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Abstract

In classification, it is often preferable to assign a pat-
tern to a set of classes when the uncertainty is too
high to make a precise decision. In this paper, we con-
sider the problem of making set-valued predictions in
classification tasks, when uncertainty is described by
belief functions. Two approaches are contrasted. In
the first one, an act is defined as the assignment to
only one class, and we define a partial preorder among
acts. The set of non-dominated acts is then given as
the prediction. In the second approach, an act is de-
fined as the assignment to a set of classes, and we
construct a complete preorder among acts. The two ap-
proaches are discussed and compared experimentally.
A critical issue both to make decisions and to evaluate
decision rules is to define the utility of set-valued pre-
diction. To this end, we propose to model the decision
maker’s attitude towards imprecision using an Ordered
Weighted Average (OWA) operator, which allows us to
extend the utility matrix. An experimental comparison
of different decision rules is performed using UCI and
artificial Gaussian data sets.

Keywords: Belief functions, Dempster-Shafer theory,
Decision under uncertainty

1. Introduction

In classification problems, given a model learned from the
training set, decisions are made on predicting the labels
of new instances [9]. Unfortunately, it sometimes happens
that our belief about the states of nature cannot be modeled
by a probability measure as the information is insufficient
to identify precise probabilities [4]. In such a situation,
the commonly-used Maximum Expected Utility principle
(MED) fails to give an adequate decision of label assign-
ment. In this paper, decision strategies in the Dempster-
Shafer (DS) framework [2, 14, 8] are discussed.

As reviewed in paper [7], various classical Bayesian de-
cision rules and imprecise probability decision rules have
been extended to the DS framework. Yet in classification
applications investigated so far, given uncertain informa-
tion about the states of nature by belief functions, decisions
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have mainly been made by simple means such as using
pignistic probability [13] put forward by Smets [15], or se-
lecting the class with highest mass value [11]. Taking better
advantage of uncertainty, Denceux [3] analysed three prin-
cipled decision rules with rejection in the DS framework.
A further step is made in this paper, in which different de-
cision approaches allowing for set-valued predictions are
discussed. A problem arising from such kind of predictions
is how to evaluate their performances. Zaffalon et al. [21]
analysed the {0, 1} reward case and proposed an evalua-
tion metric that takes the decision maker’s degree of risk
aversion into account. Considering a more general case,
Yang et al. [20] provided some properties that the utility
of set-valued prediction should follow and proposed the
p-discounted costs method. In this paper, inspired by the or-
dered weighted average (OWA) operator [17], we propose
another approach to define the utilities for all set-valued
predictions based on the utility of precise ones.

Let us denote by Q = {®,---,®,} the set of classes
(states of nature). For classification problems, in gen-
eral an act is defined as the assignment of an instance
to one and only one of the n classes. The set of acts is
F ={fo,," fa,}> Where fo, (or f; for short) denotes the
assignment to class @;. To make decisions, we define a
utility matrix Uy, whose general term ;; € [0, 1] denotes
the utility of selecting class ®; when the true class is ®;.
The more desirable is the prediction, the higher utility it
achieves. Without loss of generality, we assume that u;; = 1
for all i (correct predictions all have unit maximum utility)
throughout this paper. When uncertainty is described by a
probability distribution on Q, we can compute an expected
utility for each act. A complete preference relation among
all available alternatives f € .% can then be computed and
the optimal act provides a precise prediction of the instance.
However, in situations of uncertainty, it may be preferable
to assign a pattern to a set of classes. Different decision
strategies are available for that purpose when uncertainty is
described using either imprecise probabilities, or Dempster-
Shafer belief functions. In this paper, we focus on the latter
model, but some ideas can be transposed to other models.
Describing the decision maker’s (DM) information con-
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cerning the states of nature by a belief function m on Q, we
analyse how to make set-valued classification predictions
by different ways.

2. Two Families of Set-valued Decision
Strategies

We have seen that a complete preorder among precise as-
signments can be used to make precise predictions. To
compute set-valued predictions under uncertainty, we can
basically start by modifying either the preference relations
or the acts. Different decision criteria allowing us to derive
either partial preorders among precise assignments, or com-
plete preorders among partial assignments are discussed
below.

