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Measuring the similarity between materials is essential for estimating their properties and revealing the asso-17

ciated physical mechanisms. However, current methods for measuring the similarity between materials rely18

on theoretically derived descriptors and parameters fitted from experimental or computational data, which19

are often insufficient and biased. Further, outliers and data generated by multiple mechanisms are usually20

included in the dataset, making the data-driven approach challenging and mathematically complicated. To21

overcome such issues, we apply the Dempster–Shafer theory to develop an evidential regression-based similar-22

ity measurement (eRSM) method, which can rationally transform data into evidence. It then combines such23

evidence to conclude the similarities between materials, considering their physical properties. To evaluate the24

eRSM, we used two materials datasets, including 3d transition metal–4f rare-earth binary and quaternary25

high-entropy alloys with target properties, Curie temperature and magnetization. Based on the informa-26

tion obtained on the similarities between the materials, a clustering technique is applied to learn the cluster27

structures of the materials that facilitate the interpretation of the mechanism. The unsupervised learning28

experiments demonstrate that the obtained similarities are applicable to detect anomalies and appropriately29

identify groups of materials whose properties correlate differently with their compositions. Furthermore,30

significant improvements in the accuracies of the predictions for the Curie temperature and magnetization31

of the quaternary alloys are obtained by introducing the similarities, with the reduction in mean absolute32

errors (MAE) of 36% and 18%, respectively. The results show that the eRSM can adequately measure the33

similarities and dissimilarities between materials in these datasets with respect to mechanisms of the target34

properties.35

I. INTRODUCTION36

The concept of machine learning has great potential37

for application in several areas of materials science, espe-38

cially for discovering new materials. In materials science,39

a number of the problems addressed by data-driven ap-40

proaches require the effective utilization of existing ma-41

terial data for predicting the properties of new mate-42

rials and understanding the underlying physicochemical43

mechanisms1.44

From an engineering point of view, developing a data-45

driven model that quickly and accurately predicts the46

physical properties of possible materials from accumu-47

lated data can reduce the time required for material de-48

velopment. By applying a data-driven model to screen49

materials in-silico, we narrow down the candidates that50

require expensive calculations and experiments to verify.51

If there are sufficient independent supervised data from52

the distribution of the target material data, a model with53

high prediction accuracy can be built using state-of-the-54

art data-driven techniques. However, because materi-55

als research and development aim to develop materials56

that are superior to existing ones, the distribution of the57

target prediction data may be completely different from58

the distribution of the original training data. Therefore,59

there are concerns about whether data-driven models can60

accurately predict the physical properties of new materi-61

als.62

On the contrary, considering the history of materi-63

als science, researchers have discovered various materi-64

als through a loop of hypothesis and verification based65

on their knowledge, experience, and serendipity. Partic-66

ularly, hypothesizing relies heavily on describing, inter-67

preting, and understanding the underlying physicochem-68

ical mechanisms of the observed physical phenomena of69

materials. Scientifically, applying a data-driven approach70

to extracting knowledge from existing complicated mate-71

rial data can accelerate the process of describing, inter-72

preting, and understanding the physicochemical mech-73

anisms underlying the observed physical phenomena of74
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materials. This reduces the time required for material1

