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Abstract

This paper proposes a tentative and original survey of meeting points between Knowledge Represen-
tation and Reasoning (KRR) and Machine Learning (ML), two areas which have been developed quite
separately in the last four decades. First, some common concerns are identified and discussed such as
the types of representation used, the roles of knowledge and data, the lack or the excess of information,
or the need for explanations and causal understanding. Then, the survey is organised in seven sections
covering most of the territory where KRR and ML meet. We start with a section dealing with prototypi-
cal approaches from the literature on learning and reasoning: Inductive Logic Programming, Statistical
Relational Learning, and Neurosymbolic AI, where ideas from rule-based reasoning are combined with
ML. Then we focus on the use of various forms of background knowledge in learning, ranging from
additional regularisation terms in loss functions, to the problem of aligning symbolic and vector space
representations, or the use of knowledge graphs for learning. Then, the next section describes how KRR
notions may benefit to learning tasks. For instance, constraints can be used as in declarative data mining
for influencing the learned patterns; or semantic features are exploited in low-shot learning to compen-
sate for the lack of data; or yet we can take advantage of analogies for learning purposes. Conversely,
another section investigates how ML methods may serve KRR goals. For instance, one may learn special
kinds of rules such as default rules, fuzzy rules or threshold rules, or special types of information such as

1Kay R. Amel is the pen name of the working group “Apprentissage et Raisonnement” of the GDR (“Groupement De Recherche”)
named “Aspects Formels et Algorithmiques de l’Intelligence Artificielle”, CNRS, France (https://www.gdria.fr/presentation/) now
called GDR RADIA (for “Raisonnement, Apprentissage, et Décision en Intelligence Artificielle” - https://gdr-radia.cnrs.fr/). This
paper is a fully revised, restructured and updated version of a collective report [86].

1



constraints, or preferences. The section also covers formal concept analysis and rough sets-based meth-
ods. Yet another section reviews various interactions between Automated Reasoning and ML, such as
the use of ML methods in SAT solving to make reasoning faster. Then a section deals with works related
to model accountability, including explainability and interpretability, fairness and robustness. Finally,
a section covers works on handling imperfect or incomplete data, including the problem of learning
from uncertain or coarse data, the use of belief functions for regression, a revision-based view of the
EM algorithm, the use of possibility theory in statistics, or the learning of imprecise models. This paper
thus aims at a better mutual understanding of research in KRR and ML, and how they can cooperate.
The paper is completed by an abundant bibliography.

1 Introduction

Learning and reasoning are two basic aspects of intelligence. In the context of Artificial Intelligence (AI),
these two aspects have often been studied independently, giving rise to distinct fields of research: Machine
Learning (ML) and Knowledge Representation and Reasoning (KRR), respectively. Despite the traditional
separation between these two fields, there is now a welcome and growing emphasis in the literature on the
complementary strengths and weaknesses of their respective methodologies. For instance, ML methods
can deal with raw data (e.g., in textual or visual form) and often requires less modelling efforts to be
deployed, as long as sufficient training data can readily be obtained, but they often lack interpretability,
and, typically, cannot provide strong guarantees as to the robustness of their outputs. This black box nature
of ML methods is a fundamental concern, which reduces their appeal in cases where high-stakes decisions
have to be made [536]. The presence of gender and racial biases in data, for instance, is problematic
whenever ML methods are deployed [584]. On the other hand, KRR methods tend to produce results in
a more transparent and systematic way, but they typically rely on the availability of structured knowledge
that has been carefully encoded in some formal language, and may face scalability issues. The so-called
knowledge acquisition bottleneck is again a fundamental concern, which has played a central role in the
more limited acceptance of KRR methodologies in the industry.

The need to integrate methods from ML and KRR, given their complementary nature, has already
been extensively discussed in survey papers [64], edited volumes [310], special issues1, a recurring special
session at the KR conference2, as well as dedicated workshops and conferences [156]. In this overview
paper, we aim to contribute to this discussion by taking a broader view on the possible synergies. We
note, in particular, that existing work tends to rely on generalised and overly simplistic dichotomies, which
suggest that there exists a large gap between KRR and ML: KRR deals with knowledge, ML handles data;
KRR privileges symbolic approaches, while numerical methods dominate in ML. Even if such claims cannot
be fully denied, they are nonetheless misleading. We believe that they stem from an overly narrow view
of what constitutes reasoning, which is often implicitly equated with the use of rule-based methods, and
learning, which is increasingly being equated with neural-network-based methods. To illustrate this point,
let us take the example of Case-Based Reasoning [2], where we need to make a prediction about some
query case by relying on similar cases with known labels. Here, the reasoning aspect essentially involves
a form of analogical transfer, i.e. inferring how the labels of similar cases need to be adapted given their
differences with the query case. Here we are thus reasoning about data, rather than about structured
knowledge, which may moreover be numerical. Such examples illustrate the claim that the boundary
between learning and reasoning is blurrier than is often assumed.

While we will not attempt to precisely define what reasoning means, we note that it involves dealing
with incomplete knowledge. In the traditional setting, a symbolic knowledge base encodes incomplete
knowledge about a state of affairs in the form of a set of possible worlds. Similarly, in case-based reasoning
we have highly incomplete knowledge of how labels have been assigned to cases, merely relying on the
knowledge that the label assignments satisfy some kind of regularity which allows for analogical transfer.
Of course, ML settings also involve incomplete knowledge and data, and learnt models represent imperfect
knowledge about the “true” underlying function or distribution.

Perhaps, the dichotomy between KRR and ML somewhat echoes the distinction advocated in psychol-
ogy by Kahneman between “System 1” and “System 2” for describing the two kinds of activities of the

1https://www.springer.com/journal/10994/updates/17562232
2https://kr2022.cs.tu-dortmund.de/cfp_special_session_kr_and_machine_learning.php
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human mind: “System 1 operates automatically and quickly, with little or no effort and no sense of voluntary
control. System 2 allocates attention to the effortful mental activities that demand it, including complex com-
putations. The operations of System 2 are often associated with the subjective experience of agency, choice, and
concentration." [358]. Still, the relevance of this parallel is a matter of debate.

The aim of the present survey is to illustrate that synergies between KRR and ML are much broader and
more diverse than commonly thought and go beyond the issues discussed in the previous paragraphs. We
start in Section 2 with a presentation of a number of issues that arise both in KRR and ML. These common
concerns include the importance of representations, the need for trade-offs to manage complexity, the need
to deal with imperfect information, and the importance of explanations. Then, our survey is organised in
seven sections as follows:

• In Section 3, we first focus on methods where ML is combined with rule-based reasoning, which
covers the most prototypical approaches from the literature on Learning and Reasoning: Inductive
Logic Programming (ILP), which is a family of machine learning methods where learned models take
the form of a logic program, Statistical Relational Learning, which builds on ILP by combining logical
representations and probability distributions for representing learned models, and Neurosymbolic AI,
where ideas from rule-based reasoning are combined with neural networks.

• In Section 4, we then focus on cases where symbolic background knowledge, in some form, is used
to improve traditional machine learning systems. This covers, for instance, cases where the available
background knowledge gives rise to an additional regularisation term in the loss function, or where
such knowledge is used to constrain the latent representations which are learned by the model, by
making them more semantically meaningful (or even interpretable) in some sense.

• Section 5 subsequently discusses machine learning methods which rely on reasoning processes, be-
yond rule-based reasoning. This section covers work on declarative data mining, where some form
of constraint satisfaction is used to influence or restrict the patterns which are learned (e.g. clus-
ters) and low-shot learning, where reasoning is used to alleviate the lack of explicit training data.
Under the same umbrella, we also consider case-based reasoning, analogical reasoning and transfer
learning.

• Whereas the preceding sections are essentially concerned with using methods and insights from KRR
to improve ML systems, the next two sections are mostly concerned with the use of ML methods for
improving KRR systems. In Section 6, we discuss in particular how machine learning methods can
be used to alleviate the knowledge acquisition bottleneck. The idea of learning rules from data plays
a central role here. Rather than giving a comprehensive overview on rule learning, however, we
emphasise in particular the need to go beyond traditional rules (e.g., Horn rules interpreted using
material implication). We discuss in particular the advantages of learning default rules, fuzzy rules
and threshold rules. Beyond rules, we also cover methods for learning constraints and preferences.

• Section 7 then surveys work in which ML methods are used for improving reasoning processes them-
selves. This covers traditional KRR settings, such as SAT solving, where ML methods may be used to
make reasoning faster.

• In Section 8, we cover work related to model accountability, including explainability and inter-
pretability, fairness and robustness, since the solution to such issues often relies on ideas from KRR.
For instance, the need for interpretability may require us to relate learned models to symbolic knowl-
edge, while robustness is linked to notions such as causality.

• Finally, Section 9 covers works on handling imperfect data including, for instance, the problem of
learning from coarse labels. While this topic is not usually considered in the context of Learning &
Reasoning, it is nonetheless highly relevant if we view reasoning from the perspective of dealing with
incompleteness.
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2 Common Concerns

In order to suggest and illustrate differences and also similarities between KRR and ML, let us start with the
simple example of a classification or recommendation-like task, such as, e.g., associating the profile of a
candidate (in terms of skills, tastes, and so on) with possible activities suitable for him/her in a vocational
guidance system. Such a problem may be envisioned in different manners. On the one hand, one may
think of it in terms of a rule-based system relying on some expertise (where rules may be pervaded with
uncertainty), or on the other hand in terms of machine learning by exploiting a collection of data (here
pertaining to past cases in career guidance).

Let us first observe that traditionally KRR is seen as mostly concerned by deductive and abductive
reasoning while ML is mostly concerned by inductive reasoning. Beyond the differences of types of repre-
sentation and reasoning that are used in both kinds of approach (e.g., conditional tables for uncertainty
assessment vs. weights in a neural net), there are some noticeable similarities between (graphical) struc-
tures that can be associated with a rule-based reasoning device, handling uncertainty (or an information
fusion process) and with a neural net. This remark suggests that, beyond differences in perspective, there is
some structural resemblance between the two types of process. This resemblance has been investigated re-
cently in detail in the setting of belief function theory [179], but an example may also be found in possibility
theory, starting with an older work on a possibilistic (max-min) matrix calculus devoted to explainability
(where each matrix represents a rule) [239, 213, 37].