2.1. Partial Preorders Among Precise Assignments

In this approach, we still define the acts as precise assign-
ments (assigning the instance to one and only one of the
n classes). Due to lack of information, each act f; induces
lower and upper expected utilities defined, respectively, as

E,(fi)= Z m(B mmu,j and
BCQ
=Y m(B max Uij.
BCQ

It is well known that the interval [E,,(f;), E,(f;)] is also the
range of expectations Ep(f;) with respect to all probability
measures P compatible with belief function m (called the
credal set of m). In the imprecise probability framework,
three main decision criteria have been proposed [16]: in-
terval dominance, maximality and weak dominance. These
criteria are described in Table 1. By comparing the lower
and upper expected utilities of acts, these criteria produce
partial preorders, in which some acts are incomparable but
more desirable than the others. Therefore, to choose the
best act, we drop some sub-optimal alternatives and ob-
tain an optimal set % * such that Vf;, f; € #*, fi ~ fj and
Vfie F*,Vfi ¢ F*, fi = f;. For instance, if we have the
partial relation fo, > fo, and fo, > fu, (|Q| = 3), then
the optimal set is .7 = { f,, fo, } and the set of predicted
classes is {o;, @2 }.

Note that we obtain partial preorders because some alter-
natives cannot be ordered without additional information:
from an imprecise probability theory point of view, when
the credal set is too large or, from the belief function point
of view, when we have some masses on non-singleton fo-
cal elements. Given additional information about states of
nature, we can further narrow the expected utility inter-
vals and make them comparable. The more information we
have, the smaller is the optimal set .#*. When the belief
functions become Bayesian, a complete preorder revealing
a precise prediction is obtained.

2.2. Complete Preorders Among Partial Assignments

Let us now consider the other approach to make set-valued
predictions by extending the set of acts. Here, we generalize
the acts as partially assigning the instance to a non-empty
subset A of Q. The set of acts becomes .# = { f4,A € 22\
{0}}, where 2 denotes the power set of Q. Obviously, to
make decisions, the original utility matrix U, x, needs to be
extended to [[AJ(zn,l) xn» With each element ii4 ; representing
the utility of assigning an instance to the set A of classes
when the true class is @;. The details about utility matrix
extension will be discussed in Section 3.

Since each act now corresponds to a set of classes, to
make set-valued predictions, a complete preorder among
partial assignments should be defined. Assuming mass func-
tion m on Q and the extended utility matrix [[AJ(QLI)X,Z to
be given, Table 2 recalls extensions of classical decision
criteria inducing complete preorders of partial assignments
fa. Here only the basic information needed to achieve pre-
orders is described due to length limitation; more complete
descriptions of all decision criteria used can be found in [7].
Some additional remarks about Table 2 are the following: 1)

For the pignistic criterion [15], BetP({w;}) = Yoea %
is the pignistic probability where |A| denotes the cardinal-
ity of subset A C Q; ii) In the generalized OWA criterion,
Fp is the maximum entropy OWA operator with orness 3
[18] (more details about the OWA operator are given in
Section 3); iii) For the generalized minimax regret criterion,
ra;j = Maxyila, j — 1y, j is the regret that act fy, is selected
when the true state @; occurs [19].

Also, we can remark that MEU works as a special case
where uncertainty about Q is quantified by probabilities
P11, , Pn. In addition, it can be proved that, for any act fj,
the sum of E,,,(f4) and R(f4) always equals 1 in our utility
settings. The complete preorder achieved by descending
order of E,,(f.) is the same as that achieved by ascending
order of R(f.). Therefore, the maximin and miminax regret
criteria always result in the same decision for our problem.