development. Hence, to be effectively applied to materi-2

als science, data-driven approaches that are interpretable3

and understandable to humans must be developed.4

One of the most intuitive and interpretable data-driven5

approaches for humans is analogy-based inductive rea-6

soning, which infers the properties of a new instance us-7

ing the information of the observed instances that are8

most similar to it2–5. By applying analogy-based mod-9

els, we can easily explain the reasoning process behind10

the predictions and reveal the physicochemical mecha-11

nisms rationalizing the observations6,7. Materials scien-12

tists have resolved different problems in materials science13

by systematizing information about analogies in compo-14

sition or structure between materials that exhibit similar15

physicochemical properties8–11.16

Especially, in a discipline based on fundamental prin-17

ciples, such as condensed matter physics, it is essential18

to elucidate the physical mechanisms and which materi-19

als are manifested through each of these physical mecha-20

nisms. However, despite several new materials and supe-21

rior properties having been discovered, it is still difficult22

to appropriately quantify the similarities between mate-23

rials to elucidate the underlying physicochemical mech-24

anisms of these properties. Furthermore, this difficulty25

arises from the fact that the mechanisms of materials’26

properties are typically interpreted in terms of physico-27

chemical concepts based on relative criteria.28

The phenomenon of superconductivity in materials,29

which originates from the instability of metals, is a well-30

known example of the above difficulty. One of the most31

successful theories that describe the microscopic mech-32

anisms is the Bardeen-Cooper-Schrieffer (BCS) theory33

for superconductivity12, the origin of which is electron-34

phonon interactions. However, there also exist other35

mechanisms. For example, one of the most plausive36

origins of superconductivity in the high-TC cuprates is37

electron-electron interactions. Nevertheless, it is not easy38

to achieve a consensus of classifying the superconducting39

mechanism of materials among researchers as the ori-40

gins. Although the emergence of superconductivity is41

basically due to the instability in the metallic phase, it42

is not easy to achieve the consensus because both the43

mentioned and other mechanisms can contribute cooper-44

atively in increasing the TC value, for example. Although45

it is challenging to classify individual materials when con-46

sidering phenomena that cause such a situation, it is ex-47

pected that the underlying physical mechanisms can be48

discovered if we can inductively quantify the similarities49

between the materials of interest and group similar ma-50

terials using all observation data.51

Incidentally, inductive reasoning with inefficient sim-52

ilarity assessment can lead to misidentification of53

outliers13 and difficulty in explaining the underlying54

physicochemical mechanisms of datasets using single55

models. Therefore, regarding predefined material de-56

scriptors, an exhaustive examination of all possible hy-57

potheses about the unknown physicochemical mecha-58

nisms is necessary to assess the similarity between the59

materials. Furthermore, similarity measures are usually60

context-dependent. Because the context changes, the61

similarity measure must be modified to adequately cap-62

ture the phenomena under study14,15. Thus, a quanti-63

tative measure of similarity needs to consider the uncer-64

tainty arising from the context or the measurement itself,65

especially in situations where material data are often in-66

sufficient and heavily biased. Moreover, similarities from67

different contexts may not be directly comparable in the68

integration to draw conclusions about the similarity be-69

tween materials. These reasons make it challenging to70

apply data-driven approaches to materials science.71

To overcome such issues and efficiently extract knowl-72

edge from the data, we propose a new approach that73

shifts from measuring the similarity between materials74

to quantitatively measure the confidence in their simi-75

larities. We adopt the Dempster–Shafer theory16–18, re-76

ferred to as the evidence theory, to develop an eviden-77

tial regression-based similarity measurement (eRSM) for78

detecting subgroups of materials such that leaned mod-79

els from the subgroups show high correlations between80

descriptors and the target property of the constituent81

materials. Further analysis of models describing the sub-82

groups provide valuable information to extract, interpret,83

and understand physical mechanisms. The Dempster–84

Shafer theory can be regarded as a generalization of the85

Bayesian approach for solving the problem of incomplete86

and insufficient information. Moreover, it is suitable for87

solving material data problems19,20. The measure of sim-88

ilarity here refers to whether the observed physical prop-89

erties of the materials under study are described using90

the same hidden mechanism that has not yet been re-91

vealed. In other words, we consider any pair of materials92

(in the dataset) as similar if their physical properties can93

be described by the same hidden mechanism; otherwise,94

the pair of materials is considered dissimilar. We then95

first generate numerous hypothetical mechanisms by ran-96

domly choosing subsets of data instances and construct-97

ing regression models for each subset. Each regression98

model is considered a source of evidence of the similari-99

ties between materials. Thereafter, the Dempster–Shafer100

theory16–18, which has a foundation for modeling and101

combining the uncertainty of evidence, is applied to inte-102

grate the collected pieces of evidence to draw conclusions103

about the similarities between materials. The eRSM con-104

sists of three main steps as follows:105

1. Collect sources of evidence: Hypothetical mecha-106

nisms are collected from a dataset by applying re-107

gression analysis with single or mixture models and108

are used as sources of evidence to rationalize the109

similarity states of materials.110

2. Model similarity evidence: An appropriate mass111

function is designed to model the obtained evidence112

within the framework of the evidence theory.113

3. Combine pieces of evidence: Dempster’s rule of114
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FIG. 1. Illustrative figures of the three possible similarity
states between two data instances (blue circles), including
similar (a), dissimilar (b), and uncertain (c), considering a
referential regression model fr (black line). The gray region
is the interval that determines whether a data instance can
be considered to have been generated by regression model fr.