Beyond this kind of parallel, KRR and ML have common concerns. This section gives an overview of
the main ones regarding the representation issues, the complexity, the role of knowledge, the handling of
lack of information, or information in excess, uncertainty, and last but not least regarding causality and
explanation. Each subsection below tries to follow the same basic structure, by each time providing i) the
KRR view, ii) the ML view, and iii) some synthesis and discussion.

2.1 Types of Representation

AI deals with studying and designing computer programs that behave intelligently, which in part entails
mimicking mental faculties observed in living organisms like thinking and learning. Within AI, KRR is
concerned with how knowledge can be represented symbolically and manipulated in an automated way by
programs while, in ML, the focus is on discovering means, whatever they may be, for realizing induction.

In KRR, the central concerns are what an agent need to know to behave intelligently and what sort of
computational mechanisms might allow the useful pieces of knowledge to be made available when required
and be manipulated in order to produce new knowledge. In one word, reasoning is the aim.

In ML, symmetrically, the question is how to acquire knowledge from data in order to automatically
produce what may be called programs that output useful and reasonable answers when fed with inputs
or queries (e.g. propose a diagnosis when seeing a mammography from a patient). Here, learning is the
keyword.

In both cases, knowledge plays a role, and an important one. But this is not the same one. It might
thus appear that on one side are gardeners who meticulously tend to and extend “jardins à la française”
while on the other side are barbarians for whom anything goes as long as seeds grow and who have no
respect for the rules of plant growing and marrying. However, this is only a misconception: hard rules are
followed and obeyed on each side.

On the side of KRR, the crux is the interplay between representation and reasoning, that is how
knowledge can be represented as comprehensively as possible and, at the same time, be reasoned with
as effectively as possible. There exists a whole range of representation systems and formalisms aimed at
various uses and applications. Without exhaustiveness, one can mention logic-based ones like proposi-
tional logic, first-order logic, Horn clauses, default logic, fuzzy logic and its variants, or production rules,
object-oriented and graph-based ones, and situation calculus. It can therefore appear that each of these
representation systems is dedicated to a particular view on the world and a particular use. But then, why
not look for a more general language, one that would allow to represent anything in the world and be, in
a way, co-extensive with the natural language that we use to communicate between us? Brachman and
Levesque [403, 402, 401] have shown that there is a trade-off between the expressiveness of a represen-
tation system and the computational tractability of reasoning using it.
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Figure 1: Machine learning transforms knowledge provided as input (1) under the form of data and the
choice of a learning algorithm and produces knowledge (2) in the form, e.g., of prediction rules and possibly
of information about the learning process followed.

There is thus a need for limiting reasoning to preserve tractability. For instance, not looking for all
natural consequences of what is expressed using weaker notions of entailment.

On the side of ML, the tradeoff stems from a fundamental law: machine learning just reformulates
what has been given as inputs. A kind of conservation theorem is at play: no information is “added”
above the data provided and the existing prior knowledge. If, therefore, the data is limited, lots of prior
knowledge is required, whereas big data allows for less prior knowledge. Machine learning “consumes”
knowledge as input in the form of data, algorithms, which is a kind of knowledge, and prior knowledge and
it produces knowledge in the form of prediction rules or patterns and possibly in the form of justification
or explanation of the process used in this production (see Figure 1).

Here then, in order to control the quality of the induction that is realized by the machine, the ML prac-
titioner must pay attention to the way the (never) raw data is fed which includes all the bias introduced
by the choice of experimental apparatus, the choice of descriptors, their normalization, the possible en-
richments using ontologies, the way missing values are dealt with, and so on, as well as the knowledge
embedded in the learning algorithm and its own bias. This includes constraints on the hypothesis space,
like the preference for sparse linear rules, as well as the choice of the architecture of the neural network if
such a machinery is used.

ML has, therefore, its own tradeoff to delicately optimize between the information to provide in the
form of data and the knowledge given by the choice of the learning algorithm. And because it is focussed on
induction, an inference mechanism notoriously prone to errors, ML must be very careful about the quality
of the results of learning, hence the emphasis on interpretability and explanations.

Looking back at representational issues, in KRR, as suggested by the name, the main representation
issues concern the representation of pieces of knowledge (rather than data). The large variety of real world
information has led to a number of logical formalisms ranging from classical logic (especially propositional
and first order) to modal logics (for dealing with, e.g., time, deontic, or epistemic notions) and to non-
classical logics for handling commonsense reasoning.

The representation may use different formats, directed or undirected: sets of if-then rules, or sets of
logical formulas. A rule “if A then B” is a 3-valued entity (as first noticed in [164]), since it induces a
partition between its set of examples, its set of counterexamples and the set of items for which the rule is
irrelevant (i.e., when A is false). So a rule strongly departs from its apparent logical counterpart in terms
of material implication A → B (which is indeed non-directed, since it is equivalent to ¬B → ¬A). This
discrepancy can be also observed in the probabilistic setting, since Prob(B|A) 6= Prob(A→ B) in general.
Rules may hold up to (implicit) exceptions (see subsection 2.3).

Knowledge may be pervaded with uncertainty, which can be handled in different settings, in terms of
probability, possibility, belief functions, or imprecise probabilities (see subsection 2.3). In all of these cases,
a joint distribution can be decomposed in sub-distributions laying bare some form of conditional indepen-
dence relations, with a graphical counterpart; the prototypical graphical models in each representation are
respectively Bayesian networks (probabilistic), possibilistic networks, credal networks (imprecise proba-
bilities [139]) or valuation-based systems (belief functions [570]). Conceptual graphs [583, 111] offer a
graph representation for logic, especially for ontologies/description logics.

The main goal of KRR is to develop sound and (as far as possible) complete inference mechanisms to
draw conclusions from generic knowledge and factual data, in a given representation setting [299, 298].
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The mathematical tools underlying KRR are those of logic and uncertainty theories, and more generally
discrete mathematics. An important issue in KRR is to find good compromises between the expressiveness
of the representation and the computational tractability for inferring the conclusions of interest from it
[403]. This concern is especially at work with description logics that are bound to use tractable fragments
of first order logic. (See subsection 2.2.)

The situation in ML is quite different concerning representation issues. ML aims at learning a model
of the world from data. There are thus two key representation problems: the representation of data and
the representation of models. See, e.g., [127, 128]. In many approaches the data space is assimilated to a
subset of Rp, in which the observations are described by p numerical attributes. This is the simplest case,
allowing the use of mathematical results in linear algebra and in continuous optimization. Nevertheless,
data may also be described by qualitative attributes, as for instance binary attributes, thus either requir-
ing to transform discrete attributes into continuous numerical scales, or requiring different mathematical
approaches, based on discrete optimisation and on enumeration coupled with efficient pruning strategies.
Quite often, data is described by both types of attributes and only few ML tools, for instance decision trees,
are able to handle them without any transformation into one single type. Therefore, changes of represen-
tation are needed, as for instance discretization, or the encoding of qualitative attributes into numerical
ones, all inducing a bias on the learning process. More complex data, such as relational data, trees, and
graphs need more powerful representation languages, such as first order logic or some proper represen-
tation trick as for instance propositionalization or the definition of appropriate kernels. It is important to
notice that the more sophisticated the representation language, the more complex the inference process
and a trade-off must be found between the granularity of the representation and the efficiency of the ML
tool.

Regarding models, they depend on the ML task: supervised or unsupervised classification, reinforce-
ment learning, learning to rank, mining frequent patterns, etc. They depend also on the type of approach
that one favours: more statistically or more artificial-intelligence oriented. There is usually a distinction
between generative and discriminative models (or decision functions). In the generative approach, one tries
to learn a probability distribution pX over the input spaceX , or at least a model able to generate samples
assumed to follow a distribution close enough to pX . If learning a precise and accurate enough proba-
bility distribution is successful, it becomes possible in principle to generate further examples x ∈ X , the
distribution of which is indistinguishable from the true underlying distribution. It is sometimes claimed
that this capability makes the generative approach “explicative”, yet this is clearly a matter of debate. The
discriminative approach does not try to learn a model that allows the generation of more examples. It only
provides either a means of deciding, when in the supervised mode, or a means to express some regularities
in the data set in the unsupervised mode. These regularities, as well as these decision functions can be
expressed in terms of logical rules, graphs, neural networks, etc. While they do not allow to generate new
examples, they nonetheless can be much more interpretable than probability distributions.

Very sketchily, one can distinguish between the following types of representations.

• Linear models and their generalisations, such as linear regression or the linear perceptron first pro-
posed by Rosenblatt [531]. Because these models are based on linear weightings of the descriptors of
the entries, it looks easy to estimate the importance of each descriptor and thus to offer some under-
standing of the phenomenon at hand. This, however, assumes that the descriptors are uncorrelated
and are well chosen.

• Nonlinear models are often necessary in order to account for the intricacies of the world. Neural
networks, nowadays involving very numerous layers of non linearity, are presently the favourite
tools for representing and learning non linear models.

• Linear models as well as nonlinear ones provide a description of the world or of decision rules through
(finite) combinations of descriptors. They are parametric models. Another approach is to approxi-
mate the world by learning a non previously fixed number of prototypes and use a nearest-neighbour
technique to define decision functions. These systems are capable of handling any number of pro-
totypes as long as they can fit the data appropriately. Support Vector Machines (SVM) fall in this
category since they adjust the number of support vectors (learning examples) in order to fit the data.
Here, explaining a rule may mean providing a list of the most relevant prototypes that the rule uses.
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• The above models are generally numerical in essence, and the associated learning mechanisms most
often rely on some optimisation process over the space of parameters. Another class of models relies
on logical descriptions, e.g., sets of clauses. Decision trees can also be considered as logic-based,
since each tree can be transformed into a set of clauses. The learning algorithms use more powerful
structures over the space of models than numerical models. In many cases the discrete nature of the
search space and the definition of a generality relation between formulas allow the organization of
models in a lattice and the design of heuristics to efficiently prune the search space. More generally,
these approaches are usually modeled as enumeration problems (e.g., pattern mining) or discrete
optimization problems (supervised learning, clustering). Moreover such models offer more opportu-
nities to influence the learning process using prior knowledge. Finally, they can be easily interpreted.
The downside is their increased brittleness when coping with noisy data.