With any decision criterion in Table 2, a complete pre-
order of partial assignments fj is obtained with respect to
mass function m. Therefore, a single but perhaps partial
assignment will be selected as the optimal one. Taking com-
plete preference relation fie, o,} = fo, = fan, (|2 =2) as
an example, we have .7 * = {f{w.,wz}}’ i.e., we know for
sure that the best choice is to assign the instance to class
1 or class 2, which corresponds to a set-valued prediction
{1, }. We can remark that, in this approach, we can
still make set-valued predictions even with very precise
probabilities of states of nature, which is a major difference
with the other approach discussed in Section 2.1.
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Table 1: Decision criteria inducing partial preorders

decision criterion

preference relation

interval dominance
maximality

weak dominance

fizm fi <= Ey(fi) = En(f;
Jizma fj = B, (fi—

fi=wp fj <= (E (fi) =

)
fi)=0
E,(f,

1) A (Bnf) 2 En(£)

Table 2: Decision criteria inducing complete preorders

decision criterion preference relation detail
generalized maximin Ja; 7 fa; = Ep(fa) 2 E,(fa;) E,(fa)= ¥ m(B) mi% A, j
BCQ ;e
generalized maximax Ja; =" fa; = E.(fa,) > En(fAj) En(fa,)= ¥ m(B) ma)éﬁ,qi’j
BCQ ;e ' .
generalized Hurwicz fai 7o fa; == Ema(fa;) 2 Ema(fa;)  Ema(fa;) = B, (fa,) + (1 — @)En(fa,)
pignistic criterion faimp fa; = E,(fa;) > Ep(fAJ.) E,(fa,) = Z] i, jBetP({w;})
j=
generalized OWA Taimp fa; = Epp(fa) 2 EDig(fay) - Entp(fa) = ngm(B)Fﬁ({ﬁAi,j | w; € B})
generalized minimax regret  fa, = fa, <= R(fa;) < R(fa;) R(fa;)= ¥ m(B) Maxry,,j
BCQ w;€
n
maximum expected utility  fa, =m fa, < EU(fa,) U(fa;) U(fa;) = ¥ fa,jpj
j=1

3. Extending Utility Matrix via an OWA
Operator

As discussed in Section 2.2, the extended utility matrix
@(2,1,1)” plays an important role in decision-making.
Given original utility matrix U, «,, we propose to generate
@(zn_l)x » using an OWA operator.

An OWA operator of dimension » is a mapping F with

associated collection of positive weights w = (wy,- -+ ,wy)
summing up to one, such that
n
F(ay, - ,an) =Y wibi, (1
i=1

where b; is the i-th largest element of ay, - - - ,a,. By choos-
ing different weights, it provides a parameterized class
of mean type aggregation operators. Yager defined the
measure of orness [17] as orness(w) = - Y7 (n—i)w;.
Given orness 3, the OWA operator Fg that maximizes the
entropy ENT (w) = — Y, w;logw; under the constraint
orness(w) = B will be chosen.

Now we consider the classification problem. Given a
state of nature ®;, the utility of assigning one instance to
set A should intuitively be a function of those utilities of
each precise assignments within A. From the most opti-
mistic view, the maximum utility of elements in the set is
selected: 4, ; = maxq,eca #;j. So as long as set A contains
the true label, no matter how imprecise A is, the partial
assignment achieves utility 1, representing a total tolerance

of imprecision. From a more imprecision-neutral point of
view, the utility of partial assignment f4 can be defined as
the average of the utilities of precise assignments within
the set, just as picking one label uniformly at random from
set A:

Z Uij.-

w;€A

2)

= 75

We denote the average utility as i ; := ﬁ Yeatij It
can be noted that if 4 ; is less than the average utility
uy,j, it is always preferable to pick a class randomly in A,
rather than selecting set A as our prediction. For practical
purposes, the utilities of partial assignments can, thus, be
defined using a family of parameterized utility functions
ranging from the average to the maximum, i.e.,

1

|A| Z uij <y, <maz§u,j7

;€A

which can be implemented using OWA operators with dif-
ferent weights w: given a set A C Q and the state of nature
®;, the aggregated utility for assigning one instance to set
A (denoted as il4 ;) is calculated as a function F of utilities
of each elements in this set as

4]

= Z Wku?k)J
k=1

ﬂA’j = F({uij | ; EA}) 3)
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Table 3: Utility matrix extended by an OWA operator with

7=0.8
acts states of nature
)] (0] 3

Sion 1.0000 0.2000 0.1000
Sio) 0.2000 1.0000 0.2000
Siw) 0.1000 0.2000 1.0000
Sioy.o) 0.8400 0.8400 0.1800
S0} 0.8200 0.2000 0.8200
S0} 0.1800 0.8400 0.8400
Sfloy,mm,0) 07373 0.7455  0.7373

where the second equation is the calculation of an OWA
operator. u?k)j denotes the k-th largest element in the set
{uij, w; € A}, and weight wy > 0 represents the DM’s pref-
erence to choose u?k)j when he is forced to make a precise
decision among a set of possible choices. Similar to the
orness measure, for the OWA operator with weight vector
w, we define the DM’s tolerance degree of imprecision as