combination is used to integrate the pieces of the1

evidence.2

The steps of the eRSM are explained in detail in Sec-3

tion II. Regarding the framework of the evidence theory,4

the essential contributions of the eRSM are collecting5

sources of evidence about the similarities between mate-6

rials from datasets and designing suitable mass functions7

to model the pieces of evidence rationally. The effective-8

ness of obtained similarities using the eRSM for subdi-9

viding alloys from datasets into homogenous subgroups10

is supported by experiments on 1) a dataset of binary11

alloys with their Curie temperature as a target property12

(Section III B); and 2) two dataset of quaternary alloys13

with their magnetization (Section III C) and Curie tem-14

perature (Section IIID) as the target properties. Further15

analysis of the detected subgroups to interpret the under-16

lying physical mechanisms is shown in Section III E17

II. METHODOLOGY18

We consider a dataset D consisting of p data in-19

stances. We assume that a data instance with index20

i in D is described by n predefined descriptors and21

is represented by an n-dimensional numerical vector,22

xi =
(
x1
i , x

2
i , . . . , x

n
i

)
∈ Rn. The target property of23

the data instance xi is yi ∈ R. Thereafter, the dataset24

D = {(x1, y1), (x2, y2) . . . (xp, yp)} is represented using25

a (p× (n+ 1)) matrix. In this study, we consider that26

D may contain pairs of data instances xi and xj , where27

xi ≈ xj ; however, the value of yi is far from yj .28

A. Collecting sources of similarity evidence29

We perform random subset sampling of the data in-30

stances without replacement to collect a large amount of31

evidence of the similarity between pairs of data instances32

in D. Considering each sample, we obtain two datasets:33

the reference dataset, Dref , and the evaluation dataset,34

Deval (Dref ∩ Deval = ∅ and Dref ∪ Deval = D). Con-35

sidering Dref , we can generate a single or multiple ref-36

erence functions fr : Rn → R using a Gaussian process37

(GP)21 or a mixture of Gaussian processes (MGP)22, re-38

spectively. This study applies GP- or MGP-based models39

instead of other nonlinear regression models such as ker-40

nel ridge regression23, random forest regression24, or arti-41

ficial neural networks25 because GP or MGP can quantify42

the uncertainty of its prediction without introducing any43

other statistical validation. The sampling ratios of Dref44

from D are fixed at 0.3 and 0.7 for the experiments with45

GP and MGP, respectively. Each reference function fr46

is considered as a source to provide pieces of evidence47

for the similarity between (xi, yi) and (xj , yj) in Deval.48

The function fr is not used to provide any information49

about the similarities between the data instances in Dref50

or between a data instance in Dref and a data instance51

in Deval. This is to exclude self-evaluation to ensure the52

objectivity of the evidence. Regarding a reference func-53

tion fr, we consider the state of the similarity between54

(xi, yi) and (xj , yj) as:55

• Similar: Both data instances can be considered to56

have been generated by the function fr (Fig. 1 a).57

• Dissimilar: Only one of the data instances can be58

considered to have been generated by the function59

fr (Fig. 1 b).60

• Uncertain: Neither of the data instances can be61

considered to have been generated by the function62

fr (Fig. 1 c). The uncertain state indicates that fr63

does not provide any information about the simi-64

larity between (xi, yi) and (xj , yj).65

To quantitatively evaluate whether (xi, yi) can be con-66

sidered to have been generated by the regression function67

fr, we use the likelihood p(Oi|fr), the probability of event68

Oi that a data instance (xi, yi) is observed, considering69

fr. The likelihood p(Oi|fr) is modeled using a normal70

distribution with mean and standard deviation depend-71

ing on the predicted target value ŷi = fr(xi) and the cor-72

responding standard error σxi by fr, respectively. This73

is expressed as:74

p(Oi|fr) =

{
1 if ∆i ≤ 3 σ̄

2×
∫ +∞

∆i−3 σ̄
N (u|0, α σxi) du otherwise

,

(1)
where ∆i = |yi − ŷi| = |yi − fr(xi)| is the deviation75

from the true to the predicted target values of data in-76

stance i using fr, and σ̄ is the average of the predictive77

standard error of all the data instances in Dref . α is78

the hyperparameter used to adjust the condition that re-79

stricts the data instances belonging to the function fr.80

In other words, the interval that determines the proba-81

bility that a data instance (xi, yi) belongs to fr is ασxi ,82

and if the data instance falls outside this interval, it is83

determined that it does not belong to fr. By increasing84

or decreasing the value of the parameter α, the condition85
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for determining whether a data instance (xi, yi) belongs1

to fr is relaxed or tightened, making p(Oi|fr) larger or2

smaller, respectively. Optimal values of α can be chosen3

using statistical criteria and appropriate validation meth-4

ods; however, we set α = 2 for all experiments in this5

work to reduce model complexity. We consider p(Oi|fr)6

as the probability that (xi, yi) is generated by fr, and7

p(Oi|fr) = 1− p(Oi|fr) is the probability that (xi, yi) is8

not generated by fr. Supplementary Figure 1 illustrates9

the process of modeling the probability p(Oi|fr).10

Events where (xi, yi) or (xj , yj) is generated by the11

function fr are independent events. Therefore, consider-12

ing the function fr, we can evaluate the joint probabilities13

of observing:14

• Both data instances:15

p(Oi, Oj |fr) = p(Oi|fr)× p(Oj |fr); (2)

• Only one of the data instances:16

p(Oi, Oj |fr) + p(Oi, Oj |fr)
= p(Oi|fr)× p(Oj |fr) + p(Oi|fr)× p(Oj |fr);

(3)

• Neither of the data instances:17

p(Oi, Oj |fr) = p(Oi|fr)× p(Oj |fr)
= 1− p(Oi, Oj |fr)− p(Oi, Oj |fr)− p(Oi, Oj |fr).

(4)

B. Modeling evidence by mass functions18

Considering the Dempster–Shafer theory framework16,19

we begin by defining the frame of discernment Ω. Let20

Ω = {s, ds} be the universal set representing the similar-21

ity states of any two data instances (xi, yi) and (xj , yj).22

s and ds denote the similarity and dissimilarity states23

between the two data instances, respectively.24

According to the Dempster–Shafer theory, the evidence25

of the similarity states between these two data instances26

is represented by a mass function mi,j (or a basic proba-27

bility assignment)16. This assigns probability masses to28

all the nonempty subsets of Ω (X = {{s}, {ds}, {s, ds}}).29

It is defined as follows:30

mi,j : X → [0, 1] with
∑
E∈X

m(E) = 1. (5)

The masses assigned to {s} and {ds} reflect the degrees of31

belief exactly committed to the evidence to support the32

similarity and dissimilarity between (xi, yi) and (xj , yj),33

respectively. The weight assigned to {s, ds} expresses the34

degree of belief that the evidence provides no information35

about the similarity (or dissimilarity) between (xi, yi)36

and (xj , yj).37

Therefore, the mass function mi,j
fr
, which models a38

piece of evidence of the similarity between (xi, yi) and39

(xj , yj) collected from fr, is defined as follows:40

mi,j
fr

({s}) =
p(Oi, Oj |fr)

γi,j
(6)

mi,j
fr

({ds}) =
p(Oi, Oj |fr) + p(Oi, Oj |fr)

γi,j
(7)

mi,j
fr

({s, ds}) = 1− 1

γi,j
+
p(Oi, Oj |fr)