2.2 Coping with complexity

In both ML and KRR there is a trade-off between the generality of the approach and what is feasible in
practice. In KRR, this generality amounts to the expressive power of the representation language which is
used, while what is feasible is related to the computational complexity. In ML, this is related to the richness
of the hypothesis space, and what is feasible is related to the amount of data that is available.

Complexity issues are a major concern in any branch of computer science. In KRR, very expressive
representation languages have been studied, but interesting reasoning problems for these languages are
often at least at the second level of the polynomial hierarchy for time complexity. There is a trade-off
between the expressive power of a language and the complexity of the inference it allows. Reasoning tasks
in languages with suitably restricted expressiveness are tractable, like for instance languages using Horn
clauses or Lightweight description logics such as DL-lite [99] or EL [32].

The study of complexity has motivated a large number of works in many fields of KRR including non-
monotonic reasoning, argumentation, belief merging and uncertainty management. In particular when
the desirable solution (i.e., gold standard) of the problem (for instance, merging operator, inconsistency-
tolerant consequence relation, etc.) has a high computational complexity, then it is common to look for an
approximation that has reasonable complexity. For instance, the observation that answering meaningful
queries from an inconsistent DL-Lite knowledge base using universal consequence relation is NP-Complete,
has led to the introduction of several tractable approximations [41].

The attempt to cope with hardness of inference has also been a driving force in research around some
important and expressive languages, including propositional clauses and CSPs, where inference is NP-
complete; for instance, powerful methods nowadays enable the solving of SAT problems with up to hun-
dreds of thousands of variables, and millions of clauses in a few minutes (see section 7.1). Some of the
most competitive current SAT solvers are described in [4, 446, 427]. Two other ways to cope with time
complexity are anytime methods, which can be interrupted at any time during the solving process and then
return an incomplete, possibly false or sub-optimal solution; and approximate methods. A recent trend in
KRR is to study so-called compilation schemes [149, 442]: the idea here is to pre-process some pieces of the
available information in order to improve the computational efficiency (especially, the time complexity)
of some tasks; this pre-processing leads to a representation in a language where reasoning tasks can be
performed in polynomial time (at the cost of a theoretical blow up in worst-case space complexity, which
fortunately does not often happen in practice).

Contrastingly, ML algorithms often have a time complexity which is polynomial in the number of vari-
ables, the size of the dataset and the size of the model being learnt, especially when the domains are
continuous. However, because of the possible huge size of the dataset or of the models, capping the degree
of the polynomial remains an important issue. In the case of discrete domains, finding the optimal model,
i.e., the one that best fits a given set of examples, can be hard (see [338]), but one is often happy with
finding a “good enough” model in polynomial time: there is no absolute guarantee that the model that
best fits the training examples is the theoretical best model anyway, since this may depend on the set of
examples. In fact, an important aspect of complexity in ML concerns the prediction of the quality of the
model that one can learn from a given dataset: in the PAC setting for instance [610], one tries to estimate
how many examples are needed to guarantee that the model learnt will be, with a high probability, a close
approximation to the unknown target model. Intuitively, the more expressive the hypothesis space is, the
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more difficult it will be to correctly identify the target model, and the more examples will be needed for
that [612], but the more likely it is that the right hypothesis is within the chosen space.

2.3 Imperfect information

The imperfection of information can take two opposite forms: information may be incomplete or insuffi-
cient; or it may be in excess, hence, wrong or conflicting. In the case of data, there may be missing values,
or scarcity of observations, or on the contrary the data may be noisy or containing outliers. For knowl-
edge bases, incompleteness rather manifests itself by the impossibility to infer a conclusion or its negation.
Conflicting knowledge may be due to disagreeing sources of information, requiring suitable inconsistency
management tools. Both situations (information missing or in excess) possibly generate uncertainty.

Uncertainty has always been an important topic in KRR [492][298]. While in ML uncertainty is almost
always considered to be of statistical or probabilistic origin (often termed “aleatory uncertainty”), other
causes for uncertainty exist, such as the sheer lack of knowledge, and the excess of information leading
to conflicts (often termed “epistemic uncertainty”). However, the role of uncertainty handling in KRR and
in ML seems to have been very different so far. While it has been an important issue in KRR and has
generated a lot of novel contributions beyond classical logic and probability, it has been considered almost
only from a purely statistical point of view in ML [611], even if some recent trends departs from this point
of view [334].

Uncertainty management in KRR has a long history. It refers to the handling of incomplete informa-
tion in non-monotonic reasoning as well as the handling of probabilities in Bayesian nets [494], and in
probabilistic logic languages [540, 141]. However, the formalism of Bayesian nets is more appropriate for
representing statistical data than incomplete data. The focus on uncertainty due to incomplete informa-
tion is better captured by possibility theory (with weighted logic bases in possibilistic logic [207, 218]) and
graphical representations (possibilistic nets [54, 59]). Belief functions also lend themselves to graphical
representations (valuation networks [570], evidential networks [653]), and imprecise probability as well
(credal nets [140]).

Uncertainty theories distinct from standard probability theory, such as possibility theory or evidence
theory are now well-recognised in knowledge representation [185, 184]. They offer complementary views
to uncertainty with respect to probability, or as generalisations of it, dedicated to epistemic uncertainty
when information is imprecise or partly missing.

In KRR, at a more symbolic level, the inevitability of partial information has motivated the need for
exception-tolerant reasoning. For instance, one may provisionally conclude that “Tweety flies” while only
knowing that "Tweety is a bird”, although the default rule “birds fly" has exceptions, and we may later
conclude that “Tweety does not fly”, when getting more (factual) information about Tweety. Thus non-
monotonic reasoning [90] has been developed for handling situations with incomplete data, where only
plausible tentative conclusions can be derived. Generic knowledge may be missing as well. For example,
one may not have the appropriate pieces of knowledge for concluding about some set of facts. Then it may
call for interpolation between rules [551].

When information is in excess in KRR, it may mean that it is just redundant, but it becomes more likely
that some inconsistency appears. Redundancy is not always a burden, and may sometimes be an advantage
by making more things explicit in different formats (e.g., when looking for solutions to a set of constraints).

Inconsistency is a natural phenomenon in particular when trying to use information coming from dif-
ferent sources. Reasoning from inconsistent information is not possible in classical logic (without trivialisa-
tion). It has been extensively studied in AI [63, 56, 104], in order to try and salvage non-trivial conclusions
not involved in contradictions. Inconsistency usually appears at the factual level, for instance a logical base
with no model. However, a set of rules may be said to be incoherent when there exists an input fact that,
together with the rules, would create inconsistency [31].

ML can face several types of situations regarding the amount of information available. It must be said at
once that induction, that goes from observations to regularities, is subject to the same kind of conservation
law as in Physics. The information extracted is not created, it is just a reformulation, often with loss, of
the incoming information.

If the input data is scarce, then prior knowledge, in one form or another, must complete it. The less data
is available, the more prior knowledge is needed to focus the search of regularities by the learning system.
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This is in essence what the statistical theory of learning says [611]. In recent years, lots of methods have
been developed to confront the case where data is scarce and the search space for regularities is gigantic,
specially when the number of descriptors is large, often in the thousands or more. The idea is to express
special constraints in the so-called regularization term in the inductive criterion that the system use to
search the hypothesis space. For instance, a constraint is often that the hypothesis should use a very
limited set of descriptors [595].

When there is plenty of data, the problem is more one of dealing with potential inconsistencies. How-
ever, except in the symbolic machine learning methods, mostly studied in the 1980s, there is no systematic
or principled ways of dealing with inconsistent data. Either the data is pre-processed in order to remove
these inconsistencies, and this means having the appropriate prior knowledge to do so, or one relies on the
hope that the learning method is robust enough to these inconsistencies and can somehow smooth them
up. Too much data may also call for trying to identify a subset of representative data (a relevant sample),
as sometimes done in case-based reasoning, when removing redundant cases. Regarding the lack of data
there is a variety of approaches for the imputation of missing values ranging from the EM algorithm [175]
to analogical proportion-based inference [85]. However these methods get rid of incompleteness and do
not reason about uncertainty.

Finally, a situation that is increasingly encountered is that of multi-source data. Then, the characteristics
of the multiple data sets can vary, both in the format, the certainty, the precision, and so on. Techniques like
data fusion, data aggregation or data integration are called for, often resorting again to prior knowledge,
using for instance ontologies to enrich the data.

2.4 Explainability and Causality

The need for explanations to enrich the prediction made by any AI model is not new and has been em-
phasized since the beginning of the Artificial Intelligence domain. With the massive success of machine
learning, especially deep learning, in tackling complex data such as images, audio, video and texts, AI has
achieved a high level of result quality in a wide variety of domains, including sensitive ones, e.g. related
to health or justice. In such cases, even very accurate models may be insufficient, because the cost of an
error can be huge, making it intolerable (see e.g. [98]). The need for explanation has thus become a major
issue in the last decade or so. At the scientific level, this has led to the development of a research domain
called eXplainable Artificial Intelligence, XAI for short, following the terminology first proposed in 2016 by
DARPA [291].

Enriching the prediction with an explanation, viewed as a rationale for the prediction, can be seen as
a tool that helps make an informed decision and determine whether the system should be trusted or is
possibly making an error. Besides, applications to image data, for instance, have shown that deep learning
sometimes have implicit and undesirable biases. In some situations these biases are patent, but, in other
cases, errors are less obvious and require an understanding of how the model works. Explanations can
then be seen as a tool aiming at correcting the model, explaining the decision to the user, and in some
situations it can reveal that the model has undesirable biases and / or uses features protected by the law
(such as, gender, political orientations, ...). However, it has been shown that it is possible to train a model
in order to hide such biases from XAI methods, in particular when using local feature importance indices
[194, 579]. Using certified, logically grounded explanations may solve this issue to some extent [328], as
they should be harder to manipulate, yet this would remain to study.

The need for the explanation of results and the interpretability of models is amplified by the fact that
the performances of the AI systems often come along with an increased complexity of the models, which
makes them look like black boxes, opaque to the user. Moreover, in contrast with KRR models that may
be also complex, the knowledge embedded in ML models is extracted from data, and as such offers no
guarantee on the quality of its coverage. This has triggered the interest for explanation both in the KRR
and ML communities.