>

LAl -k

Al-1

TOL(w) = Wi =7, 4)

k1|

which is equal to 1 for the maximum and 0.5 for the average.
Given 7, the weights corresponding to the OWA operator
are obtained by maximizing the entropy

|
ENT(w) = — ) wilogwy, )
k=1

subject to TOL(w) = y and Z;(A:‘l wi = L.

Table 3 shows the extended utility matrix obtained by
an OWA operator with ¥ = 0.8, where the first three rows
constitute the original utility matrix. Considering the utility
matrix shown in Table 3, let us assume that the true label
is ;. Figure 1 displays the aggregated utilities for sets
{o1,:}, {01,0} and {@;, @2, w3 } with different values
of 7. The aggregated utility is only related to the utilities of
elements within the set. As y ranges from 0 to 1, the aggre-
gated utility for each set varies from the minimal utility in
this set to the maximal one. When y = 0.5, the average util-
ity is obtained by the OWA operator. As mentioned above,
we only need to consider values of y between 0.5 and 1,
since when ¥ < 0.5 a precise prediction is always more
desirable than an imprecise one.

Table 4 shows the utility matrix extended by the "p-
discounted cost" approach [20] with p = 4. Comparing it
to the one extended by an OWA operator (Table 3, y = 0.8),
we can see the similarity between them. Our method as-
signs slightly lower utilities to set predictions containing

— Uy w}1
Yf{w‘.m‘,.l
Ufe) wi,w3},1

0 0.1 02 03 04 05 06 07 08 09 1
~ in utility OWA operator

Figure 1: Aggregated utilities vs. tolerance degree of im-
precision y

Table 4: Utility matrix extended by the p-discounted costs
approach (p =4)

states of nature

acts
o @ 3

fion) 1.0000  0.2000  0.1000
Fion) 0.2000 1.0000 0.2000
fion) 0.1000  0.2000  1.0000
fionay 08412 0.8412  0.1707
fionwy)  0.8409  0.2000  0.8409
fiopwy) 01707 0.8412  0.8412
fioympmy 07602 07604  0.7602

the true label and slightly higher utilities to imprecise and
incorrect predictions. We can also briefly check the proper-
ties of utility generated by an OWA operator with respect
to the guidelines proposed by Yang et al. [20]. As Yy = 0.5
corresponds to the average utility 74 ;, for any y € (0.5,1),
the necessary properties (Properties 1, 3, 4 and 10 in [20])
and desirable properties (Properties 2 and 5) are satisfied.
Regarding context-dependent properties, for any set-valued
prediction A, we have ®; ¢A= ”le,j > MZ?O'S =1p,;, satis-
fying Property 7. Since different utilities can be assigned in
U according to the truth, our proposal satisfies Property 9.

4. Evaluation of Set-valued Predictions

In classification applications, a test set T is used to assess
the performance of the learned model. When we make
set-valued predictions according to strategies described in
Section 2, a standard is needed to evaluate the decisions
made by different criteria.
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Zaffalon [21] proposed a utility-discounted predictive
accuracy under the {0, 1} reward assumption to evaluate
set-valued predictions made of credal classifiers. In this
paper, we propose to use the extended utility matrix U
generated by an OWA operator for performance evaluation.
The classification performance is evaluated by the averaged
utility in the test set 7

ﬁ?x RAR) (6)

where 7 T i denotes the utility of selecting the optimal
act f. 7 (assigning instance i in T to set .%#;") when its true
class is ;.

5. Experiments

In this section, we report on classification experiments
aiming to compare experimentally the different decision
strategies described above. Belief functions concerning the
states of nature were generated through the DS theory-
based neural network classifier [5], which assigns for each
instance a mass to each singleton class and the frame of
discernment, i.e.,

m(wi):m,», iil,...