γi,j
, (8)

where γi,j = (e
σ̄

∆y +1)×(
σxi

σ̄ +1)×(
σxj

σ̄ +1) is a discount-41

ing factor16,26, which describes the unreliability of evi-42

dence about the similarity between (xi, yi) and (xj , yj)43

collected from a source of evidence fr. ∆y is the varia-44

tion range of the target variable y in the dataset D. The45

smaller σ̄ is relative to ∆y, the more reliable the learned46

regression function fr is. Also, when σxi and σxj are47

smaller than σ̄, fr can provide reliable evidence for the48

relationship between (xi, yi) and (xj , yj). By contrast,49

when σxi and σxj are large compared to σ̄, fr cannot pro-50

vide reliable evidence for the relationship between (xi, yi)51

and (xj , yj). A detailed explanation of each component52

in γi,j is provided in Supplementary Section I.53

C. Dempster’s rule in combining evidence54

Assuming that we can collect q pieces of evidence from55

Fr = {f1
r , . . . , f

q
r }, a set of q reference functions is gen-56

erated from D to evaluate the similarity between a pair57

of data instances with indices i and j. According to the58

Dempster–Shafer theory framework, any two pieces of ev-59

idence collected from the reference functions f lr and fkr ,60

which are modeled by the corresponding mass functions61

mi,j
f lr

and mi,j
fkr
, respectively, can be combined using the62

Dempster rule of combination to assign the joint mass63

mi,j
{f lr,fkr }

to each nonempty subset E of Ω as follows:64

mi,j
{f lr,fkr }

(E) = (mi,j
f lr
⊕mi,j

fkr
)(E)

=

∑
Et∩Ev=E

mi,j
f lr

(Et)×mi,j
fkr

(Ev)

1−
∑

Et∩Ev=∅
mi,j
f lr

(Et)×mi,j
fkr

(Ev)
,

(9)

where E, Et, and Ev are nonempty subsets of Ω. Demp-65

ster’s rule is commutative and associative.66

Based on Dempster’s rule, the obtained mass functions67

corresponding to the q pieces of evidence are combined68

to assign the final mass mi,j
Fr as follows:69

mi,j
Fr (E) =

(
mi,j
f1
r
⊕mi,j

f2
r
⊕ · · · ⊕mi,j

fqr

)
(E). (10)

We perform similar analyses for all pairs of data in-70

stances in D to construct symmetric matrices M com-71

prising the similarities (M [i, j] = M [j, i] = mi,j
Fr ({s}))72
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between them. Thereafter, the obtained matrix is ap-1

plied for further unsupervised data mining analysis, such2

as clustering or data visualization.3

III. EXPERIMENTS AND RESULTS4

In this section, we perform three experiments to5

demonstrate the application of our similarity measure-6

ment in dealing with outliers and data generated by mul-7

tiple mechanisms when designing materials descriptors.8

We apply the eRSM to measure similarities between mag-9

netic of three datasets for detecting subgroups of ma-10

terials: 1) The experimentally observed Curie tempera-11

ture dataset (Dbinary) of binary alloys for transitioning12

rare earth metals, 2) Dataset of calculated magnetiza-13

tion of quaternary high-entropy alloys (DMag
quaternary), and14

3) Dataset of calculated Curie temperature of quaternary15

high-entropy alloys (DTCquaternary). Note that the datasets16

DMag
quaternary and DTCquaternary contain similar alloys and17

differ only in the target properties.18

A. Datasets19

The details of the datasets investigated in this study20

are as follows.21

• Binary alloys dataset Dbinary27: A material dataset22

containing 100 transition-rare earth metal binary23

alloys, comprising nickel (Ni), manganese (Mn),24

cobalt (Co), or iron (Fe), and the corresponding25

Curie temperatures (TC). This dataset was col-26

lected from the Atomwork database of the National27

Institute of Materials Science28,29. Each binary al-28

loy in Dbinary is represented using seven descrip-29

tors: (1,2) the atomic number of transition metal30

(ZT ) and rare-earth (ZR) constituents; (3) projec-31

tion of the spin magnetic moment onto the total32

angular moment of the 4f elections (J4f (1− gj));33

(4, 5) covalent radius (rcovT ) and first ionization34

(IPT ) of the transition metal; (6, 7) concentration35

of the transition metal (CT ) and rare-earth metal36

(CR). The selection of these seven descriptors has37

been discussed in detail in previous studies10,30.38

• Quaternary high-entropy alloys datasets39

Dquaternary27: A material dataset contains40

990 equiatomic quaternary high-entropy alloys,41

which comprise 14 transition metals {Ag, Cd, Co,42

Cr, Cu, Fe, Mn, Mo, Ni, Pd, Rh, Ru, Tc, Zn},43

and the corresponding calculated magnetizations44

and Curie temperatures in the BCC phase. The45

dataset was collected from an original dataset46

of 147, 630 equiatomic quaternary high-entropy47

alloys calculated using Korringa-Kohn-Rostoker48

coherent approximation method31. Each alloy in49

Dquaternary is represented using 135 compositional50

(a) (b)

FIG. 2. (a) Observed and predicted Curie temperature of al-
loys in the dataset Dbinary using model generated for nickel
(Ni), iron (Fe), and manganese (Mn)-based alloys. The blue
and gray points indicate cobalt (Co)-based alloys and alloys
of other transition metals (Ni, Fe, Mn), respectively. (b) Pre-
diction error of Co-based alloys when excluding (top) or in-
cluding (bottom) data of other Co-based alloys to the training
dataset.