Defining explainability

The interest in AI for explanations is not new. It already appears with the development of rule-based
expert systems in the mid-1980’s. At the time, there was a natural need for explanations that are synthetic,
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informative, and understandable for the user of an expert system [110]. This concern raises issues such
as designing strategic explanations for a diagnosis, for example in order to try to lay bare the plans and
methods used in reaching a goal [301], or using “deep” knowledge for improving explanations [368].
Another issue was the ability to provide negative explanations ( not only positive ones) for answering
questions of the form "Why did you not conclude X?" [534], even in the presence of uncertainty [239]. Let
us also mention the problem of explaining the results of a multi-attribute preference model that is like a
“black box”. It has been also studied in [387].

XAI has very fast given rise to a huge multiplicity of approaches and methods, but also a very high
number of taxonomies to structure the domain. For some introductory surveys and discussions, see [73,
312, 314, 377, 313, 267, 287, 268, 454, 47, 467, 76].

"What is an explanation?", "What has to be explained?", and "how". These issues can be traced back
to the absence of consensus on the definition of explanation that constitutes a multidisciplinary notion,
related to psychology [594], philosophy [92, 542], cognitive sciences, education sciences or law, to name
a few [621, 454]. It includes a human, subjective, component that is difficult to capture. Despite works
on formal and axiomatic approaches [341, 12], there is no consensus on the definition of explanation that
encompasses the variety of possible situations and the explainee perception (see below). The notion of a
good explanation and of explanation quality is still a debated topic that gives rises to a multitude of rich
discussions (see e.g. [199, 417, 315, 633] for some of them).

The breadth of the XAI domain can be illustrated by its diversity at several levels (see for instance the
previously mentioned references [73, 287, 47, 467, 76] for more details): a diversity of terms can first be
observed, with names such as explainability, interpretability, accountability or transparency. They cover
related notions with somehow subtle nuances, but are sometimes used interchangeably. At a second level,
a diversity of tasks can also be observed: the explanation may be requested for several types of machine
learning tasks, such as classification, regression, clustering, outlier detection or recommendation but also,
more broadly, for other artificial intelligence tasks such as planification, human-agent interactions or model
conception.

At a third level, a diversity of explainees plays an important role: whether the explanation is generated
for final users, domain experts or computer scientists, it needs to satisfy different requirements. On a
related note, the aim of the explainees can differ, which can be summarised by the question they ask: it
is often considered users want to know why a prediction is made, but they may also ask how they can get
another prediction. The how question refers to the issue of so-called actionable explanations, i.e. that can
lead to an action, and to the domain of algorithmic recourse [366, 365]. In all cases, it must be underlined
that the aim is to explain an AI model, not the underlying ground truth: the explanation does not aim at
providing information about reality, but on the AI model processes. As an example taken from [521], in
the classification of images depicting dogs vs. wolves, finding that a decision was made because of the
presence of snow in the background explains what are the conclusive evidence for the model, pointing to
some issues in the training set it has been trained on.

At a fourth, more technical, level, explanation generation methods also differ in the hypotheses they
rely on, for instance depending on what they consider as accessible: the model itself, or its type, training
data or other, possibly unlabelled, data, to name a few. Such hypotheses include specifying whether expert
or prior knowledge is available, for instance information about the descriptive features, their correlation or
structural relations. Other possibilities include information about the users who receive the explanations,
for instance their preferences, opening the way for personalised explanations.

Another issue concerns the statistical point of view according to which an interpretable model is a
model that comes with mathematical guarantees [319, 23]. They are usually bounds for approximation
errors (linked to the expression power of the hypothesis space) or the generalization error (linked to the
robustness of the algorithm with respect to variations of the sample set). These can be also guarantees
about the uncertainty around the parameters of the model (represented by confidence intervals for in-
stance). Linear approaches are, in this scope, the most statistically interpretable ML algorithm. Robustness
properties of statistical models are also desirable for interpretability.
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Explainability and causality: a KRR point of view

The most developed topic of XAI in KRR, corresponds to the diversity of explanation forms; we shall see
that that the same diversity also applies to the ML domain. The former favours formal approaches, in
particular within a logical framework: knowledge-compilation based approaches represent AI models as
Boolean circuits and consider explanations as prime implicants, i.e., minimal sufficient conjunctions to
make a given statement true, e.g. attribute values that justify a given prediction [148, 150, 438]. A
second type of approach exploits the formulation of explanations as an abductive reasoning issue [341].
Indeed, explanations are related to the question of identifying causes [300, 454, 455], i.e., to the notion of
causality. Indeed most of the explanations we produce or we expect involve some causal relationships (e.g.,
John imposed on himself to go to the party because he thought that Mary would be there). In many domains
where machines can provide aid for decision making, as in medicine, court decisions, credit approval and
so on, decision makers and regulators more and more want to know what is the basis for the decision
suggested by the machine, why it should be made, and what alternative decision could have been made,
had the situation been slightly different. A question is: is it possible to extract causal relationships from
data alone, without some prior knowledge that suggest those relationships? Judea Pearl [495, 496, 497]
argues that this is not possible, but gives to the ML techniques the role of identifying possible correlations
between variables in huge data sets that are impossible to sift through for human experts. A recent work
[424] suggests that it would be possible to identify the direction of a causal relationship from observational
data.

Causality is also closely related to the idea of counterfactual. Indeed an early definition of causality has
been stated in terms of counterfactuals in a modal logic setting [620], and counterfactual is still a pervasive
notion when discussing causality (even if causality cannot be reduced to the notion of a counterfactual)
[214]. Counterfactual explanations for a decision process are translated into the notion of counterfactual
examples [621, 286], that belong to the class of example-based explanations, together with prototypes,
criticisms, influential instances (see e.g. [467]). They are built as follows. Given an example e, the coun-
terfactual of e is the closest example to e (with respect to a metric) for which the decision changes (the
counterfactual is not necessarily in the dataset). Consider for instance a model that determines if a credit
is allowed or not with respect to the profiles of customers, and a given customer to whom the credit is
not granted. The counterfactual in this case answers the question of what is the minimal change on his
profile that would ensure that the credit is granted. If the model is based on propositional logic rules, the
counterfactual will correspond to a minimal change of the considered example representation in Boolean
logic [438]. In this case, the counterfactual is an understandable explanation for the prediction. In ad-
dition to the proximity of the counterfactual example to the instance of interest and the class prediction
change, many other desiderata can be added into the cost function evaluating the quality of candidates,
such as the sparsity of the change, its realism or its actionability, to name three examples: more than 60
counterfactual example generation methods have been proposed between 2015 and 2022 [286].

Machine learning explainability

The exploration of causality behind decisions in machine learning algorithms presents significant chal-
lenges. Machine learning primarily focuses on identifying correlations rather than causal relationships
between input data and decisions. The case of identifying wolves versus dogs, as illustrated in [521],
exemplifies this issue vividly. When employing a deep learning classifier, the most indicative feature for
distinguishing between a dog and a wolf is the presence of snow. Although there is a noticeable correla-
tion between snow and wolves, it is not indicative of a causal relationship in the ground truth. However,
it is also indicative of a causal relationship in the prediction performed by the classifier. Initial research
on explanations in machine learning concentrated on highlighting correlations between features and deci-
sions. For example, Partial Dependence Plots [270] offer a graphical representation of feature correlations,
while numerical approaches such as LIME [521] and SHAP [426] quantify the relative importance of each
feature. These methods are considered as agnostic (and sometimes referred as "black-box," especially in
the adversarial robustness area) meaning they analyze decisions inferred by the model without requiring
direct access to the model internal machinery.

In this issue, [328] prove that the existing definitions of Shapley scores, often used in XAI methods, may
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yield misleading information about the relative importance of features for predictions and the authors offer
empirical evidence that such theoretical limitations of these scores are routinely observed in ML classifiers

In the context of complex data and models, such as image classification in deep learning, defining ex-
planations for specific decisions becomes increasingly relevant. Attribution methods aim to explain the
prediction of a machine learning model by pointing out input variables that support the prediction – typ-
ically pixels or image regions for images – which lead to importance maps. Saliency [572] was the first
proposed white-box (the architecture and the weights of the network are known) attribution method and
consists of back-propagating the gradient from the output to the input. The resulting absolute gradient
heatmap indicates which pixels affect the most the decision score. These methods were then followed by
a plethora of other methods using gradients such as Integrated Gradient [589], SmoothGrad [580], Grad-
cam [557] or Input Gradient [17]. All rely on the gradient calculation of the classification score. However,
it is becoming increasingly clear that current methods raise many issues [7, 306, 577] such as confirmation
bias: it is not because the explanations make sense to humans that they reflect the evidence on which the
prediction is based.

Saliency maps can be considered as an attempt to provide counterfactual explanations. Essentially, the
most effective method to identify the minimal change in an image that alters the decision of a classifier
involves making slight adjustments in the direction of the model’s gradient, which is precisely the way
saliency maps are computed. However, within the realm of deep learning, counterfactual examples are re-
lated to the notion of adversarial examples [272], with the main difference that the latter typically involve
an imperceptible alteration of the input. This suggests that gradient-based methods might reflect the struc-
tural vulnerabilities of networks rather than true causality. This perspective underscores the challenges in
obtaining robust counterfactual explanations due to the inherent vulnerabilities of deep networks. Recent
studies have concentrated on counterfactual explanation methods [622, 615], highlighting several desir-
able properties for these explanations [615]: Validity (ensuring the altered sample belongs to a different
class), Actionability (a good counterfactual must not modify unchangeable features), Sparsity (minimize
the number of features modified in the counterfactual), Data Manifold Closeness (counterfactual should
be close to training data and respect the observed correlations between the features), and Causality (a
counterfactual must maintain all known causal relationships between features). The latter three proper-
ties are typically not addressed by conventional adversarial attacks, prompting the development of more
sophisticated methods [274, 529, 628]. Although validity may seem obvious, it is not trivial at all to ensure
that with deep learning models. In [560], the authors demonstrate that with regularity constraints and a
suitable loss function, saliency maps can encode counterfactual explanations through the lens of optimal
transport3.

