ⊗P (i.e., the product t-norm), ∨ = ⊕P (i.e., the bounded sum
t-conorm) and {µx}x∈X defines a fuzzy partition, then we obtain the same
definition given previously for evidential clustering.

In the second approach, proposed by Hüllermeier et al. [27], the relational
representation is defined based on a normalized metric dF on [0, 1]Ω (i.e., the
set of functions Ω 7→ [0, 1]). Then, we simply define

µx,y(¬s; dF ) = dF (⟨µx(ω1), . . . , µx(ωk)⟩, ⟨µy(ω1), . . . , µy(ωk)⟩) (5a)

µx,y(s; dF ) = 1− µx,y(¬s; dF ). (5b)

Finally, by reference to the case of evidential clustering, we can remark that,
if we interpret a soft clustering as describing our uncertainty in regard to some
underlying (unknown) hard clustering, then two types of uncertainty can be
distinguished. First, partial assignment, i.e., the existence of conflicting evidence
supporting the assignment of an object x to two different clusters ω1 and ω2, in
which case we have mx({ω1}) > 0 and mx({ω2}) > 0. Second, ambiguity, i.e.,
the assignment of some mass to non-singleton events (i.e., mx(A) > 0 for some
A ⊆ Ω such that |A| > 1), which describes our inability to exactly determine
to which cluster an object belongs. It is easy to observe that fuzzy clustering
only considers partial assignment, since all the mass is assigned to singletons.
By contrast, in the case of rough clustering, only ambiguity is present.

2.3. Clustering Comparison Measures

Several measures have been defined to compare clusterings. We can dis-
tinguish between approaches that rely on the relational representation on the
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one hand, and on the object-based representation on the other hand. Here, we
provide a survey of both families of measures for hard and soft clustering.

2.3.1. Relational-based Comparison Measures

Given two hard clusterings C1, C2, a sensible approach to compare them is
to evaluate the number of pairs of objects (x, y) ∈ X2 on which they agree.
In particular, the Rand index is defined as the proportion of pairs of distinct
objects that are either in the same cluster in C1 and in the same cluster in C2,
or in different clusters in C1 and in different clusters in C2. Formally,

Rand(C1, C2) =
2|{(xi, xj) : 1 ≤ i < j ≤ n and [(xi, xj) ∈ (A ∪Bc)]}|

n(n− 1)
, (6)

where A = [C1]∩[C2], B = [C1]∪[C2] and (·)c is the complement operator. Other
evaluation measures can be defined based on the same principle, including the
Jaccard and Fowlkes-Mallows [23] indices. It is easy to show that these indices
are similarities on hard clusterings, irrespective of their representation.

Several extensions of the above mentioned indices to the soft clustering set-
ting have been considered. In the case of fuzzy and possibilistic clustering,
Campello et al. [10] proposed an approach based on extending the computation
of Eq (6) to the fuzzy case, based on a t-norm ∧ and a t-conorm ∨. Similarly,
Frigui et al [24] proposed an approach that is a special case of the formulation
given by Campello et al., where ∧ = ⊗P , ∨ = ⊕P and only fuzzy clusterings are
considered. This latter approach has also been generalized to the rough cluster-
ing setting [21], by means of a transformation from rough to fuzzy clustering. A
potential flaw of the formulations proposed in [10, 21, 24] is that the correspond-
ing measures fail to satisfy the properties mentioned in Section 1, hence they
cannot be used to provide an objective comparison between two fuzzy or rough
clusterings. In particular, since they fail to be pseudo- and semi-similarities, it
can happen that Rand(F, F ) < 1 for some fuzzy clustering F . Consequently, the
generalizations of the Rand index proposed in [10, 21, 24] cannot be directly
applied to objectively compare the results of two fuzzy clustering algorithms
since, even when the two algorithms report the same clustering, these measures
could report a value smaller than 1, denoting a difference between them.

An alternative approach to generalize the Rand and Jaccard indices, for the
case of fuzzy and possibilistic clustering, was proposed by Anderson et al. [2].
By adopting a matrix-based representation, the authors show that an equivalent
(for the case of hard clustering) formulation of Eq (6) can be generalized to
fuzzy and possibilistic clusterings, and can be computed in time O(n). Despite
its favorable complexity, it has been shown that the obtained generalization
of the Rand index has some non-intuitive properties. In particular, as the
indices proposed in [10, 21, 24], it can fail to be a meta-similarity. Furthermore,
its value is not restricted to the range [0, 1], and may even be negative: the
absence of an absolute comparison scale thus makes the measure proposed in [2]
hardly applicable for evaluating the quality of a fuzzy clustering with respect
to a known ground truth, or for comparing the results of two different fuzzy
clustering algorithms.
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To address these limitations, for the case of the Rand index, a different
approach was considered by Hüllermeier et al. [27]. This approach is based on
an equivalent definition of the Rand index as

Rand(C1, C2) =
2

n(n− 1)

∑
1≤i<j≤n

1− |1(xi,xj)∈[C1] − 1(xi,xj)∈[C2]|. (7)

Let dF be a normalized metric on [0, 1]Ω. Then, formula (7) for the Rand index
can be generalized to fuzzy clustering as

Rand′F (P1, P2) =
2

n(n− 1)

∑
1≤i<j≤n

1− |µxi,xj

1 (s; dF )− µ
xi,xj

2 (s; dF )|, (8)

where µ
xi,xj

ℓ (s; dF ) for ℓ = 1, 2 are defined by (5). In contrast with the previous
measures, Rand′F is a similarity for the relational representation, and a pseudo-
similarity for the object-based representation. If dF is the cosine distance, we
obtain the approach proposed in [8]. The approach proposed in [27] has been
generalized to the case of evidential clustering by Denoeux et al. [18]. Based on
the relational representation of evidential clustering (see Section 2.2), the Rand
index is expressed as:

RandE(M1,M2) =
2

n(n− 1)

∑
1≤i<j≤n

1− dM (m
xi,xj

1 ,m
xi,xj

2 ) (9)

where dM is a normalized metric for mass functions. The authors consider, in
particular, the Belief distance dB and Jousselme’s distance dJ , showing that the
corresponding measures are pseudo-similarities for the object-based representa-
tion and similarities for the relational representation. Nonetheless, the authors
of [18] note that their approach is not completely satisfactory for the comparison
of evidential clusterings, as dB does not distinguish between partial assignment
and ambiguity, while dJ penalizes ambiguity more than partial assignment.

Example 2.7. Let M be as in Example 2.3. Consider the pair of objects
(x2, x3), for which mx2,x3(Ω) = 1. Furthermore, let M1 be an evidential clus-
tering such that mx2,x3({s}) = 1, and M2 an evidential clustering such that
mx2,x3({s}) = mx2,x3({¬s}) = 0.5. Then, it holds that

dB(m
x2,x3

M ,mx2,x3

M1
) = dB(m

x2,x3

M2
,mx2,x3

M1
) = 0.5.

Thus, RandB does not distinguish between ambiguity and partial assignment. By
contrast, it holds that

dJ(m
x2,x3

M ,mx2,x3

M1
) = 0.71 > 0.5 = dB(m

x2,x3

M2
,mx2,x3

M1
).

Thus, RandJ penalizes ambiguity more than partial assignment.

To address this issue, the authors of [18] also propose an alternative gener-
alization of the Rand index, based on the degree of conflict

K(m
xi,xj

1 ,m
xi,xj

2 ) =
∑

A,B:A∩B=∅

m
xi,xj

1 (A) ·mxi,xj

2 (B).
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The authors observe that the obtained measure, denoted as RandK , is a consis-
tency and suggest that a pair of measures (e.g., RandB and RandK) could be
used to obtain a comprehensive evaluation measure.

2.3.2. Object-based Comparison Measures

While the measures reviewed in Section 2.3.1 rely on the relational rep-
resentation, different measures based on the object-based representation have
also been proposed. This latter family of measures addresses a limitation of
the previously mentioned relational representation-based measures, namely: let
M1,M2 be two evidential clusterings such that M1 ̸= M2 but [M1] = [M2]
(that is, the two clusterings are different w.r.t. the object-based representa-
tion but have identical relational representation); then, if d is a relational-based
comparison measure, d(M1,M2) = 0 (see also Corollary 4.1).

The partition distance [11] for two hard clusterings C1, C2 is defined as the
minimum number of objects to be moved to transform C1 into C2 (or, equiva-
lently, C2 into C1). Assume, without loss of generality, that |Ω1| = |Ω2| (indeed,
if |Ω1| ≠ |Ω2|, we can add empty clusters to the clustering with the smallest
number of clusters). Then, the partition distance can be computed as

dπ(C1, C2) =
1

2(n− 1)
min
τ

k∑
i=1

|ω1
i∆ω2

τ(i)|, (10)

where τ is a permutation of {1, . . . , k}, ωj
i is the i-th cluster in clustering Cj ,

and ∆ is the symmetric difference operator. We can easily see that dπ is a
normalized metric: indeed, at most n − 1 objects need to be moved between
clusters to make the two clusterings equivalent and each moved object is counted
twice; hence, the 2(n− 1) factor in the denominator normalizes the range of dπ.