descriptors, including the means, standard devia-51

tions, and covariance of the atomic representations52

of their constituent elements13 and four categorical53

features indicating the elements comprising the54

quaternary alloy. The feature selection process55

applied to this dataset has been discussed in detail56

in Supplementary Section III.57

B. Assessment of the similarity between transition-rare earth58

metal binary alloys based on mechanisms of Curie temperature59

In the first experiment, we show the versatility of the60

eRSM for detecting outliers and identifying a mixture of61

mechanisms. We apply the eRSM to assess the similari-62

ties between 100 transition rare earth metal binary alloys63

comprising nickel (Ni), manganese (Mn), cobalt (Co), or64

iron (Fe) in the dataset Dbinary based on their Curie tem-65

peratures. We can construct a regression model using a66

Gaussian process by considering the data instances in67

Dbinary. This shows a high prediction accuracy with an68

R2 score of 0.963 and an MAE of 40 (K) in ten-fold69

cross-validation. However, such a nonparametric regres-70

sion model does not guarantee the reliability of the model71

in the subsequent exploratory predictions. This is be-72

cause the number of observable alloys is relatively small73

compared to the number of possible alloys.74

Figure 2 (a) shows the results of the exploratory predic-75

tion of the Curie temperature of the Co-based binary al-76

loys in Dbinary using a Gaussian process regression model77

constructed from the data of binary alloys of Ni, Mn, and78

Fe. The regression model constructed from the data of79

binary alloys of Ni, Mn, and Fe shows a high predic-80

tion accuracy in ten-fold cross-validation (R2 = 0.94681

and MAE= 35 (K)). Although the Co-based alloys with82

high Curie temperature tend to be underestimated by83

the model, the other Co-based alloys are often overesti-84
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FIG. 3. (a) Heatmap illustrating the similarity matrix Mbinary extracted for all the data instances in the Dbinary. (b) Confusion
matrices measuring the regression-based similarities between alloys in four groups G1-G4 and the dissimilarities between the
models generated for alloys in different groups.

FIG. 4. Dependence of TC on the concentration of the transi-
tion metal (CT ) in alloys. Red, blue, green and yellow scatters
indicate alloys containing cobalt (Co), iron (Fe), manganese
(Mn), and nickel (Ni). Alloys in G1 are highlighted by trian-
gles.

mated. The prediction error for the Co-based alloys is1

critically reduced when some data of the other Co-based2

alloys is included (Fig. 2 b). This observation supports3

the hypothesis that the underlying mechanisms are dif-4

ferent between the Co-based alloys and alloys of other5

transition metals. This facilitates the use of the eRSM6

to clarify the mixture mechanism from this dataset.7

By applying the eRSM on the dataset Dbinary, we ob-8

tain a similarity matrix Mbinary with moderately high9

similarity values among the data instances (Fig. 3 a).10

Thus, approximately all the data instances can be re-11

gressed by a relatively smooth function. This is consis-12

tent with the high prediction accuracy of ten-fold cross-13

validation for all the alloys in the dataset. Considering14

the exploratory data analysis, to avoid false intuition or15

misunderstanding, the grouping of alloys in Dbinary is16

done such that the similarities between the alloys in each17

group are high. Moreover, one alloy can belong to more18

than one group simultaneously, or it can be in none of the19

groups. We apply a graph-based clustering method32 to20

the extracted similarity matrix to detect overlapping sub-21

groups of materials. As a result, we observe four groups22

of alloys, denoted as G1, G2, G3, and G4, which show23

high intragroup similarities, exceeding 0.7 (Fig. 3 a).24

Nevertheless, the similarity between the alloys in group25

G1 and those in G2, G3, and G4 is significantly dissimi-26

lar. In addition, a small group of alloys (Fig. 3 a, gray27

region) is approximately different from all the others and28

can be considered as outliers. The remaining alloys are29

not assigned to any group to have confidence in the clus-30

tering analysis results.31

To evaluate the validity of the analysis process quan-32

titatively, we trained the regression models for TC us-33

ing data from each of the four groups G1, G2, G3, and34

G4. Moreover, we monitored their prediction accuracy35

on these groups. The confusion matrix summarizing the36

correlation between the observed and predicted TC by37

the four learned regression models is shown in Fig. 4.38
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FIG. 5. (a,d) Heatmaps illustrating the similarity matrices MMag
quaternary (a) and MTC

quaternary (d) extracted from datasets
DMag

quaternary and DTC
quaternary, focusing on mechanisms of magnetization and TC , respectively. (b,e) The confusion matrix

summarizes the differences between the magnetization (b) or TC (e) mechanisms of alloys in extracted groups. (c,f) Visualization
of quaternary alloys in the two-dimensional embedding spaces constructed by applying the T-distributed Stochastic Neighbor
Embedding (t-SNE) to MMag

quaternary (c) and MTC
quaternary (f). Red, blue, and gray contours indicate gaussian models ĜMag

1

(ĜTC
1 ), ĜMag

2 (ĜTC
2 ), and ĜMag

3 (ĜTC
3 ), respectively, learned by using the Gaussian Mixture Models33 in the embedding space

focusing on mechanisms of magnetization (TC). In addition, red and blue points in sub-figures b and c (e and f) indicate the
alloys in GMag

1 (GTC
1 ) and GMag

2 (GTC
2 ), respectively.