XAI methods, from which the above paragraph mentions some examples, sometimes appear to be devel-
oped at a somehow theoretical level, without really taking into account the explainee, i.e. not considering
the human dimension of the explanation receiver. As an illustration, it has been observed that many ap-
proaches lack experiments involving real users [372], with the need to measure separately their subjective
satisfaction and their objective understanding [315]. In the case of attribution methods [416], authors
propose to evaluate the alignment between these methods and human feature importance across 200,000
unique ImageNet images (called ClickMe dataset). The alignment between DNN Saliency and human ex-
planations is quantified using the mean Spearman correlation, normalized by the average inter-rater align-
ment of humans. Good alignment scores with respect to human annotations does not guarantee that the
explanation is satisfactory, but it has been shown that robust models tend to obtain better scores [560, 241].
In the same way, recent developments focus on Human-Centered eXplainable AI (see e.g. [410]) and on
the question of how to display the outputs of the XAI methods, through appropriate interfaces, leading to
the domain of eXplanation User Interfaces, XUI (see e.g. [119]).

The emergence of large generative models, such as large language models [93], complicates the task of
explaining machine learning methods. Unlike models focusing on decision-making, generative models are

3 This is a problem of optimal transportation and allocation of resources, originally formulated by Gaspard Monge, in a context
of cut and fill. In its modern reformulation, it amounts to finding a transport map between two spaces equipped with probability
measures. Then the cost of the optimal transport map is measured by the Wasserstein p-distance (for p = 1) between the two
probability measures (the cost of a move between two points is simply the distance between them, in case the two spaces are
identical). In the context of XAI, it involves constructing a counterfactual explanation for an instance of one class by identifying
its counterpart according to the optimal transport map between classes [560].
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centered on generation, necessitating innovative approaches to frame the question of explanation [77].

As announced at the end of Section 1, we have organized in seven sections the main areas where
synergies between KRR and ML take place. We start with the learning of rule-based models which are at
the core of induction tasks.

3 Rule-based models and neural-symbolic AI

Finding logical rules that cover a set of examples and exclude a set of counter-examples is a matter of
induction.

Version space learning [461, 462] has offered a first framework for describing how a hypothesis space
is organized. A hypothesis is understood as a concept, and takes the form of a tuple of values in attribute
domains, including question marks when there is no restriction on some attribute values. Version space
learning takes into account examples and counterexamples of the learned concept, maintaining upper and
lower approximations of its representations (including examples and excluding counterexamples).

Inductive Logic Programming [567] attempts to learn rules from examples and background knowledge
in the representation setting of logic programming. This is the topic of the next section with its extensions
to probabilistic rules. Then this section ends with more recent neural-symbolic approaches, which aims at
interfacing logic and probabilities with neural networks.

Note that the learning of non conventional rules such as default rules, rules with threshold, etc. is
addressed in Section 6.

3.1 Inductive Logic Programming and statistical relational learning

Inductive Logic Programming (ILP) (see [473, 165, 224] for general presentations) is a subfield of ML
that aims at learning models expressed in (subsets of) First Order Logic. It is an illustration of Symbolic
Learning, where the hypothesis space is discrete and structured by a generality relation. The aim is then
to find a hypothesis that covers the positive examples (it is then said to be complete) and rejects the
negative ones (it is said to be consistent). The structure of the hypothesis space allows to generalize an
incomplete hypothesis, so as to cover more positive examples, or to specialize an inconsistent hypothesis
in order to exclude negative covered examples. The main reasoning mechanism is induction in the sense
of generalization (subsumption).

In ILP, examples and models are represented by clauses. Relying on First Order Logic allows to model
complex problems, involving structured objects (for instance to determine whether a molecule is active
or not, a system must take into account the fact that it is composed of atoms with their own properties
and shared relations), or involving objects in relation with each other (a social network or temporal data).
Reasoning is a key part of ILP. First, the search for a model is usually performed by exploring a search
space structured by a generality relation. A key point is then the definition of a generality relation between
clauses. The more natural definition of subsumption should be expressed in terms of logical consequences,
which allows comparing the models of both formula, but since the problem is in general not decidable, the
notion of θ -subsumption, as introduced in [502] is usually preferred: a clause C1 is more general that a
clause C2 if there exists a substitution θ such that C1.θ ⊆ C2. In this definition a clause, i.e., a disjunction of
literals, is represented by its set of literals. For instance, the rule par(X , Y ), par(Y, Z)→ grand_par(X , Z)
θ -subsumes par( john, ann), par(ann, peter), par( john, luc) → grand_par( john, peter). Indeed, the
first one leads to the clause ¬par(X , Y )∨¬par(Y, Z)∨ grand_par(X , Z) and the second one to the clause
¬par( john, ann)∨¬par(ann, peter)∨¬par( john, luc)∨grand_par( john, peter). Second, expert knowl-
edge can be expressed using facts (ground atoms) or by rules, or yet reasoning mechanisms to be applied.
This can be illustrated by the well-known systems FOIL [513] and Progol [472].

ILP, and more generally Symbolic Learning, has thus some interesting properties. First, the model
is expressed in logic and therefore is claimed to be easily understandable by a user (See for instance
[474] for an interesting study of the comprehensibility or not of programs learned with ILP). Second,
expert knowledge can be easily expressed by means of clauses and integrated into the learning algorithm.
Although initially developed for the induction of logic programs, it has now shown its interest for learning
with structured data.
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However, ILP suffers from two drawbacks: the complexity of its algorithms and its inability to deal with
uncertain data. Several mechanisms have been introduced to reduce the complexity, as for instance the
introduction of syntactic biases, restricting the class of clauses that can be learned. Another interesting idea
is propositionnalization, introduced in [393] and then developed for instance in the system RSD [668]. It
is a process that transforms a relational problem into a classical attribute-value problem by the introduction
of new features capturing relations between objects. Once the transformation performed, any supervised
learner can be applied to the problem. The main difficulty is then to define these new features.

This last problem has led to the emergence of Statistical Relational Learning [264, 167, 170] that aims
at coupling ILP with probabilistic models. Many systems have been developed, extending naive Bayesian
classifier [388], Bayesian Networks [245] or Markov Logic Networks [523] or developing new probabilis-
tic framework as in Problog [171], or in “Probabilistic Soft Logic (PSL)” [40]. This latter work belongs
to an approach that combines probabilities with fuzzy logic connectives [234, 237]. In all these works,
inference and learning are tightly connected since learning parameters requires to maximize the likelihood
for generative learning (estimation of the probabilities to generate the data, given a set of parameters), or
the conditional likelihood in case of discriminative learning (estimation of the probabilities of the labels
given the data). Optimizing the parameters thus requires at each step to estimate the corresponding prob-
abilities. This has led to intensive research on the complexity of inference. A comparative study of weight
learning methods for first-order logical rules can be found in [585].

3.2 Neural-Symbolic Reasoning

Neural-Symbolic AI is the banner of an important research trend nowadays that aims at putting together
logic, probability and neural nets [435]. Several works have proposed to combine learning and reasoning
by studying schemes to translate logical representations of knowledge into neural networks. A long-term
goal of a series of works on neural-symbolic integration, surveyed for instance by [64], is “to provide a
coherent, unifying view for logic and connectionism . . . [in order to] . . . produce better computational tools
for integrated ML and reasoning.” Existing works can be distinguished based on whether they only involve
reasoning (e.g. using neural networks as a faster alternative to symbolic reasoners) or also learning, and
based on whether uncertainty is explicitly taken into account.

Neural-Symbolic AI for Reasoning The problem of interfacing logical representations with machine
learning devices was already addressed in the 1990s. Early works proposed translation algorithms from a
symbolic to a connectionist representation, enabling the use of computation methods associated with neural
networks to perform symbolic reasoning. Works in this vein include [499, 500, 79, 317]. Bornscheuer et al.
[79] show for example how an instance of the Boolean satisfiability problem can be translated into a feed-
forward network that parallelizes GSAT, a local-search algorithm for Boolean satisfiability. They also show
that a normal logic program P can be turned into a neural network that can approximate the semantics
of the program arbitrarily well. This kind of translation has been also proposed for non-classical logics.
In [160, 157], methods are proposed to translate formulas with modalities into neural networks, enabling
the representation of time and knowledge, and the authors in [158, 159] show that there exists a neural
network ensemble that captures fixed-point semantics of intuitionistic theories. The idea of using neural
networks for reasoning has remained an active area of research. See, for instance, [309] for a recent survey.
Rather than relying on manual translations, however, the emphasis is now on training neural networks to
approximate the results of a symbolic reasoner. The main motivation is to enable fast (albeit approximate)
inference results and, potentially, increased robustness in the presence of noisy inputs.

Neural-Symbolic AI for Learning and Reasoning Short after the beginning of the first wave of works
mainly focusing on the translation of logic programs into neural networks, many works in neuro-symbolic
AI became more ambitious, by incorporating a genuine learning step. Towell and Shavlik [602] offer one of
the first systems, named KBANN (for Knowledge-Based Artificial Neural Networks), where both reasoning
and learning are jointly at work. They wrote, “Briefly, the idea is to insert a set of hand-constructed,
symbolic rules (i.e., a hand-built classifier) into a neural network. The network is then refined using
standard neural learning algorithms and a set of classified training examples. The refined network can then
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function as a highly-accurate classifier.” [601] presents a “final step for KBANN, [that is] the extraction
of refined, comprehensible rules from the trained neural network”. In a similar spirit, the paper [162]
represents propositional logic programs with recurrent neural networks (RNNs) which can be used to
compute the semantics of the program. They show that this program can also be used as background
knowledge to learn from examples, using back-propagation. Essentially, the RNN defined to represent a
logic program P has all atoms of P in the input layer; one neuron, a kind of “and” gate, for each rule in a
single hidden layer; and one neuron for every atom in the output layer, working like “or” gates. Re-entrant
connections from an atom in the output layer to its counterpart in the input layer enable the chaining of
rules. An extraction step is also described in [154]. Franca et al. [250] extend these results to first-order
programs, using a propositionalization method called Bottom Clause Propositionalization. Pinkas and
Cohen [501] performed experiments with so-called higher-order sigma-pi units (which compute a sum of
products of their inputs) instead of hidden layers, for planning problems on simple block-world problems.
The number of units is fixed at design time, and is a function of the maximum number of blocks and the
maximum number of time steps. For example, for every pair (b1, b2) of possible blocks and every time step
t, there is a unit representing the proposition above(b1, b2, t). Their results indicate that a learning phase
enables the network to approximately learn the constraints with a reasonable number of iterations.