An extension of the partition distance to the case of fuzzy clustering was
proposed by Zhou [50], based on the fact that the partition distance is a special
case of the Wasserstein construction (see Eq. (2) in Section 2.1). The obtained
measure is a proper generalization of the partition distance and is a metric. A
similar approach was adopted by Anderson et al [3], who proposed a general-
ization of the partition distance to fuzzy and possibilistic clusterings. While
for the case of fuzzy clusterings the obtained measure is a metric, in the case
of possibilistic clusterings the obtained measure is not even a meta-metric and
may result in values greater than 1. Thus, it is subject to the same limitations
as the generalization of the Rand index proposed in [2]. To our knowledge, the
extension of the partition distance to rough and evidential clustering has not
been considered in the literature.

A second family of object-based comparison measures is based on informa-
tion theory [47]. It includes the mutual information [47] and the variation of
information [37]. These approaches have been recently extended to the case
of rough clustering in [9], based on the representation of a rough clustering R
as a collection C(R) of compatible hard clusterings. Namely, the authors of
[9] propose an interval-valued comparison measure representing the minimum
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and maximum values of mutual information among all pairs of hard clusterings
compatible with the rough clusterings to be compared. To our knowledge, no
extension of these metrics to the more general case of evidential clustering has
been proposed so far.

3. A General Framework for Soft Clustering Evaluation Measures

As shown in the previous section, most of the research on comparison mea-
sures for soft clustering has focused on the analysis of some specific indices,
while a general methodology for obtaining such measures is still missing. Fur-
thermore, as noted in [18, 27], most of the existing methods fail to satisfy the
metric properties described in Section 1. Consequently, they can hardly be used
for the objective comparison of soft clusterings. Notably, the more principled
approaches introduced in [18] can also have some drawbacks, such as the inabil-
ity to properly distinguish between different types of uncertainty arising in soft
clustering.

In this section, we propose a general approach that attempts to address these
limitations, based on the representation of a soft clustering as a mass function
over hard clusterings. As already discussed in Section 1, this approach aims at
addressing two different purposes of an evaluation measure for soft clustering,
namely, uncertainty representation and objective comparison. In regard to the
first aim, we will focus on interval-valued measures, as a compromise between
succinctness and expressivity. Further, since a general soft clustering accounts
for two different types of uncertainty (i.e., ambiguity and partial assignment),
it seems reasonable to require any suitable measure to represent the full range
of compatibility between two soft clusterings, varying with respect to how much
we are willing to penalize ambiguity versus partial assignment. If we consider
ambiguity to be completely acceptable, then the measure should quantify the
compatibility between the two soft clusterings: under this constraint, the mea-
sure should arguably be a consistency, as previously discussed in [18, 27]. By
contrast, when we consider ambiguity to be equivalent to an error, then the
measure should quantify the exact equality between the two soft clusterings,
and should hence be a metric (or, dually, a similarity).

In the following, we first introduce the distribution-based representation of
soft clustering in Section 3.1. Then, we address the two above-mentioned aims
for a soft clustering comparison measure by means of the transport-based mea-
sures (Section 3.2), which provide an objective interval-valued evaluation index
based on the Wasserstein distance between two soft clusterings.

3.1. Distribution-based Representation of Soft Clustering

As mentioned at the beginning of this section, the approaches we propose are
based on an alternative representation of soft clusterings as distributions over
hard clusterings. Thus, intuitively, we assume that a soft clustering represents
our uncertain knowledge about an underlying, unknown hard clustering.

As shown in Section 2.2, this is clearly true for the case of rough clustering:
indeed, a rough clustering R can be represented as a set C(R) of hard clusterings
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C. Based on this observation, we extend this representation to general soft
clusterings. Formally, given an evidential clusteringM we define a mass function
mM as

mM (R) =
∏
x∈X

mx(R(x)), (11)

where R is any rough clustering. That is, an evidential clustering is repre-
sented as a mass function over hard clusterings or, equivalently, as a probability
distribution over rough clusterings. Given an evidential clustering M and its
distribution-based representation mM , we denote by F(M) the collection of
focal rough clusterings of mM , that is F(M) = {R : mM (R) > 0}.

The distribution-based representation for rough, fuzzy and possibilistic clus-
tering can then be obtained as a special case of Eq (11). Indeed, in the case
of rough clustering, mM is logical (i.e., |F(mM )| = 1), while in the case of
fuzzy clustering the focal rough clusterings are all singletons (i.e., hard cluster-
ings). Finally, in the case of possibilistic clustering, the possibility distribution
PossP can equivalently be represented as a consonant mass function, i.e., the
focal rough clusterings are nested. More precisely, given a fuzzy clustering
F = {µx}x, where µx : Ω 7→ [0, 1] is a probability distribution, we can represent
it as the probability distribution on hard clusterings given by

PrF (C) =
∏
x∈X

µx(C(x)). (12)

On the other hand, given a possibilistic clustering P and a t-norm ∧, we can
view P as a possibility distribution over hard clusterings:

PossP (C) =
∧
x∈X

µx(C(x)). (13)

If ∧ is the product t-norm, we recover the case of fuzzy clustering.

Example 3.1. Let F, P,M be the soft clusterings defined in Examples 2.5 and
2.3. Then, PrF is defined as

PrF ((1, 2, 3, 3, 3)) = PrF ((1, 2, 3, 3, 2)) = PrF ((1, 2, 3, 3, 1)) =

PrF ((1, 2, 2, 3, 3)) = PrF ((1, 2, 2, 3, 2)) = PrF ((1, 2, 3, 3, 1)) =
1

6
.

Similarly, PossP is defined as

PossP ((1, 2, 3, 3, 3)) = PossP ((1, 2, 2, 3, 3)) = 0.8

PossP ((1, 2, 3, 3, 2)) = PossP ((1, 2, 3, 3, 1)) = 1

PossP ((1, 2, 2, 3, 2)) = PossP ((1, 2, 2, 3, 1)) = 1.

Finally, mM is defined as

mM ((1, 2, {2, 3}, 3,Ω)) = mM ((1, 2,Ω, 3,Ω)) = 0.25

mM ((1, 2, {2, 3}, 3, 1)) = mM ((1, 2, {2, 3}, 3, 2)) = mM ((1, 2, {2, 3}, 3, 3)) = 1

12

mM ((1, 2,Ω, 3, 1)) = mM ((1, 2,Ω, 3, 2)) = mM ((1, 2,Ω, 3, 3)) =
1

12
.
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Based on the distribution-based representation, in the following section, we
describe a general approach that can be used to extend a comparison measure
between hard clusterings to a comparison measure between soft clusterings.

3.2. Transport-based Measures

In this section we introduce an approach to extend any clustering comparison
metric to the case of soft clustering. This approach relies on the Wasserstein
construction from Optimal Transport theory [46] (see Section 2.1) to compute
a distance between the distributional representations of the two soft clusterings
to be compared. The metric properties we seek, then, directly follow from the
constructions we employ.

To illustrate this idea, we recall that every evidential clustering (hence, ev-
ery soft clustering) can be represented as a distribution over rough clusterings,
as shown in Section 3.1. Hence, a comparison measure for soft clustering could
be obtained by computing the cost of making the two distributions equivalent,
by moving masses from one rough clustering to another, where the cost of such
movements is determined by a base distance over rough clusterings. To define
such measures, we will proceed in two steps: first, we will define a base dis-
tance over rough clusterings; then, we will extend this distance to general soft
clustering using an approach based on the Wasserstein Distance.

Comparison between rough clusterings. Let d be a normalized distance over
hard clusterings. Since, as mentioned in Section 1, we focus on interval-valued
measures, we are interested in the definition of a pair of measures ⟨dl, du⟩,
where 1 − dl is a consistency and du is a metric (equivalently, 1 − du is a
similarity). Intuitively, du should measure the equivalence between two rough
clusterings by completely discounting ambiguity (i.e., treating ambiguity as if it
was equivalent to an error). By contrast, 1−dl should measure the compatibility
between two rough clusterings by determining whether they have a common
disambiguation (i.e., a common assignment of objects to clusters). Let R1, R2 be
two rough clusterings and C(R1), C(R2) be the corresponding sets of compatible
hard clusterings. We consider the following pair of measures:

dR0 (R1, R2) = min
C1∈C(R1),C2∈C(R2)

d(C1, C2) (14a)

dR1 (R1, R2) = dH(C(R1), C(R2)). (14b)

That is, dR0 is the minimum possible distance obtained by considering the
hard clusterings that are compatible with R1 and R2, while d

R
1 is the correspond-

ing value of the Hausdorff distance1. It is easy to observe that dR0 (R1, R2) = 0
as long as there exists a hard clustering C that is compatible with both R1, R2.
In contrast, dR1 (R1, R2) = 0 iff C(R1) = C(R2). Furthermore, the following
result directly follows from the definition of dR0 , d

R
1 :

1We remark that, if dR1 was defined similarly to (14a) as maxC1∈C(R1),C2∈C(R2) d(C1, C2),

i.e., by replacing the minimum in (14a) by the maximum, then this alternative version of dR1
would not be a metric [9].

13



Proposition 3.1. 1−dR0 is a consistency, while dR1 is a normalized metric (i.e.,
1− dR1 is a similarity).