The diagonal plots illustrate the cross-validation results1

of the models learned from the four groups of alloys. The2

off-diagonal plot shows the correlation between the ob-3

served TC and the predictions made by the model learned4

from the alloys of the other groups. The obtained results5

confirm the intragroup similarity of the alloys in groups6

G1, G2, G3, and G4, respectively, dissimilarity between7

the five groups, and intra-group dissimilarity of the alloys8

considered as outliers. This indicates that the obtained9

results suggest that the physical mechanisms of alloys in10

G1 may be different from those of the alloys in G2, G3,11

and G4. Nonetheless, it is difficult to determine the dif-12

ferences between the mechanisms of the TC of alloys in13

G2, G3, and G4.14

Moreover, considering the alloys inG1, there is a strong15

linear correlation between TC and the concentration of16

transition metals in the alloys with a Pearson correla-17

tion coefficient of 0.95 (Fig. 4, triangle scatters). This18

result is consistent with the observation of the previous19

research30, when considering all binary alloys of transi-20

tion metals and rare earth metals in Dbinary; the range21

of TC is found to be correlated with the composition ra-22

tio of the transition metals. Furthermore, 13 of the 1723

alloys in G1 are Co-based alloys with high Curie tem-24

peratures (TC > 600K). By contrast, most of the other25

Co-based alloys in Dbinary have lower Curie temperatures26

(TC < 500K) and are assigned to G2, G3, and G4. These27

results are consistent with the observation that the re-28

gression model for Fe-, Mn-, and Ni-based alloys tends to29

underestimate the TC of the Co-based alloys with high30

TC and overestimates the TC of the remaining Co-based31

alloys (Fig. 2 a).32

In addition, we examine the behavior of eRSM on33

toy datasets synthesized with outliers or multiple mech-34
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(a)

(c)

(b)

(d)

Gaussian Process Regression Mixture of Experts

R2 score: 0.75
MAE: 0.13 (T)

R2 score: 0.76 
MAE: 0.11 (T)

R2 score: 0.85
MAE: 67 (K)

R2 score: 0.86
MAE: 49 (K)

Mixture of ExpertsGaussian Process Regression

FIG. 6. Prediction accuracies for magnetization (a, b) and
Curie temperature (c, d) of the alloys with 10 -fold cross-
validations. Prediction validation results with single gaussian
process regression models for magnetization and Curie tem-
perature are shown in sub-figures (a) and (c), respectively.
Prediction validation results with mixtures of expert models
for magnetization and Curie temperature are shown in sub-
figures (b) and (d), respectively. Blue and white circles indi-
cate magnetic alloys (finite magnetization) and non-magnetic
alloys (zero magnetization), respectively.

anisms to assess the efficiency of this similarity measure.1

Detailed results of these experiments are summarized in2

the Supplementary Section II. Briefly, the eRSM demon-3

strates that it can effectively assess the similarity between4

the data instances and use the similarity for detecting5

outliers and a mixture of mechanisms.6

C. Assessment of the similarity between quaternary7

high-entropy alloys based on mechanisms of magnetization8

The effectiveness of the eRSM in detecting outliers and9

identifying mixture mechanisms in the material dataset10

has been shown in the previous experiment. In the next11

two experiments, we show the potential of applying the12

measured similarity to design descriptors for materials.13

Considering this experiment, we subsequently apply14

the eRSM to assess the similarities between 990 quater-15

nary high-entropy alloys comprising 14 transition met-16

als in the dataset DMag
quaternary based on their magnetiza-17

tion. To predict the magnetization of these alloys, we18

attempted to construct an optimal Gaussian process re-19

gression model using the designed descriptors. The Gaus-20

sian process can poorly regress the magnetization with an21

R2 score of 0.75 and an MAE of 0.13 (T ) in the ten-fold22

cross-validation. The obtained results suggest that the23

magnetization of these alloys may not be described by a24

single model in the designed descriptor space. This in-25

dicates that the existence of outliers or mixture models26

of the magnetization properties of these alloys in the de-27

scriptor space should be considered in the analysis of this28

dataset.29

Applying the eRSM, we obtain a similarity matrix30

MMag
quaternary with two core groups of alloys denoted by31

GMag
1 and GMag

2 , showing high intra-group similarities32

and exceeding 0.5 (Fig. 5 a). Some of the alloys in GMag
133

are similar to those in GMag
2 ; nonetheless, the rest show34

apparent dissimilarities. Furthermore, one small group35

of alloys (Fig. 5 a, yellow region) showed dissimilari-36

ties with the others and could be considered as outliers.37

The remaining alloys in DMag
quaternary do not exhibit ap-38

parent similarities with alloys in groups GMag
1 and GMag

2 .39

Therefore, they are not assigned to any group.40

Similar to the previous session, to validate the obtained41

results quantitatively, we trained three regression mod-42

els using data from each group, GMag
1 , GMag

2 , and out-43

liers. We monitored the prediction accuracy of the three44

learned regression models for data in all the groups. The45

confusion matrix summarizing the correlations between46

the observed and predicted values of the target variable47

using the learned regression models is shown in Fig. 5 (c).48

The diagonal plots illustrate the ten-fold cross-validation49

results of the models learned from these three groups of50

alloys. The off-diagonal plot shows the correlation be-51

tween the observed magnetization and the predictions52

made by the model learned from the alloys of the other53

groups.54

The obtained results confirm the intragroup similarity55

of the alloys in groups GMag
1 and GMag

2 , respectively, the56

dissimilarity between the two groups, and the intra-group57

dissimilarity of the alloys considered as outliers. Specif-58

ically, we observe that group GMag
2 consists of ferrimag-59

netic alloys or alloys whose magnetization is relatively60

smaller (magnetization < 0.1 (T )) than the others in the61

group GMag
1 . In contrast, using the data in GMag

1 , we62

can construct a Gaussian process regression model with63

a high prediction accuracy with an R2 score of 0.992 and64

an MAE of 0.016 (T ) in the ten-fold cross-validation.65

Therefore, we can use the information of the con-66

stituent elements of each alloy to predict which group it67

belongs to in advance20 and apply an appropriate regres-68

sion model to improve prediction accuracy for the alloys.69

We combine the similarity measured by using the eRSM70

with the Jaccard similarity coefficient34 and apply the T-71

distributed Stochastic Neighbor Embedding35 (t-SNE) to72

construct a two-dimensional embedding map (Fig. 5 c).73

Details of the combination method are shown in Supple-74

mentary Section IV. As a result, we can easily distinguish75

the alloys in groups GMag
1 (red) and GMag

2 (blue) when76

they form two separate regions with high density in the77
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embedding space. We apply a Gaussian mixture model331