The aforementioned works use special-purpose neural network architectures, whose structure remains
closely aligned with symbolic rule bases. Another direction of research has emerged, in which more general
neural network architectures are used, and where the aim is merely to train the network to learn to reason
about a particular domain, which is particularly popular in the context of knowledge graph completion.
For instance, in [654, 316], they use recursive tensor networks to predict classes and / or binary relations
from a given knowledge base. A popular strategy is to encode prior symbolic knowledge, when training the
neural network, by interpreting the logical connectives in terms of fuzzy logic connectives [193, 581, 558].
The main motivation for using fuzzy logic connectives, in this context, is that this makes it possible to
translate symbolic knowledge into a continuous regularisation term in the loss function. Donadello et al.
[197] describe how this approach can be used to learn semantic image interpretation using background
knowledge in the form of simple first-order formulas. Rather than directly regularizing the loss function
in this way, [323] proposes an iterative method to ensure that the proportion of ground instances of the
given rules that are predicted to be true by the neural network is in accordance with the confidence we
have in these rules. To this end, after each iteration, they solve an optimisation problem to find the set
of predictions that is closest to the predictions of the current neural network while being in accordance
with the rules. The neural network is subsequently trained to mimic these regularized predictions. Yet an-
other approach is proposed in [648], which proposes a loss function that encourages the output of a neural
network to satisfy a predefined set of symbolic constraints, taking advantage of efficient weighted model
counting techniques. In this issue, [269] proposes a novel neuro-symbolic framework integrating proposi-
tional logic requirements into the output layer of neural networks, ensuring compliance with the requirements
and enhancing performance. Extensive experimental evaluation shows that CCN+ outperforms both its neu-
ral counterparts and the state-of-the-art models in multi-label classification tasks. All of these methods are
essentially aimed at incorporating background knowledge.

Another line of work is aimed at improving the reasoning capabilities of neural networks. For instance,
the Neural Theorem Prover (NTP) [456] is essentially a logic programming framework, where the usual
unification between terms is replaced by a soft unification mechanism, which depends on the similarity
between embedding representations. This framework makes it possible to start from rule templates, which
only specify the structure of the rules to be learned. The model then learns representations of the predicates
appearing in this templates, thus instantiating the templates with specific (soft) rules. Lifted Relational
Neural Networks [582] follow the same principle, but rather than relying on embeddings, they rely on
latent predicates with learned membership degrees.

Neural Probabilistic Reasoning Statistical relational learning is concerned with combining logic with
probabilities, whereas neuro-symbolic AI is concerned with combining logic with neural networks. A recent
research trend is focused on the joint combination of neural networks, logic and probabilities. A seminal
work in this area is DeepProbLog [434], which relies on probabilistic logic programs where the probabilities
of facts are predicted by a neural network. The key innovation relates to how the neural network can
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be learned, using backpropagation, given a loss function that is defined in terms of the consequences of
the probabilistic logic program. In this issue, [190] provides an overview and synthesis of neuro-symbolic
methods, thereby contributing a unified algebraic perspective on the different flavors of probabilistic logic
programming (PLP), showing that many if not most of the extensions of PLP can be cast within a common
algebraic logic programming framework, in which facts are labeled with elements of a semiring and disjunction
and conjunction are replaced by addition and multiplication. In this unified perspective, the authors focus on
the ProbLog language and its extensions. Other relevant work in this area includes NeuPSL (for Neural
Probabilistic Soft Logic)[510], NeurASP [679], TensorLog [123] and neural Markov logic [444]. In this
issue [356] proposes a new class of Neural Markov Logic Networks (NMLN), called Quantified NMLN, that
extends the expressivity of NMLNs and demonstrate how to leverage the neural nature of NMLNs to employ
learnable aggregation functions as quantifiers, and demonstrate the efficiency of Quantified NMLNs in molecule
generation experiments. Broadly speaking, the main aim of such approaches is to have a close cooperation
between perception and recognition (as provided by a neural net), and reasoning capabilities. This can
be exemplified by the exploitation of constraints linking symbols that are recognised, as for instance in
the disambiguation of additions of handwritten figures [434], or in the validation of handwritten sudoku
puzzles [627].

Comparing StarAI and Neural-Symbolic Approaches The detailed surveys [166, 443] compare several
works in STAtistical Relational Artificial Intelligence and Neural-Symbolic Learning and Reasoning along
several dimensions. In particular, they emphasize the following dimensions: i) one can distinguish be-
tween symbolic representations and sub-symbolic representations, such as pixels in an image or vector
embeddings of predicates viewed as words ; ii) while statistical relational learning relies on both logic and
probabilities, neural-symbolic approaches use fuzzy logic connectives in order to have a differentiable rep-
resentation liable to be handled in machine learning. Thus neural net outputs are interpreted as probability
distributions in statistical relational learning, and often as a fuzzy set in neuro-symbolic approaches.

4 Using background knowledge in learning

It is worth taking a historical perspective on machine learning for a moment. Apart from the problem of
learning from "pre-classified learning examples" (as presented in [568] published in 1990), which included
version space learning, the multi-layer perceptrons and decision trees, early learning systems were closely
associated with problem solving, and problem solving itself with reasoning or planning systems. The aim
was to improve problem-solving efficiency by drawing on past experience, or on advice or solutions pro-
vided by experts. One approach, called "explanation-based learning", attracted a great deal of interest in
the 1980s. The idea is to consider a given solution to a particular problem and derive from it a general
rule capable of solving as broad a class of problems as possible that includes the particular problem used
as input. To do this, the learner needs to find an explanation of why the particular solution works, and
generalize this explanation as far as possible so that it applies to similar problems that may arise in the
future. Generalization relies on the availability of a theory of the domain expressed using some form of
logic. Most methods have generalized the constants of the explanation into constrained variables, some-
times also generalizing the structure of the graph representing the explanation. Thanks to this generalized
rule, the system can quickly solve related problems. This method has been applied to learning general
rules for recognizing concepts ([464, 172]), macro-operators in the case of planning systems ([457]) and
control rules or heuristics to guide the search for a solution in the vast tree of possible solutions ([458]).

In this perspective, the performance criterion was not the error rate, as would later be the case, but
the gain in problem-solving speed. One of the limitations of the approach was the need for perfect or
near-perfect (i.e. complete and consistent) domain theory, which seriously hampered its application to
poorly known domains, whereas the emerging second connectionism [537] and, almost simultaneously,
techniques such as support vector machines (SVMs) and boosting, were capable of handling learning data
marred by noise and even missing values. However, as mentioned in Section 2.1, training data must
be supplemented with prior knowledge. In the case of non-reasoning systems such as neural networks,
SVMs or boosting, learning becomes an optimization process that seeks an optimum of a certain criterion
combining the fit to the training data and satisfaction of constraints that express prior knowledge.
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These constraints can be expressed as:

• regularization terms directly incorporated in the criterion to be optimized

• ways of modifying the training data themselves by modifying their representation

Although prior knowledge is thus limited to a somewhat impoverished form, it is easily integrated into
the essentially digital optimization perspective that learning has become, hence its generality and power.
However, the success of learning in the big data area has also led to a new demand. This is to be able to
provide explanations of the results and/or the learning process itself. This new development is attracting a
great deal of attention today, and could lead to renewed interest in hybridization with symbolic reasoning
systems. Time will tell. In parallel with this new demand for explainable AI, it is very likely that error rate
as the sole measure of performance will give way to richer, more encompassing criteria, a trend that could
itself bring new learning methods to the fore. To illustrate this growing interest, the article [62] considers
the question "What could serve as a training objective for mathematical discovery?” and advocates a look
at the usefulness of existing theorems and the one conjectured as one criterion, among others, to guide an
“AI mathematician” in its exploration in the space of all possible mathematical statements.

This section describes ways of incorporating prior knowledge in learning.

4.1 Regularization and search biases

Attempting to induce general laws from limited training data without limiting the space of hypotheses (the
laws) is bound to produce, except very improbably by pure chance, hypotheses that have no values. In
particular, the phenomenon of overfitting occurs when the hypothesis produced fits too well the training
data and their specific but irrelevant characteristics, which is likely if the hypothesis space has too great a
capacity. This is well explained by the statistical theory of learning [611]. Thus, in order to complement
the training data, it is necessary to use some prior knowledge that restricts the space of hypotheses to be
explored.

Generally, two forms of prior knowledge, aka. biases, are distinguished: representation biases that limit
the expressiveness of the language used to express the possible hypotheses on the world, and search biases
that control how the hypothesis space is explored by the learning algorithm.

Representation biases can take various forms. They can directly affect the language in which the possible
hypotheses can be expressed. For instance, “hypotheses can involve a maximum of two disjuncts”. Or, even
if the useful features are present in the training database (e.g. ‘distance’ and ‘time’), it may help the learning
system if a feature that combine them (e.g. ‘speed’) is added. In this case, the expert can prove very useful.
Recently, we have seen the emergence of learning systems with millions or billions of parameters, a number
that easily exceeds the number of learning examples available, thus creating a very high risk of over-fitting.
In this context, one way of biasing the system is to learn what is called an “embedding”, i.e. to learn an
intermediate representation from the raw input, where it is easier to discern patterns of interest and/or to
extract prediction rules. In this perspective, the role of the expert is no longer to directly shape the input
space, but to find ways of directing the self-supervised learning process that produces these embeddings.
For instance, in contrastive learning, the use of siamese networks will help encode prior knowledge about
similar training examples and examples that should be distant.

A more sophisticated approach, used in deep neural networks, is to train the system while respecting
known laws about the phenomenon at hand, or other kinds of expert knowledge. A generic way of imposing
representation biases is thus to use a regularized optimisation criterion that balances a measure of fit of
the model to the data, and a measure of fit of the model to the bias. For instance, the following quality
measure over linear hypotheses h(x) = β0 +

∑p
j=1 β j x i, j for regression favours hypotheses that involve

fewer parameters:

R(h) =
1
2

m
∑

i=1

 

yi − β0 −
p
∑

j=1

β j x i, j

!2

︸ ︷︷ ︸

fit to the data

+ λ

p
∑

j=1

||β j||0
︸ ︷︷ ︸

Favors models with few non zero parameters

where the L0 norm ||.||0 counts the nonzero parameters β j .
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Thus, for instance, Physics-Informed Neural Networks (PINNs) attempt both to optimize the fit to the
training data (e.g. as measured by the Mean-Square Error) and to satisfy initial and boundary conditions
imposed by equations (e.g. differential equations) that express knowledge of the physical laws governing
the phenomenon [518, 509]. PINNs seek to minimize a combined fit to the data and the satisfaction of
physics based conditions, albeit with the help of specific architectures for the neural networks, e.g. with
two branches that are constrained to share parameters, one dedicated to the fit of the training data and
the other to the representation of the physics involved. We have seen in Section 3.2 how the use of fuzzy
connectives enables the expression of some background knowledge in a regularization term.