Proof. Clearly, dR0 satisfies (M3). Similarly, dR0 satisfies also (M1), while it fails
to satisfy (M2). For the case of (M4), consider three rough clusterings R1, R2, R3

s.t. C(R1) ∩ C(R2) ̸= ∅, C(R2) ∩ C(R3) ̸= ∅, while C(R1) ∩ C(R3) = ∅. Then,
clearly, dR0 does not satisfy (M4). For the case of dR1 , it suffices to note that d
is a normalized metric and X is countable.

Thus, as a consequence of the previous result, dR0 meets the requirement
of not penalizing, but instead allowing and promoting ambiguity: indeed, two
rough clusterings are considered equivalent as longs as they have a compatible
hard clustering in common. By contrast, dR1 fully penalizes ambiguity, equating
it to an error in clustering assignment, by declaring two rough clusterings to be
equivalent if and only if all their compatible hard clusterings coincide.

More generally, if we define dRα = αdR1 + (1 − α)dR0 , for any α ∈ [0, 1], then
the following result holds:

Theorem 3.1. Let α ∈ [0, 1]. Then:

• If α ≥ 1
2 , d

R
α is a metric;

• ∀ρ ≥ 1, if α ≥ 1
2ρ , d

R
α is a ρ-relaxed metric.

Proof. That dRα is symmetric (i.e., satisfies (M3)) is evident from the definition.
Similarly, evidently for each α > 0 dRα satisfies (M1) and (M2). The result then
follows from Example 2.2 and Lemma 2.3 in [48].

Intuitively, dRα can be understood as an intermediate measure considering
the relative cost associated to ambiguity to be α: that is, α can be interpreted
as the ratio of the cost of ambiguity over the cost of error. Indeed, consider
the case where we compare a rough clustering R with a hard clustering C.
Then, if α = 0 it holds that dRα = dR0 , which equals 0 as long as C ∈ C(R).
This corresponds to assigning the cost of ambiguity to be equal to 0, since we
ignore all C ′ ∈ C(R) \ {C}. By contrast, if α = 1, then dRα = dR1 , which
equals 0 iff C(R) = {C}: in particular, if R1, R2 are two rough clusterings
with C(R1) ⊂ C(R2), then dR1 (C,R1) ≤ dR1 (C,R2). Thus, when α = 1, the
cost of ambiguity is equated to the cost of an error, as every assignment of
objects to the boundary of a cluster is penalized to the same degree as the
assignment to an incorrect cluster. More generally, α represents the trade-off
between ambiguity and error that the specific user is willing to tolerate for the
application at hand, and it should be set accordingly. Thus, a user who is willing
to tolerate a certain degree of ambiguity (hence, a potentially larger number of
objects assigned to the boundary of some cluster), in order to reduce the risk of
clustering errors should set α closer to 0. This could make sense, for example,
in medical applications where some degree of ambiguity could be tolerated if it
avoids clustering together objects that correspond to patients associated with
different clinical characteristics. Conversely, a user who prefers obtaining a
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clustering close to a hard one, and is willing to tolerate a potentially larger
amount of cluster assignment errors, should set α closer to 1. Obviously, the
previous discussion only provides guidelines to set the α parameter; its value
should be carefully optimized to match the requirements of the application at
hand.

Example 3.2. Let C,R be the clusterings defined in Examples 2.1 and 2.4, and
let d = 1−Rand. Then dR0 = 0 and dR1 = 0.5. Thus, for every α ∈ [0, 1] it holds
that dRα ∈ [0, 0.5]. In particular, for the case of α = 0.5, we have dR0.5 = 0.25.
On the other hand, if d is the partition distance dπ, then dR0 = 0 and dR1 = 0.4.
Thus, for every α ∈ [0, 1] it holds that dRα ∈ [0, 0.4]. In particular, for the case
of α = 0.5, we have dR0.5 = 0.2.

By construction, dR0 and dR1 are well suited for the objective comparison be-
tween two soft clusterings, as they satisfy the required metric property of being
(the dual of) a consistency and a metric. Unfortunately, from the computational
point of view, the calculation of dR0 and dR1 is likely to be intractable, as shown
by the following proposition.

Proposition 3.2. Let R1, R2 be two rough clusterings represented through, ei-
ther, the object-based or relational representations. Let k = |Ω| be the number
of clusters, and m = |{x ∈ X : |R(X)| ̸= 1}|. Then, the problem of computing
dR0 and dR1 is NP-HARD: in particular, if k is constant, then both problems
are fixed-parameter tractable with respect to the parameter m.

By contrast, both problems are in P if R1, R2 are represented through the
distribution-based representation. In this latter case, the complexity is o(km).

Proof. For the case of dR0 , this can be obtained by a reduction to integer pro-
gramming. Computing dR1 (R1, R2) is equivalent to computing the Hausdorff
distance between C(R1), C(R2), which can be seen as a max-min 0-1 optimiza-
tion problem. Since C(R1), C(R2) are finite, this can be transformed to a min-
max 0-1 optimization problem, which is NP-HARD [30]. The second part of
the theorem easily follows by noting that dR0 , d

R
1 can easily be computed by

enumerating all elements in C(R1), C(R2). Finally, fixed parameter tractability
of computing dR0 , d

R
1 derives from the two previous results.

To address the problem of computational hardness, several approximations
will be described in Section 4.

Extension to general soft clusterings. The previous approach can be extended
to the cases of fuzzy, possibilistic and evidential clustering, by noting that all
these three forms of soft clusterings can be expressed as probability distributions
over rough clusterings. For the case of evidential clustering, this has already
been shown in Eq (11). For the case of fuzzy clustering, it follows from Eq
(12) that any fuzzy clustering can be represented as a distribution over rough
clusterings whose corresponding sets of compatible clusterings are singletons.
Finally, the case for possibilistic clustering directly follows from the fact that a
possibilistic clustering is an evidential clustering in which all mass functions are
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consonant. As a consequence, we can use an approach based on the Wasserstein
Distance to extend dR0 and dR1 to evidential clustering. Namely, given two
evidential clusterings M1,M2 and their corresponding focal sets F(M1),F(M2),
the general definition of the transport-based measure is given by

dEα (M1,M2) = min
σ

∑
(R1,R2)∈F(M1)×F(M2)

σ(R1, R2)d
R
α (R1, R2) (15)

s.t.
∑

R2∈F(M2)

σ(R1, R2) = mM1
(R1)

∑
R1∈F(M1)

σ(R1, R2) = mM2
(R2)

∑
(R1,R2)∈F(M1)×F(M2)

σ(R1, R2) = 1

∀(R1, R2) ∈ F(M1)×F(M2), σ(R1, R2) ≥ 0.

Intuitively, the transport-based measure based on dRα can be interpreted as the
minimal cost of transforming the mass function over hard clusterings described
by M1 into the mass function described by M2. This cost is computed by
finding the joint mass function whose marginals are equal to M1 and M2, and
which minimizes the expected value of dRα (R1, R2). Due to the properties of the
Wasserstein distance, it is easy to show that the following properties hold:

Theorem 3.2. Let α ∈ [0, 1]. Then,

• If α ≥ 1
2 , d

E
α is a metric;

• ∀ρ ≥ 1, if α ≥ 1
2ρ , d

E
α is a ρ-relaxed metric;

• 1− dE0 is a consistency.

Proof. The result is a direct consequence of Theorem 3.1 and the properties of
the Wasserstein distance.

Corollary 3.1. Let F1, F2 be two fuzzy clusterings. Then, ∀α1, α2 ∈ [0, 1] it
holds that dEα1

(F1, F2) = dEα2
(F1, F2).

Proof. The result directly follows from the observation that, for a fuzzy cluster-
ing F the focal sets of mF are all singletons.

As dRα for rough clusterings, dEα can be used as an objective comparison
measure for evidential clusterings. In particular, 1 − dE0 provides a measure of
consistency between two evidential clusterings, while dE1 can be understood as
an equality index for evidential clustering. Moreover, as previously discussed,
dEα , with α ∈ [0, 1], can be interpreted as a measure of compatibility between
two evidential clusterings, where the relative cost of ambiguity is exactly α. The
transport-based measure generalizes the previous proposals in [18, 27], by pro-
viding a general framework to extend any hard clustering comparison measure
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to the setting of soft clustering, thus enabling the direct comparison of any two
soft clusterings, irrespective of their representation (either relational-based or
object-based) and class (based either on rough, fuzzy, possibilistic or evidential
clustering). Furthermore, it also allows a more flexible trade-off between ambi-
guity and partial assignment or clustering errors, by controlling the ambiguity
parameter α.

Example 3.3. Let C,F, P,M be the clusterings defined in Examples 2.1, 2.3,
2.5, and let d = 1− Rand. Then, it holds that:

• For all α ∈ [0, 1] dEα (C,F ) = 0.267;

• dE0 (C,P ) = 0, dE1 (C,P ) = 0.48;

• dE0 (C,M) = 1
12 , d

E
1 (C,M) = 0.442.

If, instead, we let d = dπ we obtain:

• For all α ∈ [0, 1] dEα (C,F ) = 0.23;

• dE0 (C,P ) = 0, dE1 (C,P ) = 0.4;

• dE0 (C,M) = 0.07, dE1 (C,M) = 0.37.

In regard to the computational complexity, since the problem of comput-
ing dR0 , d

R
1 is already computationally hard, it is evident that the problem of

computing dEα is also computationally hard. An interesting problem, however,
would be to determine whether, at least for the case of fuzzy clustering, a com-
putationally efficient algorithm exists for solving Eq (15). We leave this problem
for future work. In the following section, however, we show that dE0 and dE1 can
be efficiently bounded by means of a polynomial-time algorithm in the cases of
the Rand index and the partition distance.