(GMM) on the embedding space to identify groups and2

calculate the probability of an alloy belonging to a par-3

ticular identified group. Alloys in different groups are4

treated differently by using a mixture of experts36 (MoE)5

approach. Figure 6 (a-b) show a reduction of the pro-6

posed mixture of experts in MAE of 18% compared with7

result of the single model, from 0.13 (T ) to 0.11 (T ). Fur-8

ther analysis shows that applying the obtained similari-9

ties in MOE improves the prediction accuracy for mag-10

netic alloys (Supplementary figure 7 a).11

D. Assessment of the similarity between the quaternary12

high-entropy alloys based on mechanisms of Curie13

temperature14

Considering this experiment, the target data are the15

same as in the previous section (Dquaternary); however,16

the physical property of interest is TC . A regression17

model can be constructed using a Gaussian process. This18

shows a rather high prediction accuracy in ten-fold cross-19

validation with an R2 score of 0.85 and an MAE of 6720

(K). We also observe two distinguishable groups of qua-21

ternary alloys in the dataset DTCquaternary when applying22

the eRSM. Figure 5 (d) illustrates the similarity matrix23

MTC
quaternary with two groups of alloys denoted as GTC124

and GTC2 , showing high intra-group similarities and ex-25

ceeding 0.5. Some of the alloys in GTC1 are similar to26

those in GTC2 . Nonetheless, the others exhibit apparent27

dissimilarities, which is consistent with the observation28

of two high-density regions (red) in the embedding map29

of MTC
quaternary (Fig. 5 e). Furthermore, a small group30

of alloys (Fig. 5 d, yellow region) showed dissimilarities31

with all the others and could be considered as outliers.32

The remaining alloys do not show apparent similarities33

with alloys in groups GTC1 and GTC2 ; thus, they are not34

assigned to any group.35

Following the same analysis procedure as in the previ-36

ous section, we trained regression models for Curie tem-37

perature using data from each of the three groups GTC1 ,38

GTC2 , and outliers and monitored their prediction accu-39

racy on these groups. Figure 5 (f) shows the confusion40

matrix that summarizes the obtained results. The diag-41

onal plots illustrate the ten-fold cross-validation results42

of the models learned from these three groups of alloys.43

The off-diagonal plot shows the correlation between the44

observed Curie temperature and the predictions made by45

the regression model learned from the alloys of the other46

groups. We can also confirm the intra-group similarity of47

the alloys in groups GTC1 and GTC2 , respectively, dissim-48

ilarity between the two groups, and intra-group dissimi-49

larity of the alloys considered as outliers.50

Specifically, we observe that the Curie temperatures51

of approximately all the alloys in group GTC2 have a low52

TC , which is 0 (K) or relatively smaller than that of the53

other alloys. Furthermore, using the data in GTC1 , we54

𝐺!
"#$ 𝐺!

%!

(a) (b)

3.3%

FIG. 7. Proportions of quaternary alloys containing Fe or Co
in group GMag

1 (a) and GTC
1 (b).

can construct a Gaussian process regression model with55

a high prediction accuracy with an R2 score of 0.985 and56

an MAE of 19 (K) in the ten-fold cross-validation.57

Therefore, we utilize the similarity information to de-58

sign descriptors for quaternary alloys due to the effec-59

tiveness of the data for detecting the mixture of multi-60

ple mechanisms in the dataset. We apply similar meth-61

ods as in the previous experiment to construct a two-62

dimensional embedding map (Fig. 5 f) and then learn a63

mixture of experts to predict Curie temperature of qua-64

ternary alloys in the dataset DTCquaternary. The proposed65

mixture of models exhibits higher prediction accuracy66

than the single model in 10 -folds cross-validations (Fig.67

6 c-d). The MAE of the proposed mixture of expert re-68

duces approximately 36%, from 67 (K) to 49 (K).69

E. Discussion of the obtained similarities between materials70

and the associated physical mechanisms71

Regarding the experiments with the datasets72

DMag
quaternary and DTCquaternary focusing on magnetiza-73

tion or TC , the datasets seem to be a self-evident74

example where magnetization and TC are cases sensitive75

to finite or zero. As we can see from the results described76

above (Sections III C, IIID, and Supplementary Section77

VI), the prediction accuracy is low when considering a78

single regression model for the entire dataset. In this79

section, we pay attention to the analysis of the extracted80

alloys groups GMag
1 , GMag

2 , GTC1 , and GTC2 to identify81

underlying patterns.82

Figure 7 shows that Fe and Co, which have a large spin83

moment, ferromagnetic interactions with many elements84

and result in high magnetization or TC , are dominant85

elements comprising alloys in two groups GMag
1 (a) and86

GTC1 (b). Furthermore, in the analysis that considers the87

proportion of the quaternary alloys fixing two of their88

four constituent elements concerning the extracted four89
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FIG. 8. Effect of coexistence of the 14 transition metals on magnetization and Curie temperature mechanisms. Each pie chart
results from quaternary alloys containing the respective element pair. They show the percentages of alloys that follow the
magnetization mechanisms (lower-left triangle) and Curie temperature mechanisms (upper-right triangle), as extracted by the
eRSM. Red and blue areas indicate the percentages of alloys whose magnetization and TC are finite (GMag