5.1. Classification Performances with Varying y

We first checked the averaged utilities obtained according
to different decision criteria with varying y. Experiments
were carried out using the UCI Balance scale dataset [12],
which is a four-attribute and three-class dataset containing
625 instances. The original utility matrix was arbitrarily
assumed to be

1 02 0.1
U= 02 1 02},
0.1 02 1

where correct predictions (diagonal elements) had utilities
1 and different prediction errors were assumed to be not
treated equivalently. This is just an example to show the
generality of the approach; in most cases, matrix U can
be taken to be the identity matrix, in which only correct
prediction can achieve utility 1 while all the other outcomes
achieve 0. To evaluate the results, five-fold cross-validation
was performed, and all experiments were repeated five
times to compute an average result.

Table 5 shows the averaged utilities (upper part) and cor-
responding percentage of precise prediction (lower part) in
each case. Given a fixed 7, the averaged utilities of differ-
ent criteria vary in a narrow range (the maximum averaged
utilities are highlighted in bold). For criteria with complete

preorders among partial assignments (DC1-DC6), as ¥ in-
creases, imprecise predictions are more preferred so the
percentage of precise predictions decreases; the averaged
utilities decrease slightly and then increase to 1. To better
explain this behaviour, Table 6 reports the predictions and
corresponding utilities of three instances, where @™ is the
true label, and Q = { @y, @,, @3 }. For misclassified instance
(#2), its utility can increase from 0.2 to 1 as Y becomes
larger. Yet for those correctly predicted when y = 0.5 (#1
and #3), their utilities will drop and then increase back to 1.
The majority of instances are of the latter case, so overall,
the averaged utilities decrease at first as set-valued predic-
tions containing the true label have lower utility than the
precise ones. As Y approaches 1, the utilities of imprecise
predictions grow closer to 1, making the averaged utility
increase to 1.

For decision criteria yielding partial preorders among
precise assignments (DC7-DC9), the extended utility ma-
trix is only used for evaluation, so the predictions remain
unchanged as Y increases. The weak dominance criterion
(DC9) nearly always gives precise predictions (whose utili-
ties are not affected by 7) for this dataset; consequently, av-
eraged utilities do not change with y. The averaged utilities
of the other two criteria (DC7 and DCS) increase monoton-
ically when y increases from 0.5 to 1. The extended utility
matrix gives the same set-valued prediction a higher utility
as y grows. So even though the predictions themselves are
not affected by 7, they do achieve higher averaged utilities
with larger 7.

5.2. Performances with Noised Test Sets

In many situations, a classifier is trained with “good” data
(acquired and preprocessed in controlled conditions) and
then used in a real environment where, for instance, sen-
sors may be not well calibrated. In such a case, the test
data do not have the same distribution as the learning data.
Cautious decision rules making set-valued predictions can
be expected to be particularly beneficial in such an envi-
ronment, and discrepancies between the performances of
different decisions rules may be more apparent than they
are in the case of “clean” data considered in Section 5.1.

To validate this hypothesis, we performed the experi-
ments on an artificial Gaussian data set. Considering a
three-class problem with data set of two attributes, the train-
ing sets were simulated from three Gaussian distributions
with the following characteristics:

Hi = [_170]77““2 = [170]T7.u3 = [21 1]T7

o1 =0.251,0, =0.751,03 = 0.5,

where [ is the identity matrix. Figure 2 visualizes a particu-
lar dataset of 600 instances generated in this way.

To simulate a different distribution, a random noise was
added to the features of the test instances by Algorithm 1.
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Table 5: Results for the Balance scale data set with different values of y

DCl1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9

2 =05 09186 0.9188 0.9186 0.9186 0.9186 0.9186 09187 09187 09187
Z  y=06 09179 0.9184 0.9176 0.9179 0.9184 0.9176 0.9188 09188 0.9187
5 Y=0.7  0.9059 0.9064 0.9052 0.9059 0.9056 0.9054 0.9190 09190 0.9187
go Y=0.8 0.9043 0.9032 0.9028 0.9043 0.9030 0.9024 09191 09191 009188
§ Y=0.9 0.9339 0.9319 0.9325 0.9339 0.9331 0.9319 09192 09192 009188
<  y=1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 09194 09194 009188
= =05 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 97.44% 97.44% 99.97%
:% Y=0.6 88.96%  89.47%  88.96%  88.96%  89.18%  89.06%  97.44% 97.44% 99.97%
§ Y=0.7 80.10%  80.77%  80.06%  80.10%  80.22%  80.26%  97.44% 97.44% 99.97%
2 =08 69.70% 70.14%  69.63%  69.70%  69.82%  69.63%  97.44% 97.44% 99.97%
§ Y=09 57.02% 57.76%  57.12%  57.02%  5738%  57.12%  97.44% 97.44% 99.97%