As a last result in this section, we study the special case where one of the
clusterings to be compared is a hard clustering C. This case is particularly
interesting, since it frequently arises in applications. Indeed, in many cases, e.g.,
when one wants to test a novel soft clustering algorithm, one uses an existing
ground truth clustering C as a reference for comparison. The following theorem
shows that, in this particular case, the interval-valued transport-based measure
between C and an evidential clustering M can be interpreted as the lower and
upper expectations of the distance between C and the unknown hard clustering
partially specified by M :

Theorem 3.3. Let M,C be, respectively, an evidential clustering and a hard
clustering. Let d be a normalized metric over hard clusterings, and let E(d), E(d)
be the lower/upper expectation of d with respect to mM . Then dE0 (M,C) = E(d),
dE1 (M,C) = E(d).

Proof. First, we note that for all R ∈ F(M), it is easy to observe that under
the conditions stated in the Theorem it holds that dR1 = maxC′∈C(R) d(C,C

′).
Since C is a hard clustering, mC({C}) = 1. Therefore, the result follows by
noting that Eq (15) reduces to the expectation, with respect to mM , of dRα .
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4. Approximation Methods

In the previous section, we proposed a general approach, the transport-based
measures, to extend hard clustering comparison measures to the case of soft
clustering. This approach can be used to obtain objective comparison criteria,
by applying the Wasserstein construction to the distribution-based representa-
tion of the soft clusterings to be compared. Nonetheless, the computation of the
transport-based measure is generally intractable. For this reason, in this section,
we introduce some approximation methods and algorithms. First, in Section 4.1,
we describe a general approach based on sampling, which can be applied to any
base distance between hard clusterings. In Sections 4.2 and 4.3, we then discuss
generalizations of the Rand index and the partition distance, as representatives,
respectively, of relational-based and object-based comparison measures, and we
show that they can be used to approximate the transport-based measure.

4.1. Sampling-based Approximation Algorithms

In this section, we provide a general sampling-based approach that can
be used to approximate the value of dEα . We start with the case of rough
clustering, that is with dR0 , d

R
1 . Assume that, given two rough clusterings R1

and R2, we draw s samples (C1
1 , C

1
2 ), . . . , (C

s
1 , C

s
2) uniformly from C(R1) and

C(R2). Then, we can approximate d̂R0 = mini∈{1,...,s} d(C
i
1, C

i
2) and d̂R1 =

dH({Ci
1}si=1, {Ci

2}si=1). It is easy to show that the following result holds:

Proposition 4.1. The following bounds hold for any t > 0:

Pr(dR1 − d̂R1 > ϵ) ≤ F (dR1 − ϵ)s (16a)

Pr(d̂R0 − dR0 > ϵ) ≤ 1−
(
1− F (ϵ− dR0 )

)s
, (16b)

where F is the cumulative distribution function (CDF) of the probability distri-
bution pR defined as

pR(t) =
|{C1 ∈ C(R1), C2 ∈ C(R2) : d(C1, C2) = t}|

|dR(R1, R2)|
. (17)

Noting that F (dR1 − t) (resp., F (t− dR1 )) is stricly less than 1, it holds that, for

each ϵ, Pr(dR1 − d̂R1 > ϵ) (resp. Pr(d̂R0 − dR0 > ϵ)) has exponential decay in the
size of the sample s.

Proof. The result directly follows from the distribution of the order statistics
d̂R0 , d̂

R
1 .

Thus, even though computing ⟨dR0 , dR1 ⟩ is computationally hard, we can ob-
tain good approximations of its value by a simple sampling procedure that can
be easily implemented in polynomial time.

Remark. We note that, despite the previous bounds, the quality of the approx-
imation largely depends on pR(t). In particular, the convergence in Eq (16) is
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correlated with the tailedness of pR defined in Eq (17): the heavier the tails of
pR, the lower the approximation error. This can be directly understood by look-
ing at the bounds in Eq. (16): indeed, if the tails of pR are thin, than F (dR1 − ϵ)
will be close to 1, thus resulting in a large approximation error.

The problem mentioned in the previous remark can be illustrated through
the following example.

Example 4.1. Let C be the hard clustering defined in Example 2.1, let R′ be
the rough clustering s.t. ∀x ∈ X,R(x) = Ω, and let d = 1−Rand. Then, clearly,
dR0 = 0 and dR1 = 1. However, the probability distribution pR will be concen-
trated around the expected value of 1−Rand under the uniform distribution [44].

Consequently, d̂R0 and d̂R1 will also be close to this value with high probability.

For the case of fuzzy clustering, let

dF1,F2
(v) =

∑
C1,C2:d(C1,C2)=v

PrF1
(C1) · PrF2

(C2).

If we use a sampling procedure to estimate dEα (F1, F2), we can obtain a stronger
tail bound by applying Hoeffding’s inequality:

Proposition 4.2. Assume that d is a normalized metric on hard clusterings,
and F1, F2 are two fuzzy clusterings. Then,

Pr(|d̂Eα (F1, F2)− dEα (F1, F2)| ≥ ϵ) ≤ 2e−2sϵ2 . (18)

Hence, the deviation has exponential decay in the size of the sample s.

Combining Eqs (16) and (18), an analogous result can be found also for the
case of dEα . Indeed, we obtain:

Proposition 4.3. Assume that d is a normalized metric on hard clusterings.
Let d̂E0 , d̂

E
0 be the sample estimates of dE0 , d

E
1 . Then:

Pr(|d̂E0 − dE0 | ≥ ϵ) ≤ 2e−2sϵ2 (19a)

Pr(|d̂E1 − dE1 | ≥ ϵ) ≤ 2e−2sϵ2 . (19b)

The previous bound, however, assumes that d̂E0 , d̂
E
1 are computed by sam-

pling pairs R1, R2 of rough clusterings from the distributions mM1
,mM2

and
then computing the exact values of dR0 (R1, R2), d

R
1 (R1, R2). As a consequence

of Proposition 3.2, this may not be feasible when |X| is large. In such cases,

a possible solution would be to compute d̂E0 , d̂
E
1 using a nested sampling pro-

cedure (i.e, first we sample a rough clustering R from mM , then we sample a
hard clustering C from C(R)). In this case, however, one should expect a larger
approximation error as a consequence of our previous remarks.

Finally, we note that all the above mentioned sampling-based approximation
methods can easily be implemented in polynomial time, more precisely with
time complexity O(n2s + s3 log s), where n = |X| and s is the sample size.
In particular, the cost of sampling is Θ(n2s), while the cost of computing the
approximated transport-based distance is O(s3 log s) [5].
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4.2. Bounds for the Transport-based Rand Index

In this section, we discuss a generalization of the Rand index to evidential
clustering that can be computed in polynomial time. Remarkably, we will show
that this alternative definition allows us to bound the transport-based measure,
when we assume as base distance d(C1, C2) = 1− Rand(C1, C2).

The approach described in this section is based on the following observation:
the hardness of computing the transport-based measure derives from it being
defined as the Wasserstein distance between two probability distributions whose
supports have size that is exponential in the size of the original soft clusterings.
Thus, intuitively, the complexity could be reduced if, instead of computing
the Wasserstein distance between the distributional representations of the two
soft clusterings to be compared, this computation would be pushed inside the
formula of the Rand index.

This intuition can be formalized by noting that the Rand Index can be seen
as an instance of the Wasserstein metric. Indeed, consider two objects x, y and
two hard clusterings C1, C2. Using the relational representation, which is the
only information used to compute the Rand index, we can represent the hard
clusterings as point masses p

xi,xj

1 , p
xi,xj

2 on Θ = {s,¬s}, as shown in Section
2.2. Namely, p

xi,xj

1 and p
xi,xj

2 denote whether objects xi and xj are in the same
cluster (in which case pxi,xj (s) = 1) or not (in which case pxi,xj (¬s) = 1), for
hard clusterings C1, C2. Then, the Rand index can be expressed as

Rand(C1, C2) =
2

n(n− 1)

∑
1≤i<j≤n

1− rxi,xj , (20)

where

rxi,xj =min
σ

∑
(a,b)∈Ω2

σ(a, b)d(a, b) (21)

s.t.
∑
b∈Ω

σ(a, b) = p
xi,xj

1 (a)∑
a∈Ω

σ(a, b) = p
xi,xj

2 (b)∑
(a,b)∈Ω2

σ(a, b) = 1

∀(a, b) ∈ Ω2, σ(a, b) ≥ 0,

with d(a, b) = 1a̸=b.
It can be easily seen that rxi,xj = |pxi,xj

1 (s) − p
xi,xj

2 (s)| = |pxi,xj

1 (¬s) −
p
xi,xj

2 (¬s)|, which coincides with Eq (7). We note that the same approach can
be equivalently applied to probabilistic and fuzzy clusterings, by simply relaxing
the requirement that p

xi,xj

1 , p
xi,xj

2 should be point masses. The solution of Eq
(15) is still rxi,xj = |µxi,xj

1 (s)−µ
xi,xj

2 (s)| = |µxi,xj

1 (¬s)−µ
xi,xj

2 (¬s)|. Thus, the
approach proposed in [27] can be derived as a special case to our definition.
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To extend the above approach to evidential clustering, we must consider a
generalization of the metric d to sets on Θ. If we apply Eq (14) to the case
where A,B ⊆ Θ we obtain

d0(A,B) = 1A ̸=B∧A∩B=∅ (22a)

d1(A,B) = 1A ̸=B (22b)

dα(A,B) = αdR1 (A,B) + (1− α)dR0 (A,B). (22c)

As shown in Section 3.2, d1 is a metric, while 1− d0 is a consistency.
Based on dα we can generalize Eq (20) to evidential clustering, obtaining

rxi,xj
α = min

m

∑
(A,B)∈2Θ×2Θ

m(A,B)dα(A,B) (23)

s.t.
∑
B∈2Θ

m(A,B) = m
xi,xj

1 (A)

∑
A∈2Θ

m(A,B) = m
xi,xj

2 (B)

∑
A,B∈2Θ

m(A,B) = 1

∀A,B ∈ 2Θ,m(A,B) ≥ 0,

where α ∈ [0, 1] represents, as in the previous sections, the relative cost of
ambiguity with respect to the cost of error. The α-Rand index can then be
defined as follows.