The search bias dictates how the learning algorithm explores the space of hypotheses. For instance, in
the case of neural networks, the search starts with a randomly initialized neural network and then proceeds
by a gradient descent optimization scheme. In some other learning methods, such as learning with version
space, the search uses generalization relations between hypotheses in order to converge towards good
hypotheses. In this latter case, it is easier to incorporate prior knowledge from the experts. Indeed, the
exploration of the hypothesis space is akin to a reasoning process, very much like theorem proving.

It should be noted that in transfer learning (see Section 5.3), the source task acts as a bias for the target
task by providing a starting model that must be adapted to the target domain.

While a bias is necessary in inductive learning, it is important to realize that it can help as well as hinder
the discovery of a good model. However prior knowledge is expressed, through a representation bias
and/or a search bias, its appropriateness is the responsibility of the domain expert and the data scientist.

4.2 Aligning Symbolic and Vector Space Representations

Symbolic and vector representations clearly have some complementary strengths for encoding knowledge.
For instance, vector representations are typically easier to learn due to their continuous nature. Moreover,
vector representations can model certain aspects of knowledge in a more fine-grained way, e.g. by capturing
degrees of similarity or the intensity with which some property is satisfied. Symbolic representations, on
the other hand, are typically easier to interpret, which makes models that rely on symbolic representations
also easier to explain. Similarly, in many domains we have access to knowledge bases that are encoded
in symbolic form (e.g. using logic or natural language). In this section, we discuss methods that align
symbolic and vector representations in some way, in attempt to combine the best of both worlds.

Conceptual Spaces The problem of aligning symbolic and vector space representations lies at the heart of
the theory of conceptual spaces [262], which was proposed by Gärdenfors as an intermediate representation
level between vector space representations and symbolic representations. Conceptual spaces are essentially
vector space models, as each object from the domain of discourse is represented as a vector, but they differ
in two crucial ways. First, the dimensions of a conceptual space usually correspond to interpretable salient
features. Second, (natural) properties and concepts are explicitly modelled as (convex) regions. Given a
conceptual space representation, we can thus, e.g., enumerate which properties are satisfied by a given
object, determine whether two concepts are disjoint or not, or rank objects according to a given (salient)
ordinal feature. Conceptual spaces were proposed as a framework for studying cognitive and linguistic
phenomena, such as concept combination, metaphor and vagueness. As such, the problem of learning con-
ceptual spaces from data has not yet received much attention. Within a broader setting, however, several
authors have studied approaches for learning vector space representations that share important character-
istics with conceptual spaces. The main focus in this context has been on learning vector space models
with interpretable dimensions. For example, it has been proposed that non-negative matrix factorization
leads to representations with dimensions that are easier to interpret than those obtained with other matrix
factorization methods [398], especially when combined with sparseness constraints [320]. More recently,
a large number of neural network models have been proposed with the aim of learning vectors with inter-
pretable dimensions, under the umbrella term of disentangled representation learning [113, 307]. Another
possibility, advocated in [191], is to learn (non-orthogonal) directions that model interpretable salient fea-
tures within a vector space whose dimensions themselves may not be interpretable. Beyond interpretable
dimensions, some authors have also looked at modelling properties and concepts as regions in a vector
space. For example, [226] proposed to learn region representations of word meaning. More recent ap-
proaches along these lines include [618], where words are modelled as Gaussian distributions, and [351],
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where word regions were learned using an ordinal regression model with a quadratic kernel. Some authors
have also looked at inducing region based representations of concepts from the vector representations of
known instances of these concepts [87, 292]. Finally, within a broader setting, some approaches have been
developed that link vectors to natural language descriptions, for instance linking word vectors to dictionary
definitions [308] or images to captions [367].

An important question when dealing with embeddings is how much they can be used to perform logical
reasoning. In this issue [550] studies to which extent and under which conditions pooling operators, that
are commonly used for aggregating vector embeddings in deep neural network architecture, are compatible
with the idea that embeddings encode epistemic states and fit with the satisfaction of propositional formulas.
The paper shows that max-pooling is particularly suitable for such tasks, in particular if one wants to encode
non-monotonic reasoning.

Concept Bottleneck Models A popular strategy for building interpretable classifiers is based on aligning
representations learned by deep neural network models with interpretable concepts. For instance, Concept
Bottleneck Models [378] approach image classification in two steps. First a traditional image classification
model is used to predict which primitive concepts can be observed in an image. Second, a final prediction
is made based on the primitive concepts that were identified in the first step. For instance, when classifying
images of birds, the concepts involved may correspond to features such as the colour of the wings. The
model would then use such features to predict the species of the bird that is depicted. Concept Bottleneck
Models offer a degree of interpretability. For instance, we can easily inspect the primitive concepts that
were identified to analyse why a given image was misclassified. Moreover, we may expect that making
predictions in terms of primitive concepts can also serve as a form of semantic regularization. However,
concept bottleneck models require appropriate supervision data, to allow them to learn the primitive con-
cepts as well as the target classes, which is not always available in practice. Moreover, they are only useful
in cases where an exhaustive set of primitive concepts can be identified a priori. This is often difficult to
achieve in practice, leading to models with sub-optimal performance [227]. Furthermore, it has been ob-
served that the representations learned by concept bottleneck models may capture information beyond the
considered primitive concepts, making the resulting interpretations potentially misleading [428]. As an
alternative to concept bottleneck models, [661] suggest to learn concept-based explanations as a post-hoc
step. Another alternative is to design classifiers that can be explained by comparing instances to learned
prototypes [404]. Such approaches avoid the need for pre-defined concepts, but the learned prototypes
may not always be easily interpretable. Some methods inspired by conceptual spaces have been proposed
as well. For instance, [191] extract an interpretable (qualitative) representation from a given vector space,
by essentially identifying directions within the space that correspond to interpretable properties. To train
an interpretable classifier, they simply treat these properties as ordinal features.

4.3 Using Knowledge Graphs for Learning

Knowledge graphs (KGs) are a popular formalism for expressing relational knowledge using triples of the
form (entity, relation, entity). In application fields such as natural language processing, they are among
the most widely used knowledge representation frameworks. For instance, several authors have explored
strategies for incorporating KGs when training language models [675, 421, 629]. KGs are also commonly
used to provide background knowledge in NLP tasks such as question answering. For instance, common-
sense KGs such as ConceptNet4 and ATOMIC [546] are commonly used to improve the commonsense
reasoning abilities of language models [658, 674]. In computer vision, commonsense knowledge graphs
have similarly been used to interpret visual scenes [285, 645]. While recent Large Language Models, such
as ChatGPT and GPT-4, capture a wealth of world knowledge, they are still limited when it comes to lesser-
known entities [432]. The extent to which they can be kept up-to-date is also inherently limited. KGs thus
still have an important role to play in providing background knowledge to language models. KGs have also
found important applications in the field of recommendation [670, 625, 630]. KGs can improve the quality
of recommendations, by giving the system side information about the relatedness of different items, but

4https://conceptnet.io
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they are also useful for making the recommendation process more explainable [631]. The usefulness of
KGs for explainable machine learning more generally has also been highlighted [596].

Knowledge Graph Completion Knowledge graphs are almost inevitably incomplete, given the sheer
amount of knowledge about the world that we would like to have access to and given the fact that much
of this knowledge needs to be constantly updated. This has given rise to a wide range of methods for
automatic knowledge graph completion, which is clearly a research area that has the integration of back-
ground knowledge and machine learning at its heart. On the one hand, several authors have proposed
approaches for automatically extracting missing knowledge graph triples from text [524]. On the other
hand, a large number of approaches have been studied that aim to predict plausible triples based on statis-
tical regularities in the given knowledge graph. Most of these approaches rely on vector space embeddings
of the knowledge graph [78, 603]. The main underlying idea is to learn a vector e of typically a few
hundred dimensions for each entity e, and a scoring function sR for each relation R, such that the triple
(e, R, f ) holds if and only if sR(e, f) ∈ R is sufficiently high. Provided that the number of dimensions is
sufficiently high, any knowledge graph can in principle be modelled exactly in this way [371]. To a more
limited extent, such vector representations can even capture ontological rules [293]. In practice, however,
our aim is usually not to learn an exact representation of the knowledge graph, but to learn a vector rep-
resentation which is predictive of triples that are plausible, despite not being among those in the given
knowledge graph. Some authors have also proposed methods for incorporating textual information into
knowledge graph embedding approaches. Such methods aim to learn vector space representations of the
knowledge graph that depend on both the given knowledge graph triples and textual descriptions of the
entities [676, 350, 643, 642], or their relationships [525, 600]. Finally, several authors have started to
explore how KGs can be extracted directly form Large Language Models [635, 122].

In this issue, [538] proposes techniques to generate explanations for predictions based on the embeddings
of knowledge graphs: the idea is to build explanations out of paths in an input knowledge graph, searched
through contextual and heuristic cues. On their side, [102] presents a model for fuzzy temporal reasoning to
overcome some inconsistencies detected in pre-trained language models in a specific application domain of a
conversational agent carefully designed for providing users with explanations. More precisely, starting from a
knowledge graph that offers an intuitive representation of the entities and relations in the application domain,
the authors describe how to map the temporal information onto a fuzzy temporal constraint network. An
experiment with GPT-3 Large Language Model is reported.

5 Reasoning for learning by using constraints, semantic features, analogies

The idea of combining reasoning and learning covers many issues. In Section 3, we already mentioned
version space learning, and we surveyed ILP, statistical relational learning, and neural symbolic AI. In that
section, we saw some interplay between logic programming techniques, probabilistic reasoning, or fuzzy
logic and neural networks. In Section 4, background knowledge was used either in the bias in order to
improve the learned model, or to learn a new representation space.

This section covers machine learning settings in which various forms of reasoning play a central role.
This involves reasoning about the predictions of machine learning models, the use of reasoning to satisfy
declarative constraints, and the use of special forms of inference to make predictions.

More specifically, this section successively deals with:

• Declarative biases for pattern mining and clustering.