1 and GTC
1 ) and zero

(GMag
2 and GTC

2 ), respectively. Yellow areas indicate the percentages of alloys that are detected as outliers. By contrast, gray
regions indicate the fractions of alloys not assigned to the extracted groups.

groups GMag
1 , GMag

2 , GTC1 , and GTC2 , we observe that the1

proportion of Fe-containing and Co-containing alloys in2

two groups GMag
1 (a) and GTC1 are significantly larger3

than other groups (Fig. 8). Thus, the prediction mod-4

els constructed from the data of the alloys in GMag
1 or5

GTC1 are more suitable to predict magnetization or TC ,6

respectively, of alloys containing these elements. The re-7

maining Fe-X and Co-X (X denotes the other transition8

metals comprised in the alloys) alloys are considered out-9

liers of the extracted mechanisms or unassigned HEAs,10

which are not assigned to any of these mechanisms. Con-11

versely, Mn-X alloys exhibit similar behavior as Fe-X and12
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FIG. 9. Correlation between magnetization (T ) and Curie
temperature (K) of quaternary alloys with non-zero mag-
netization and non-zero Curie temperature in datasets
DMag

quaternary and DTC
quaternary. Marginal plots show histogram

of the properties of the alloys.

Co-X when focusing on the magnetization mechanisms.1

However, for the Curie temperature, the Mn-X alloys are2

categorized in the group GTC2 of low TC besides the other3

groups. Especially among the Fe-X and Co-X alloys, the4

percentage of Fe-Mn and Co-Mn alloys are considered as5

outliers of the mechanisms extracted from GTC1 are rela-6

tively higher, 55% and 43%, respectively (Fig. 8).7

For further investigation, we organized the raw data8

of the quaternary alloys by focusing on the presence or9

absence of Mn. Figure 9 shows the correlation between10

magnetization and Curie temperature of 556 (56%) al-11

loys with non-zero properties. The total number of data12

instances is 990, and the number of data instances where13

both TC and magnetization are zero is 413 (42%), while14

there are twenty-one (2%) alloys with zero TC but have15

finite magnetization. We found that the alloys contain-16

ing all three elements, Mn, Fe, and Co, show high Curie17

temperatures (TC > 900 (K)). Conversely, the alloys18

containing either pairs of Mn-Fe or Mn-Co show moder-19

ate Curie temperatures. By contrast, the Mn-containing20

alloys without Fe or Co have low Curie temperatures21

(TC < 250 (K)). Furthermore, the trends of these three22

alloy groups do not offer any significant correlation be-23

tween magnetization and Curie temperature. However,24

an apparent positive correlation between magnetization25

and Curie temperature can be observed for the group of26

Mn-free alloys.27

To interpret the results obtained, we considered a hy-28

pothesis of the origin of the observed data. The esti-29

mated magnetization is the sum of all the local mag-30

netic moments divided by the unit volume. The local31

magnetic moments are determined by the spin configura-32

tions of atomic sites that stabilize the structure of alloys.33

Conversely, given a particular structure and spin con-34

figuration, the TC can be estimated from the spin-spin35

exchange energy. First-principles calculations show that36

early transition metals and late transition metals often37

have antiferromagnetic interactions37. This interaction38

has also been confirmed in high-entropy alloys by using39

automatic exhaustive calculations31. Mn lies between40

early and late transition metals; thus, the estimation41

of the spin configuration (ferromagnetic or antiferromag-42

netic) in Mn-containing alloys should be cautiously con-43

sidered in different situations, especially in high-entropy44

alloys whose elements can stochastically exist at the same45

atomic site. From this consideration, we can admit a hy-46

pothesis that the alloys containing Mn follow a different47

rule for magnetization than those grouped into GMag
2 .48

Conversely, the alloys containing Mn may follow the same49

rules for TC as the alloys grouped into GTC2 , albeit with50

a spin configuration that provides magnetization. The51

details are beyond the scope of this paper and will not52

be discussed here, but further analysis is promising.53

IV. CONCLUSIONS54

In this study, we developed a method that can be55

used to rationally transform material data from multi-56

ple sources into evidence of similarities between materi-57

als and combine the evidence to conclude the similarities58

between materials. The extracted similarity-dissimilarity59

information has significant potential for application in60

subgroups discovery of materials. The effectiveness of61

the eRSM in detecting homogenous subgroups of materi-62

als has been demonstrated by using two experiments on63

two datasets of magnetic materials. In addition, further64

analysis of the detected subgroups improves the existing65

knowledge of problems related to the applied datasets of66

magnetic materials. For example, we reveal the differ-67

ences in the mechanisms of the Curie temperature of Co-68

based binary alloys when using our method to a dataset69

of 100 transition-rare earth metal binary alloys compris-70

ing Ni, Mn, Co, and Fe. Moreover, we explored the71

mechanisms of ferrimagnetic and low Curie temperature72

alloys from the magnetic dataset of calculated quater-73

nary alloys. By measuring the similarity between ma-74

terials with uncertainty, the method described herein is75

expected to extract valuable information for describing76

and interpreting the underlying physical mechanisms in77

material datasets.78

SUPPLEMENTARY MATERIAL79

See supplementary materials for the following addi-80

tional information: 1) Explanation of the formulation81

modeling uncertainty, 2) Evaluation of the eRSM us-82
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ing the toy datasets, and 3) Features selection and pre-1

analysis in the dataset of quaternary high-entropy alloys.2
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