Definition 4.1. Let α ∈ [0, 1], M1,M2 be two evidential clusterings, n = |X|
the number of objects and r

xi,xj
α be defined as above. Then,

Randα(M1,M2) =
2

n(n− 1)

∑
1≤i<j≤n

1− rxi,xj
α . (24)

We note that, in general, α1 ≤ α2 =⇒ Randα2
≤ Randα1

. Thus, in partic-
ular Rand1 ≤ Rand0. Furthermore, in regard to the computational complexity,
since the size of the frame Θ is constant, r

xi,xj
α can be computed for each pair

(xi, xj) ∈ X2 in time O(1). Therefore, Randα can be computed in time O(n2).

Example 4.2. Let C,R, F, P,M be the clusterings defined in Examples 2.1,
2.3, 2.4 and 2.5. Then:

• Rand1(C,R) = 0.52 and Rand0(C,R) = 1;

• For all α ∈ [0, 1], Randα(C,F ) = 0.79;

• Rand1(C,P ) = 0.54 and Rand0(C,P ) = 1;

• Rand1(C,M) = 0.55 and Rand0(C,M) = 0.95.
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We note that only for the cases of Rand0(C,R) and Rand0(C,P ) does the value
of the approximation coincide with the exact solution of Eq (15), which was
computed in Examples 3.2, 3.3.

As a first result, we characterize the relationship between Randα and Eq (15),
showing that Randα allows to bound the value of the latter when d = 1−Rand:

Theorem 4.1. Let dE0 , d
E
1 be defined as in Eq (15), by setting d = 1 − Rand.

Then Rand1 ≤ 1− dE0 ≤ Rand0 and 1− dE1 ≤ 1− dE0 ≤ Rand0.

Proof. We first prove the inequality 1−dE0 ≤ Rand0. First, assume that M1,M2

are both rough clusterings. Then dR0 is obtained by choosing two clusterings
C1, C2 s.t. C1 ∈ C(M1), C2 ∈ C(M2) and d(C1, C2) = 1−maxC′

1,C
′
2
Rand(C1, C2).

Let xi, xj , with i < j, be any pair of objects considered in the computation of
Rand(C1, C2) and consider r

xi,xj

C1,C2
. Note that r

xi,xj

C1,C2
∈ {0, 1} and r

xi,xj

C1,C2
= 1 =⇒

r
xi,xj

0 . Therefore, the inequality follows in the case of rough clustering. The gen-
eral case for evidential clustering follows by noting that an evidential clustering
is a probability distribution over rough clustering and from the definition of
the Wasserstein distance. For the inequality Rand1 ≤ 1 − dE0 we can apply a
similar technique, noting that r

xi,xj

C1,C2
= 0 =⇒ r

xi,xj

1 = 0. Therefore, the result
follows.

The previous result shows that we can bound dE0 , d
E
1 by computing Randα,

which can be done in time O(n2) instead of O(2n). We leave it as an open
problem to characterize the quality of the approximation provided by Randα,
that is, to determine whether it is possible to find bounds for the approximation
error ϵ = |dEα − Randα|.

Next, we study the properties of Randα. First, we note that when M1,M2

are fuzzy clusterings, the following result holds.

Theorem 4.2. Let F1, F2 be fuzzy clusterings. Then, for all α ∈ [0, 1], Randα =
Rand0 = Rand1.

Proof. The result can be easily obtained by noting that d0, dα, d1 are all equiv-
alent when restricted to {s,¬s}.

In terms of metric properties, the following result holds:

Theorem 4.3. Assume that evidential clusterings are represented through the
relational representation, and α ∈ [0, 1]. Then,

• If α ≥ 1
2 , Randα is a similarity;

• Rand0 is a consistency;

• ∀ρ ≥ 1, if α ≥ 1
2ρ , 1− Randα is a ρ-relaxed metric.

Proof. These claims directly derives from the properties of dα (see Theorem 3.1)
and the definition of the Wasserstein distance.
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By contrast, if we consider the object-based representation, then Randα is,
at most, a pseudo-similarity:

Corollary 4.1. Assume that evidential clusterings are represented through the
object-based representation, and α ∈ [0, 1]. Then,

• If α ≥ 1
2 , Randα is a pseudo-similarity;

• ∀ρ ≥ 1, if α ≥ 1
2ρ , 1− Randα is a ρ-relaxed pseudo-metric.

Proof. To show that the claim holds, it is sufficient to observe that the map from
the object-based representation to the relational representation is not injective.
Indeed, as long as n < 2k − 1, to any possible mxi,xj may correspond infinitely
many evidential clusterings M , since the associated multi-linear system (given
by Eq (3)) is under-determined. Then clearly, for any two such M1,M2 it holds
that 1 − Randα(M1,M2) = 0. Thus, combining this result with Theorem 4.3,
the claim follows.

Remark. The proof of Corollary 4.1 suggests the conjecture that Randα may
be a similarity also in terms of the relational representation, if we require n ≥
2k − 1. While it can be easily shown by direct algebraic manipulation that this
property indeed holds when k = 2, we leave the proof of this conjecture in the
general case as future work.

We have seen that the cost of computing Randα is O(n2). While in gen-
eral, computing the Wasserstein distance requires solving a linear programming
problem, when m1,m2 are normalized, for the special cases of r

xi,xj

0 , r
xi,xj

0.5 and
r
xi,xj

1 we can find a closed-form solution. In particular, we have the following
theorem.

Theorem 4.4. Let r
xi,xj
α be defined as in Eq (23) and assume m

xi,xj

1 ,m
xi,xj

2

are normalized (i.e., m
xi,xj

1 (∅) = m
xi,xj

2 (∅) = 0). Then:

r
xi,xj

0 =
1

2

[
|mxi,xj

1 (s) +m
xi,xj

2 (¬s)− 1|+ |mxi,xj

1 (¬s) +m
xi,xj

2 (s)− 1|

− m1(Θ)−m2(Θ)]

r
xi,xj

1 =
1

2

∑
A⊆Θ

|mxi,xj

1 (A)−m
xi,xj

2 (A)|

r
xi,xj

0.5 =
1

2

[
|Bel

xi,xj

1 (s)−Bel
xi,xj

2 (s)|+ |Bel
xi,xj

1 (¬s)−Bel
xi,xj

2 (¬s)|
]
.

Proof. Consider first r
xi,xj

1 . By the definition of the Wasserstein distance and
Θ, the optimal assignment is given by setting for each A ⊆ Θ m(A,A) =
min{mxi,xj

1 (A),m
xi,xj

2 (A)} and then arbitrarily allocating the remaining mass.
Therefore, r

xi,xj
α = 1

2

∑
A⊂Θ max{mxi,xj

1 (A),m
xi,xj

2 (A)}−m(A,A), from which
the formula in the theorem directly follows. For the case of r

xi,xj

0.5 , we note
that the optimal assignment is given by any joint mass function that maximizes∑

A⊆Θ

[
m(A,A) + m(A,Θ)+m(Θ,A)

2

]
. In particular, the assignment obtained by
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setting m(A,A) = min{mxi,xj

1 (A),m
xi,xj

2 (A)}, then allocating masses to sets of
the form m(A,Θ),m(Θ, A), and then arbitrarily allocating the remaining mass
satisfies the above mentioned maximization problem. The result then easily
follows from the same arguments used for r

xi,xj

1 . Finally, for the case of r
xi,xj

0

we note that optimal assignment is given by any joint mass function m that
maximizes

∑
A⊆Θ m(A,A) + m(A,Θ) + m(Θ, A). In particular, for any such

mass function, r
xi,xj

0 = 1 iff m
xi,xj

1 (A) = m
xi,xj

2 (Ac) = 1, while r
xi,xj

0 = 0 iff
m

xi,xj

1 (A)+m
xi,xj

1 (Θ) = m
xi,xj

2 (A)+m
xi,xj

2 (Θ) = 1, for some A ⊆ Θ. The same
assignment described for the case of r

xi,xj

0.5 satisfies the above mentioned prop-
erties. The result then follows from algebraic manipulations and the definition
of the Wasserstein distance.

Finally, as a consequence of the previous result, we obtain the following
corollary.