Y=1.0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 97.44% 97.44% 99.97%

I DC1: maximin DC2: maximax DC3: pignistic DC4: minimax regret DC5: Hurwicz (o = 0.6) DC6: OWA (B = 0.6)
DC7: interval dominance DC8: maximality DC9: weak dominance

Table 6: Label predictions/utilities with different y

Yy #(0'=wm) #R(0"=w) # (0" =an;)
0.5 s/l @/0.2 s/l
0.6 x/l /0.2 {01,0}/0.64
0.7 {o,0:}/0.73 ©,/0.2 {01,3}/0.73
0.8 {0,0}/0.82 {0,:}/0.84 {w,w©3}/0.82
09 {m,m3}/091 Q/0.8610 Q/0.8584
1.0 Q/1 Q/1 Q/1
25
O class 1
2r + + class 2
class 3
151
L
o 05f
3 + ot
-0.5
A
151
N
2 L L L
-2 0 1 2 3 4

attribute x

Figure 2: A Gaussian data set of 600 instances

Algorithm 1: Algorithm to generate a noisy test set

Input: test set T = {(x,y),C}, noise standard
deviation o
Output: noised test set 7 = {(%,y),C}
for 1 <i<|T|do
Generate £(i) from .4 (0, 6?)
(i) < x(i) +€(i)
end

We set Y = 0.8 and let the noise standard deviation ¢ vary
from O to 10 to simulate different levels of noise. The exper-
iments were repeated 20 times to compute an average result.
In each experiment, the training and test sets contained 600
and 300 instances, respectively.

With higher noise level, the distribution of the test set
becomes more different from that of the training set. The
averaged utilities are plotted against the noise level accord-
ing to various decision criteria in Figure 3. Similar to the
previous experiment, the percentage of precise predictions
shown in Figure 4 helps to analyse the performances.

For 0 = 0, the test set and the training set have the
same distribution; the criteria based on partial preorder
achieve lower averaged utilities as they make more precise
but incorrect predictions. When ¢ increases, the averaged
utilities for all criteria drop quickly and the performances
of different criteria start to differ. When the test set dis-
tribution becomes more different, the maximax and weak
dominance criteria perform worse than others, as they make
precise predictions most of the time. For the other seven
criteria, as ¢ varies from 3 to 10, the averaged utilities
remain stable or even increase slightly. Basically, when un-
certainty increases, the decision criteria (except maximax
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0.95 R
\ F1: Maximin, Minimax regret
0.9 \ F1: Maximax
\ F1: Pignistic
0.85 \ * F1: Hurwicz
[\ - F1: OWA
0.8 N — — —F2: Interval dominance
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o
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Figure 3: Averaged utilities of different criteria as a func-
tion of noise level

1 =(\—'\/\_..,\/-\,\5/_\/«_1\,\,,-\\,\/\/\‘
0.9
08 Maximin, Minimax regret
2 Maximax
'g 07y \ Pignistic
% \\ Hurwicz
2o06F =\ OWA
3 % — — —Interval dominance
2 r \ — — — Maximality
© 05 \ )
2 — — — Weak dominance
o}
B 04r
By
0.3
021
0.1 L : L L I . . . . .
0 1 2 3 4 5 6 7 8 9 10

parameter o

Figure 4: Percentage of precise predictions of different
criteria as a function of noise level

0.94

o
©
@

F1: Maximin, Minimax regret
F1: Maximax
F1: Pignistic

averaged utility
o
©
n

o
«Q

0.9 — — —F2: Interval dominance

— — —F2: Maximality

— — —F2: Weak dominance

0.89 . . . . . .
0 200 400 600 800 1000 1200

number of training instances

Figure 5: Averaged utilities of different criteria as a func-
tion of training set size (,;, = 0.99)

and weak dominance) assign more instances to sets. As
different classes overlap more with larger o, imprecise pre-
dictions are more likely to contain the true labels, achieving
a higher averaged utility. The maximin criterion is the most
conservative, resulting in fewer misclassifications.