Corollary 4.2. Let M1,M2 be two evidential clusterings such that, for each
pair of objects xi, xj ∈ X, m

xi,xj

1 and m
xi,xj

2 are normalized. Then, Rand0.5 =
RandB, where RandB is obtained by using the belief distance [18] in Eq (9).

This result explains why RandB , defined in [18], was found to be unable to
distinguish ambiguity from partial assignment and provides an intuitive inter-
pretation of Randα. Indeed, as previously mentioned in Section 3.2, α can be
interpreted as the (relative) cost of ambiguity. Therefore, as a consequence of
Theorem 4.3, RandB is equivalent to the case where the cost of ambiguity is
α = 0.5, i.e., the same cost assigned to a uniformly randomized assignment of
objects to clusters. Indeed, let m1 be a logical mass function, and let m2(Ω) = 1
and m′

2(s) = m′
2(¬s) = 1

2 . Then, in both cases, Rand0.5 = 1
2 . By contrast, it is

easy to observe that Rand0 conflates ambiguity and correctness: indeed, for the
previous example we have Rand0 = 1 for m1 and m2. Finally, Rand1 conflates
ambiguity and error: for m1 and m2, we have Rand1 = 0. Thus, in conclusion:
if we let α vary in (0, 0.5) we obtain a measure in which ambiguity interpolates
between correctness and uncertainty, while if we let α vary in (0.5, 1) we obtain a
measure in which ambiguity interpolates between partial assignment and error.

4.3. Bounds for the Transport-based Partition Distance

In this section, we discuss a generalized version of the partition distance
which satisfies the properties we required for a comparison measure between soft
clusterings. As for the Rand index, this generalization of the partition distance
can be computed in polynomial time and can be used to bound the value of the
transport-based measure defined in Section 3.2, when the base distance is dπ
(that is, the partition distance between hard clusterings).

As in the previous section, the main idea underlying the bounding approach
is to push the computation of the Wasserstein distance inside the definition of
the partition distance. For this purpose, we note that the partition distance can
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be formulated equivalently as

δC(C1, C2) = min
w

1

2(|X| − 1)

k∑
i=1

∑
x∈X

∆(χωi
1
(x), χ

ω
w(i)
2

(x)), (25)

where χω(·) is the indicator function corresponding to cluster ω, and

∆(χωi
1
(x), χ

ω
w(i)
2

(x)) = |χωi
1
(x)− χ

ω
w(i)
2

(x)|

is the symmetric difference operator on indicator functions. We note that this
approach cannot be directly extended to the case of evidential clustering, since
an evidential clustering M is usually represented as a collection of functions
{mx}x∈X , where mx : 2Ω 7→ [0, 1], while the formulation in Eq (25) would
require a collection of functions {mω}ω∈Ω, with mω : X 7→ [0, 1]. Nonetheless,
the desired representation can be obtained by means of a change of frame.
Indeed, for each cluster ω ∈ Ω, we consider the frame Θω = {ω,¬ω} and the
restriction of mx to Θω given by

mC↓Θω
x ({ω}) = mx(ω) (26)

mC↓Θω
x ({¬ω}) =

∑
∅̸=A⊆Ω:ω/∈A

mx(A) (27)

mC↓Θω
x (Θω) =

∑
A⊆Ω:{ω}⊂A

mx(A) (28)

mC↓Θω
x (∅) = mx(∅). (29)

If we define mω(x) = mC↓Θω
x ({ω}), then a generalization of the operator ∆

to the case of evidential clustering can easily be obtained as a solution to the
Wasserstein problem, by assuming a base distance on Θω. If we assume the
same base distances on Θω as given in Eqs (22), then ∆ can be computed as a
solution to the optimal transport problem, obtaining the same formulation as
in Theorem 4.4. Based on the definition of ∆α, we can generalize Eq (25) to
the case of evidential clustering as

δEα (M1,M2) = min
τ

1

2(n− 1)

k∑
i=1

∑
x∈X

∆α

(
m

C↓Θ
ωi
1

x ,m
C↓Θ

ω
τ(i)
2

x

)
, (30)

where ∆α(m1,m2) is the distance function between mass functions that we pre-
viously defined, and τ is a permutation of {1, . . . , k}. We can remark that, when
M1 and M2 are hard clusterings, then Eq (30) is equivalent to Eq (25), hence
the former is a generalization of the partition distance to evidential clustering.

Then, we characterize the relation between δEα and transport-based measure
when d = dπ. As for the Rand index, we show that the measure defined in this
section can be used to provide bounds for the transport-based measure:

Theorem 4.5. Let dE0 , d
E
1 be defined as in Eq (15), by setting d to be the

partition distance dπ. Then δE0 ≤ dE0 ≤ δE1 and δE0 ≤ dE0 ≤ dE1 .

25



Proof. The proof is similar to the one for Theorem 4.1 and is therefore omitted.

As for the case of the Rand index, we leave as open problem to find bounds
for the approximation error ϵ = |dEα − δEα |.

Then, we study the properties of δEα . It can be easily proved that δEα satisfies
the following properties:

Theorem 4.6. Let α ∈ [0, 1]. Then,

• If α ≥ 1
2 , δ

E
α is a metric;

• 1− δE0 is a consistency;

• ∀ρ ≥ 1, if α ≥ 1
2ρ , δ

E
α is a ρ-relaxed metric.

Proof. The claims derive easily from the properties of ∆α = r
xi,xj
α , the partition

distance and the Wasserstein distance.

Example 4.3. Let C,R, F, P,M be the clusterings defined in Examples 2.1,
2.3, 2.4 and 2.5. Then,

• δE0 (C,R) = 0 and δE1 (C,R) = 0.5;

• For all α ∈ [0, 1], δE1 (C,F ) = 0.23;

• δE0 (C,P ) = 0 and δE1 (C,P ) = 0.48;

• δE0 (C,M) = 0.07 and δE1 (C,M) = 0.47.

We note that for the cases of δE0 (C,R), δE0 (C,R), δE0 (C,M) and δEα (C,F ), the
values of the approximation coincide with the exact solution of Eq (15).

Also, δEα can be computed in polynomial time:

Proposition 4.4. The complexity of computing δEα is O(n2k + k3).

Proof. Computing δEα first requires transforming the evidential clusterings M1

and M2 in the representation described in Eqs (26)-(29). This transformation
can be performed in time O(n2k). As shown in Eq (23), the value of ∆α can be
computed in O(1) time. Since the value of ∆α must be computed for each pair
of clusters (ω1, ω2) ∈ Ω1 × Ω2, this requires a total time of O(k2), where k =
max{|Ω1|, |Ω2|}. Thus, the inner sum of Eq (30) has total complexity O(nk2).
Finally, Eq (30), once the values of the inner loop have been computed, can be
solved through any standard algorithm for the weighted balanced assignment
problem (e.g., the Hungarian method) in time O(k3).

We note that, even though the term n2k is exponential in the number of
clusters k, the computation of δEα is still polynomial in the size of the evidential
clusterings M1,M2, since in general these latter have size which is exponential
in k. Furthermore, we can observe that, in terms of computational complexity,
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the method discussed in this section and the one introduced in Section 4.2 are
quite different. Indeed, the method for the Rand index discussed in Section 4.2
has complexity which is quadratic in the number of objects, i.e., O(n2). By
contrast, the generalization of the partition distance introduced in this section
has complexity which scales as O(n2k + k3). This means that, since in general
k ≪ n, computing the (approximated) partition distance can be expected to be
more computationally efficient than computing the (approximated) Rand index.

Interestingly, it is easy to show that the approach proposed in [3, 50] arises
as a special case of our definition:

Proposition 4.5. Let F1, F2 two fuzzy clusterings. Then, for each α ∈ [0, 1]
δEα (F1, F2) = dFπ (F1, F2).

Proof. In the case of fuzzy clustering we have that, for each pair of clusters

ω1, ω2, ∆α =
(
m

C↓Θω1
x ,m

C↓Θω2
x

)
= |ω1(x) − ω2(x)|. The result then follows

from the definition of the fuzzy partition distance given in [3, 50].

5. Illustrative Experiments

In this section, we discuss two simple experiments, with the aim of illustrat-
ing the application of the proposed approach and the corresponding approxi-
mation methods. In particular, in the first experiment reported in Section 5.1,
we compare five different clustering algorithms (based on the k-means cluster-
ing procedure) on a small-dimensional benchmark dataset, and we illustrate the
computation of the metrics defined in Section 3, as well as its approximations
introduced in Section 4. In Section 5.2, we then show through a second exper-
iment how even for a moderately large dataset the approximations defined in
Section 4 can be computed in reasonable time, and how this information can
be used to bound model performance, even when the transport-based measure
cannot be computed.

5.1. Iris Data

In the first experiment, we provide a simple illustration of the proposed met-
rics using the Iris dataset, a small-scale benchmark problem with 150 objects,
four numerical features and three classes, each of which containing 50 instances.
We selected this dataset as it is widely known that the three above mentioned
classes are approximately linearly separable (see Figure 1). Thus, we expect
any soft clustering algorithm to be able to find a clustering of the data in which
most objects are precisely assigned to a single cluster. We note that, as a conse-
quence of Theorem 3.2, this is a necessary condition for the exact versions of our
proposed metrics to be computable in a reasonable time. The Iris dataset was
selected specifically to allow direct computation of the exact metrics proposed
in Section 3.2, without incurring running time-related bottlenecks.

For the purpose of our experiment, we considered five different clustering
algorithms, all in the k-means family of algorithms. Namely, we considered: k-
means (KM), rough k-means (RKM) [38], fuzzy c-means (FCM) [6], possibilistic
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Figure 1: Graphical visualization of the Iris dataset in PCA space, with respect to the first
two principal components. As shown by the figure, the classes are almost linearly separable,
with a small overlap between classes 1 and 2.

c-means (PCM) [31] and evidential c-means (ECM) [36]. For all algorithms, in
order to reduce the computational complexity of computing the exact value of
the measures, we set the hyper-parameters so as to obtain a soft clustering as
close as possible to a hard one. In particular, for RKM we set ϵ = 1.1, for FCM
and PCM we set m = 5, and for ECM we set δ = 10, β = 5, αECM = 5. We
compared the output of each algorithm with the ground truth labeling of the
Iris dataset. We considered, in particular, the following metrics:

• The transport-based Rand index (T-RI);

• The transport-based partition distance (T-PD);

• The sampling-based approximations (S-RI, S-PD) of the two previous
measures (see Section 4.1). The sampling-based approximations were com-
puted based on drawing 1000 samples with replacement;

• The bounds on the Rand index (A-RI) (see Section 4.2);

• The bounds on the partition distance (A-PD) (see Section 4.3).

For all metrics, the ambiguity parameter α was set to 0.5, to obtain a balanced
trade-off between ambiguity and error, with the former having half the weight of
the latter. All code was implemented in Python (v. 3.8.8), using the scikit-learn
(v. 0.24.1), numpy (v. 1.20.1) and scipy (v. 1.6.2) libraries2. In particular, in
the implementation of T-RI and S-RI we used as sub-routine the scikit-learn
implementation of the Rand index (which has complexity O(n), where n is the
number of objects), while for T-PD, S-PD, A-RI and A-PD we used custom
implementations based on the algorithms described in the previous sections (in
particular, we note that the complexity of A-RI is O(n2)). As mentioned pre-
viously, the exact transport-based measures T-RI and T-PD were computed by

2The code is freely accessible at https://github.com/AndreaCampagner/scikit-cautious.
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Table 2: Results of the first experiment. For the Rand index higher is better, while for the
partition distance lower is better.

Metric KM RKM FCM PCM ECM

T-RI
0.877

(0.034s)
(0.874, 0.886)

(0.802s)
0.876

(784.388s)
(0.839, 0.941)
(979.053s)

(0.781, 0.944)
(1394.69s)

S-RI -
(0.874, 0.886)

(0.429s)
0.876

(11.266s)
(0.860, 0.927)

(19.848s)
(0.681, 0.819)

(19.845s)

A-RI -
(0.871, 0.889)

(6.949s)
0.876

(6.924s)
(0.826, 0.966)

(7.146s)
(0.747, 0.887)

(7.024s)

T-PD
0.111

(0.031s)
(0.099, 0.113)

(0.803s)
0.112

(184.707s)
(0.033, 0.122)

(224.31s)
(0.041, 0.229)

(431.57s)

S-PD -
(0.100, 0.113)

(0.202s)
0.112

(11.391s)
(0.072, 0.103)

(13.739s)
(0.154, 0.209)

(16.424s)

A-PD -
(0.099, 0.113)

(1.807s)
0.112

(1.665s)
(0.033, 0.136)

(2.926s)
(0.039, 0.221)

(3.386s)

direct application of their definitions given in Section 3.2. This direct com-
putation is made possible by the fact that the classes of the Iris datasets are
approximately linearly separable. Indeed, even though, as claimed in Theo-
rem 3.2, the complexity of doing so is in general exponential in the number
of clusters and the number of ambiguous objects, computing T-RI and T-PD
is feasible when these quantities are small, as the corresponding problems are
fixed-parameter tractable.

The results of the experiment are reported in Table 2, in terms of the metrics
values as well as the running time (in seconds). As shown in the table, the
approximation algorithms (both the sampling-based algorithms, as well as the
ad hoc algorithms for the Rand index and the partition distance) were much
more efficient than the exact versions of the metrics, for all algorithms except
RKM, in which the ad hoc approximation algorithms reported worse running
time than the exact versions. This follows from the observation that the result
of RKM was very close to a hard clustering, with only two objects not assigned
to a precise cluster. The difference in performance then follows by noting that
the scikit-learn implementation of the Rand index has time complexity O(n),
while A-RI has time complexity O(n2).

In terms of running time, we can observe that the cost of computing the
exact versions of the proposed measures sharply increases when considering
more general soft clustering algorithms. Indeed, the running time of T-RI and
T-PD for ECM were approximately twice the respective running times for either
FCM and PCM. On the other hand, the differences in running times for the
approximation algorithms (S-RI, S-PD, A-RI, A-PD) were much smaller, and
indeed the running times for FCM, PCM and ECM were similar.

In terms of approximation quality, even though for RKM and FCM there
were no differences between the sampling-based (i.e., S-RI, S-PD) and the ad
hoc algorithms (i.e., A-RI, A-PD), this was not the case for PCM and ECM.
In these latter cases, the ad hoc algorithms reported lower approximation er-
ror than the sampling-based ones. This observation can be understood as a
consequence of the remark in Section 4.1, in which we discussed the quality of
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approximation of the sampling-based algorithms. Thus, although the sampling-
based methods have explicit bounds on the approximation error, the ad hoc
algorithms introduced in Section 4.2 and 4.3 may yield a lower empirical ap-
proximation error in practical scenarios, as shown in this illustrative example.
In particular, we note that the sampling-based approach systematically underes-
timated the uncertainty in clustering comparison results, by producing intervals
that were narrower than those obtained by means of the ad hoc approximation
algorithms. Nonetheless, both approximation methods provided consistent re-
sults, in the sense that smaller values according to one method were associated
with smaller values according to the other one.

In regard to the performance of the applied clustering algorithms, we note
that the proposed metrics allow a comparison of these results. For example,
it could be noted that, according to all metrics, RKM reported soft clusterings
that were associated with a much smaller amount of uncertainty than both PCM
and ECM, which instead reported comparable results in this sense. Notably,
while both RKM and FCM yielded results very similar to those obtained with
the hard clustering algorithm KM, by contrast both PCM and ECM yielded
slightly higher values for the upper bound values of the metrics. This observation
shows that the additional amount of ambiguity and uncertainty introduced by
these algorithms allowed to retrieve compatible hard clusterings closer to the
ground truth class assignment than those compatible with either RKM and
FCM. Nonetheless, we note that, in general, the lower bound values reported
by RKM were comparable with, or better than, those reported by PCM and
ECM. We can deduce from this observation that, in general, RKM may achieve
results comparable to PCM and ECM in terms of accuracy, while producing, at
the same time, soft clusterings having a much smaller degree of uncertainty.

5.2. Simulated data

In the second experiment, our aim is to illustrate how, even on moderately
large datasets (on which the exact transport-based measure cannot be computed
feasibly, as a consequence of Theorem 3.2), the approximate measures proposed
in Section 4 can still be applied and used to obtain indications about the perfor-
mance of different clustering algorithms, as well as to perform a comparison be-
tween their results. To this aim, we considered a synthetically-generated dataset
composed of 10,000 objects and two features. Each of the objects was classified
into three different classes, generated by drawing from a mixture of Gaussian
distributions with a large probability of overlap, as illustrated in Figure 2.

As in the previous experiment, we applied the KM, RKM, FCM, PCM and
ECM algorithms to the dataset, and we compared the results obtained by each
of these algorithms with the ground-truth partition. Furthermore, we also com-
pared the clusterings obtained by each pair of algorithms, to evaluate their
results. We considered, in particular the S-RI, A-RI, S-PD and A-PD measures
(see Section 5.1). As in the first experiment, for all metrics, the value of the
ambiguity weight α was set to 0.5. Similarly, the sampling-based approximation
measures S-RI and S-PD were computed based on the drawing of 1000 samples
with replacement. In order to visualize the pairwise measure values graphically
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Figure 2: Graphical representation of the synthetic dataset used in the second experiment.

(for increased readability), we applied the multi-dimensional scaling algorithm
for interval-valued data described in [19].

The results of the experiment are reported in Figures 3 and 4. As in the first
experiment, we note that the sampling-based approximation methods severely
under-estimated the uncertainty as compared to the ad hoc algorithms. In-
deed, as shown in Figures 3 and 4, the size of the circle-based representations
associated with the sampling-based approaches were much smaller. This result
highlights how the sampling process that underlies the computation of S-RI and
S-PD might lead to an underestimation of the degree of ambiguity as compared
to A-RI and A-PD, likely due to the fact that a limited amount of samples
does not allow us to extensively explore the space of compatible hard cluster-
ings. Nonetheless, despite these differences, the results of the two approximation
methods were aligned, for both the Rand index and the partition distance. In-
deed, in all cases, the RKM and KM algorithms were more similar to the ground
truth and to each other than the remaining clustering algorithms. According to
all the considered metrics, the circle-based representation of RKM was always
very close to that corresponding to KM, and was also the closest one to the
ground truth.