5.3. Performances with Increasing Training Set Size

In the third experiment, we compared the performances
of different decision criteria as the size of the training set
increases. We kept the same experimental settings as in
Section 5.2. The size of the training set was increased from
60 to 1200. Twenty training sets of each size were randomly
generated and the average result was considered. A test
set of 300 instances was used for performance evaluation.
Figures 5 and 6 display the averaged utilities for different
decision criteria for two settings of the DS neural network
classifier', respectively, @,, = 0.99 (more specific belief
functions) and o, = 0.8 (less specific belief functions). In
Figures 7 and 8, we also give the percentages of precise
predictions for, respectively, o, = 0.99 and ¢, = 0.8.
When o, = 0.99 (Figures 5 and 7), the output belief
functions are close to probabilities. Overall, all criteria
based on a complete preorder of partial assignments per-
form similarly, and significantly better than the criteria
based on a partial preorder. When the training set size is
smaller than 240, the increase of averaged utility is mainly
due to the increasing proportion of precise and correct

1. Parameter 0 < ¢, < 1 controls the masses given to © and each
singleton class @; in the DS neural network classifier (Eqs (17) and
(18) in Ref. [5]). The belief functions provided by the classifier
become more specific as o, increases, say, m(;) = 0.02, m(w;) =
0.97, m(Q) = 0.01 when &, = 0.99 and m(w;) = 0.07, m(w,) =
0.90, m(Q) = 0.03 when o, = 0.8.
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Figure 8: Percentage of precise predictions as a function
of training set size (¢, = 0.8)

predictions. When the size continues to grow, more impre-
cise predictions are made. The averaged utilities increase
slightly as some misclassified instances become impre-
cisely but correctly predicted ones. Compared to the OWA
decision criterion, the maximax criterion makes more pre-
cise predictions but has similar averaged utility.

When the belief functions are less specific (Figures 6 and
8), as the size of the training set increases, more precise
predictions lead to an increase in averaged utilities. The
maximax and Hurwicz criteria work best in this case. The
maximin criterion, which is the most conservative, has
relatively low averaged utilities as its predicted sets are
larger than others.

For both settings o, = 0.99 and o, = 0.8, the weak
dominance criterion gives precise predictions almost all
the time and has the worst performance. All the other crite-
ria lead to set-valued predictions, which results in higher
averaged utilities.

In addition, it is also notable that for all the experiments,
the interval dominance and maximality criteria have quite
similar performances. The optimal set of maximality .%,; ..
is included in that of interval dominance .%;;,. For the data
sets used in this paper, %}, yields singleton predictions
most of the times, leaving little space for maximality to
provide different decisions.

6. Conclusion

To make set-valued predictions in evidential classification
problems, decision criteria can be based either on a partial
preorder among precise assignments, or on a complete pre-
order among partial assignments. Using an extended utility
matrix generated via an OWA operator, experimental com-
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parisons were performed on UCI and simulated Gaussian
data sets. The set-valued predictions induced by a partial
preorder turn into precise ones when information becomes
more precise. In contrast, the criteria based on a complete
preorder can provide set-valued predictions even when un-
certainty is quantified by probabilities. Experimental results
suggest that set-valued predictions perform better than pre-
cise ones in the case of complex data sets: therefore, the
most cautious rules should be preferred in highly uncertain
environments. More experiments are needed to determine
which decision rules should be recommended for different
classification problems.

Whereas the Dempster-Shafer setting was assumed in
this paper, a similar analysis could be carried out in other
settings such as the imprecise probability framework [1].
Also, the belief functions used in this paper were obtained
with a particular evidential classifier. In future work, we
will consider other DS theory-based classifiers such as de-
scribed in [10, 6], and we will analyse the performances of
various decision rules when mass functions have more gen-
eral focal sets. The various approaches to decision-making
in evidential classifications will also be explored more thor-
oughly, both theoretically and empirically.
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