This result, together with the results of the first experiment, highlights the
efficiency of the RKM algorithm, which, by allowing a limited degree of ambi-
guity in the assignment of objects to clusters, makes it possible to retrieve the
ground truth separation of objects into classes with an higher accuracy as com-
pared to other methods, reporting results similar to, but slightly better than,
the hard clustering algorithm KM. Similarly, the ECM and PCM algorithms
were found to be relatively similar according to all computed metrics, and sim-
ilarly associated with a larger amount of ambiguity compared to all the other
clustering algorithms. In particular, according to all the considered metrics,
PCM was the algorithm that generated the clusters associated with the great-
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est amount of uncertainty. This result suggests that, at least for this simulated
dataset, ECM might be preferable to PCM as it yields similar results in terms of
accuracy (i.e., closeness to the ground truth) with, at the same time, a smaller
amount of ambiguity. Nonetheless, this finding needs to be confirmed by further
experiments, as it was not observed in the first experiment on the Iris dataset.
Interestingly, the FCM algorithm was found to be the most dissimilar from all
other clustering algorithms in the comparison. Finally, we highlight how the
proposed approximation methods (both sampling-based and ad hoc) are able to
provide bounds for the exact values of the comparison measures and can fur-
thermore be used to compare two or more clustering algorithms and evaluate
their quality.

Figure 3: Multi-dimensional scaling representation of the pairwise S-RI (left) and A-RI (right)
indices. The relative position of the circles corresponds to their similarity, while the size of
the circles represents the width of the corresponding intervals.
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Figure 4: Multi-dimensional scaling representation of the pairwise S-PD (left) and A-PD
(right) indices. The relative position of the circles corresponds to their similarity, while the
size of the circles represents the width of the corresponding intervals.

6. Conclusion

In this article, we proposed a general framework for extending clustering
comparison measures from hard clustering to evidential clustering (hence, as
special cases, also to rough, fuzzy and possibilistic clustering). Our approach is
based on the interpretation of soft clusterings as distributions over hard clus-
tering, and uses optimal transport theory to provide a general construction
method for evaluation and comparison measures of soft clusterings using what
we called transport-based measures. We have studied the theoretical properties
of this approach, in terms of metric properties and computational complexity.
Furthermore, since a major limitation of the proposed approach lies in its high
computational complexity, we also proposed some strategies for approximation,
based on either a sampling approach or the design of alternative comparison
measures (computable in polynomial time), which were shown to provide bounds
for the transport-based measure.

Our contributions are summarized in Table 3, which describes, for every
proposed measure, the corresponding metric properties and computational com-
plexity. In regard to the metric properties we can observe that, compared to the
existing measures previously proposed in the literature and discussed in Section
2.1, both the exact transport-based measures as well as the approximations for
the Rand index and partition distance satisfy the desirable properties that were
described in the introduction. Our proposal, then, extends and formalizes the
previous proposals in [18, 27] by providing a theoretically grounded and general
framework to enable the comparison between and across different classes of soft
clustering methods. We believe that our contribution is particularly significant
in this regard since, as discussed in the introduction and in Section 2.1, these
properties enable the use of the proposed measures both as objective criteria
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Table 3: Summary of the proposed comparison measures and their approximations and bounds

Measure Section
Metric

Properties
Computational
Complexity

Transport-based Measure 3.2
1− dE0 consistency

dE1 metric
dE0 NP-HARD
dE1 NP-HARD

Sampling-based
Approximations

4.1 - O(n2s+ s3 log s)

Approximation for
Rand index

4.2
Rand0 consistency
Rand1 similarity

O(n2)

Approximation for
partition distance

4.3
1− δE0 consistency

δE1 metric
O(n2k + k3)

to compare the results of any soft clustering algorithm with a known ground
truth, thus allowing their external validation, and as objective criteria to com-
pare the results of multiple soft clustering methods, possibly of different types
(such as rough, fuzzy, possibilistic or evidential). Furthermore, since each of
the proposed measures is based on a pair of functions, satisfying respectively
the properties of being a consistency and a metric (or, dually, a similarity), the
proposed measures also provide flexibility in modeling the trade-off between am-
biguity and error. Consequently, they allow a greater degree of personalization
to the users’ needs than previous proposals. In regard to computational com-
plexity, the proposed measures offer a trade-off between exactness of the results
and computational feasibility. Indeed, whereas the transport-based measures
allow the exact computation of the above mentioned evaluation and comparison
criteria but are, in general, NP-HARD and thus infeasible to apply in large-
scale problems, the ad hoc and sampling-based approximations yield reasonable
estimates of the above mentioned quantities at a reduced computational cost.

Finally, to illustrate and discuss the above mentioned characteristics of the
proposed measures, we have demonstrated their application through two sim-
ple experiments, in which we have described both the relationships between
the transport-based measures and their approximations, as well as how these
approximations can be used even in larger-scale problems.

We believe that this article could be a first step toward the development of
approaches for the comparison of soft clustering algorithms. As further steps,
we deem the following problems to be worthy of further investigation:

• In Section 3.2, we have shown that, in general, computing the transport-
based distance is computationally hard, for both the cases of rough and
evidential clustering. An important open problem would be to understand
whether (and for which base distances) dEα (F1, F2) can be computed in
polynomial time, when F1, F2 are fuzzy clusterings.

• In Section 4, we described algorithms for two commonly used clustering
comparison measures, namely the Rand index and the partition distance.
Then, we showed that these algorithms can be used to bound the value
of the transport-based measure with the respective base distances. Since
in specific settings other measures may be more appropriate, it would be
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interesting to develop approximation methods also for other common com-
parison measures, such as the mutual information or the Jaccard index.

• In the experiments reported in Section 5.1, we have shown that the bound-
ing algorithms introduced in Sections 4.2 and 4.3 have lower empirical
approximation error than the sampling-based procedures introduced in
Section 4.1. An interesting problem would be to find a theoretical char-
acterization of the approximation error for the bounding algorithms.
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A. Background on Belief Functions

In this section, we recall the basic notions on belief function theory [12, 16,
43]. Let X be a finite set and 2X the corresponding power set. A mass function
is a function m : 2X 7→ [0, 1] s.t.

∑
A∈2X m(A) = 1. If m(∅) ̸= 0, then m is

unnormalized. Given a mass function m, we define the belief and plausibility
functions as:

Bel(A) =
∑

B:∅≠B⊆A

m(B); Pl(A) =
∑

B:B∩A ̸=∅

m(B). (31)

It is easy to observe that Bel and Pl are dual of each other, that is Bel(A) =
1−m(∅)−Pl(Ac) and Pl(A) = 1−m(∅)−Bel(Ac). Given two mass functions,
m1 and m2, we can define their combination as:

m1 ⊕m2(A) =
1

1−K(m1,m2)

∑
B,C:B∩C=A

m1(B) ·m2(C), (32)

where K(m1,m2) =
∑

A,B:A∩B=∅ m1(A) ·m2(B) is the conflict between m1 and
m2. If K(m1,m2) = 1, then m1 ⊕m2 is undefined.

We define the focal sets of m as F(m) = {A ∈ 2X : m(A) > 0}. If |F(m)| =
1, then m is said to be logical. If the focal sets are all singletons, then m is said
to be Bayesian: in this case, m is a probability distribution and, ∀A ⊆ X, it
holds that Bel(A) = Pl(A). If, on the other hand, the focal sets are nested (i.e.,
∀A,B ∈ Fm, either A ⊆ B or B ⊆ A) then m is said to be consonant, and it can
be shown that Bel is a necessity measure and Pl is a possibility measure [16].

Let f : X 7→ R be a function. Then, we can extend the notion of expected
value to the setting of belief function theory by defining the lower and upper
expected value as follows:

E(f) =
∑
A⊆X

m(A) ·min
x∈A

f(x) (33)

E(f) =
∑
A⊆X

m(A) ·max
x∈A

f(x) (34)

Another useful notion regards the definition of distance functions between
belief functions. In particular, we recall the definitions of the belief distance
[13] and the Jousselme distance [28], while we refer the reader to [28] for a more
comprehensive review on the topic. Let m1,m2 be two mass functions, both
defined on 2X , then:

dB(m1,m2) =
1

2

∑
A⊆X

|Bel1(A)−Bel2(A)|, (35)

dJ(m1,m2) =

√
1

2
||m1||2 + ||m2||2 − 2⟨m1,m2⟩, (36)

where ⟨m1,m2⟩ =
∑

A⊆X

∑
B⊆X m1(A)m2(A) |A∩B|

|A∪B| and ||m||2 = ⟨m,m⟩.
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Finally, we recall the notions of extension and restriction of a mass function.
Let X,Y be two sets. We say that X is a refinement of Y (equivalently, Y is a
coarsening of X) if exists a function ρ : 2Y 7→ 2X such that: 1) {ρ({y}) : y ∈ Y }
is a partition of X; 2) ∀A ⊆ Y , ρ(A) =

⋃
y∈A ρ({y}). Given a mass function m

defined on Y , the vacuous extension of m to X is defined by:

∀A ⊆ Y,mY ↑X(ρ(A)) = m(A). (37)

On the other hand, given a mass function m defined on X, the restriction of m
to Y is defined by:

mX↓Y (A) =
∑

B⊆X:ρ−1(B)=A

m(B), (38)

where ρ−1(B) = {y ∈ Y : ρ({y}) ∩B ̸= ∅} is the outer reduction of B.
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