• Low-shot learning where knowledge is used in order to be able to learn from very few training
examples.

• Transductive learning methods such as case-based reasoning and analogical reasoning, and their
relation with transfer learning.

The combination of logical representations with learning is also considered in Section 6 (learning for
knowledge acquisition), in Section 7 (learning for reasoning), where the focus is on learning representa-
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tions that can be used for reasoning. Logical representations, especially in the form of rules, can also be
learned in the setting of explainable AI, as covered in Section 8 (model accountability).

5.1 Declarative Frameworks for Data Mining and Clustering

Unsupervised ML tasks such as clustering can be guided by expert knowledge expressed by means of con-
straints that can the handled from declarative frameworks developed in the KRR side. Machine Learning
and Data Mining can also be studied from the viewpoint of problem solving. From this point of view, two
families of methods can be distinguished: enumeration and optimisation, the latter being either discrete
or continuous.

Pattern mining is the best known example of enumeration problems, with the search for patterns satisfy-
ing some properties, as for instance being frequent, closed, emergent . . . Besides, supervised classification
is seen as the search for a model minimizing a given loss function, coupled to a regularization term to
avoid over-fitting, whereas unsupervised learning is modeled as the search of a set of clusters (a partition
in many cases) optimizing a quality criterion (the sum of squared errors for instance for k-means). To cope
with complexity, optimisation problems usually rely on heuristic search, with the risk of finding only a local
optimum. All these approaches suffer from drawbacks. For instance in pattern mining the expert is often
overwhelmed by all the patterns satisfying the given criteria. In optimisation problems, a local optimum
can be far from the expert expectations.

To prevent these drawbacks, the notion of Declarative Data Mining has emerged, allowing the experts
to express knowledge in terms of constraints on the desired models. It can be seen as a generalization
of semi-supervised classification, where some data are already labelled with classes. Classical algorithms
must then be adapted to take into account constraints, which has led to numerous extensions. Most of
them are dedicated to only one type of constraints, since the loss function has to be adapted to integrate
their violation and the optimization method (usually a gradient descent) has to be adapted to the new
optimization criterion. It has been shown in [168] that declarative frameworks, namely Constraint Pro-
gramming in that paper, allow to model and handle different kinds of constraints in a generic framework,
with no needs to rewrite the solving algorithm. This has been applied to pattern mining and then extended
to k-pattern set mining with different applications, such as conceptual clustering or tiling [169, 375].

This pioneering work has opened the way to a new branch of research, mainly in Pattern Mining and
in Constrained Clustering. In this last domain, the constraints were mainly pairwise, e.g., a Mustlink
(resp. Cannotlink) constraint expresses that two points must (resp. must not) be in the same cluster.
Other constraints have been considered such as cardinality constraints on the size of the clusters, minimum
split constraints between clusters. Different declarative frameworks have been used, as for instance SAT
[153, 348], Constraint Programming [144], Integer Linear Programming [470, 39, 382, 487]. An important
point is that such frameworks allow to easily embed symbolic and numerical information, for instance by
considering a continuous optimisation criterion linked with symbolic constraints, or by considering two
optimisation criteria and building a Pareto front [144].

Thus, declarative frameworks not only allow to easily integrate constraints in Machine Learning prob-
lems, but they enable the integration of more complex domain knowledge that goes beyond classical Ma-
chine Learning constraints, thus integrating truly meaningful information [145]. Moreover, new use case
for clustering can be considered as for instance given a clustering provided by an algorithm, find a new
clustering satisfying new expert knowledge, minimally modifying the previous one [382]. The price to pay
is computational complexity, and the inability to address large datasets. A new research direction aims at
studying how constraints could be integrated to a deep learner [671, 480]. Besides, the Constraint Pro-
gramming community has also benefited from this new research direction by the development of global
constraints tailored to optimize the modeling of Data Mining tasks, as for instance [373].

A detailed survey of declarative frameworks for clustering can found in this issue [146].

5.2 Low-shot learning

In this subsection, we point out that low-shot learning, a specific form of learning with few or no examples,
encounters KRR in two respects: by requiring some form of knowledge describing classes, and by being
close to the concerns of case-based reasoning. A recent survey can be found in [322].
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One of the main cognitive tasks is to identify the category to which an object such as a pattern in an
image, a sound, a text, etc. belongs. In Machine Learning, this problem involves learning a function that
associates an input x (e.g., a pattern) with a class or category y (e.g., “a car”). In the standard supervised
learning scenario, this is achieved by presenting a set of m (m being large, or even very large) training
examples {(xi , yi)}1≤i≤m to a learning algorithm and learn a recognition rule for each class.

But we humans often do not need such large training datasets to learn how to classify objects. For
example, children learn to recognize cats from very few examples, and if given a definition of “zebra” (i.e.
a wild African horse with black and white stripes and an erect mane), they are even able to recognize
them from pictures without ever having seen one before. These two situations, quite common in natural
cognition, have been called “learning from a few images” and “learning from zero images” respectively.
But how are such feats even possible?

Standard supervised learning does not involve any reasoning. The classes yi are arbitrary tokens for
the learning system. The class “cat” could as well be referred as “QP115”, that would not change in any
way the learning process. The class tags are unrelated and the system attempts to capture correlations
between the description of the inputs x and the class y to which they are paired in the training dataset
without taking into account any semantics associated with the objects and classes nor any relationships
between the classes.

If you have never been exposed to an instance of a class, the only way to be able to recognize its
occurrence is to relate its description to other classes or to examples. For instance, if you know how
to recognize a “horse” and a “striped” object, then you may be able to recognize a “zebra” from a new
example because it triggers both the “horse” and “stripped” categories. The overall idea then is to describe
the classes as compositions of semantic features, and learn to recognize these features when presented
with an example. This is somewhat reminiscent of the use of background knowledge as described in
subsection 4.2 where some intermediate representation level between vector space representations and
symbolic representations is used. In both cases, disentangled clusters corresponding to concepts are looked
for in the intermediate representation space. But in the conceptual space approach, an interpretation in
terms of symbolic knowledge is aimed at in order to study cognitive phenomena, whereas in zero-shot
learning, the activation of several “concepts” is just a means to recognize a new type of pattern, in a first
approach irrespective of any symbolic interpretation beside this recognition.

Learning to associate examples to classes then becomes a two step process, the first being to learn the
semantic features F ∈ F allowing the description of the classes, and then to learn to associate examples x
to features in F . One of the earliest work on zero-shot learning along this line [108] employed wikipedia
as a source of semantic concepts used to describe classes. In recent years, embedding spaces learned by
deep neural networks are used as semantic spaces.

While some kind of semantics – a representation capable of capturing meaning – is produced in zero-
shot learning, there is no such thing in the current approaches to one-shot or few-shot learning. Here, the
idea is that at least one example has been seen for each class. This or these example(s) act as representatives
of the class. Then, a new example is assigned to the class of the nearest representative. Of course, it all
comes down to the definition of “nearest”. In this type of learning, the training set, which needs not to be
as large as in supervised training, is used in order to learn what is similar or dissimilar. Contrastive learning
methods in neural networks are one way of realizing this. In this respect, few-shot learning is not very
different from case-based reasoning.

5.3 Case-Based Reasoning, Analogical Reasoning and Transfer Learning

Case-based reasoning (CBR for short), e.g., [2] is a form of reasoning that exploits data (rather than knowl-
edge) under the form of cases, often viewed as pairs 〈problem, solution〉. When one seeks for potential
solution(s) to a new problem, one looks for previous solutions to similar problems in the repertory of cases,
and then adapts them (if necessary) to the new problem.

Case-based reasoning, especially when similarity is a matter of degree, thus appears to be close to
k-NN methods and instance-based learning [176, 333]. The k-NN method is a prototypical example of
transduction, i.e., the class of a new piece of data is predicted on the basis of previously observed data,
without any attempt at inducing a generic model for the observed data. The term transduction was coined
in [257], but the idea dates back to Bertrand Russell [539].
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Another example of transduction is analogical proportion-based learning. Analogical proportions are
statements of the form “a is to b as c is to d”, often denoted by a : b :: c : d, which express the claim
that “a differs from b as c differs from d and b differs from a as d differs from c”. This statement can be
encoded into a Boolean logical expression [452, 503] which is true only for the 6 following assignments
(0,0, 0,0), (1,1, 1,1), (1,0, 1,0), (0,1, 0,1), (1,1, 0,0), and (0, 0,1, 1) for (a, b, c, d). Note that they are
also compatible with the arithmetic proportion definition a− b = c − d, where a− b ∈ {−1,0, 1}, which is
not a Boolean expression. Boolean Analogical proportions straightforwardly extend to vectors of attributes
values such as ~a = (a1, ..., an), by stating ~a : ~b :: ~c : ~d iff ∀i∈ [1, n], ai : bi :: ci : di . The basic analogical
inference pattern [588], is then

∀i ∈ {1, ..., p}, ai : bi :: ci : di holds
∀ j ∈ {p+ 1, ..., n}, a j : b j :: c j : d j holds

Thus analogical reasoning amounts to finding completely informed triplets (~a,~b,~c) appropriate for inferring
the missing value(s) in ~d. When there exist several suitable triplets, possibly leading to distinct conclusions,
one may use a majority vote for concluding. However it is advisable to use a subset of triplets based
on “competent” pairs [83]. This inference method extends to analogical proportions between numerical
values, and the analogical proportion becomes graded [216]. It has been successfully applied, for Boolean,
nominal or numerical attributes, to classification [451, 85] (then the class cl(~x) (viewed as a nominal
attribute) is the unique solution, when it exists, such as cl(~a) : cl(~b) :: cl(~c) : cl(~x) holds). Besides, it has
been theoretically established that analogical classifiers always yield exact prediction for Boolean affine
functions (which includes x-or functions), and only for them [131]. Good results can still be obtained
in other cases [132]. In this issue [84] provides a thorough analysis and experiments regarding the role in
analogical inference (applied to classification) played by analogical proportions where the four items involved
have the same value for some features.

It has been also applied to case-based reasoning [411] and to preference learning [232, 81, 82]. The
general idea is that a preference between two items can be predicted if some analogical proportions hold
that link their descriptions with the descriptions of other items for which preference relations are known.
Lastly, analogical inequalities [504] of the form “a is to b at least as much as c is to d” might be useful for
describing relations between features in images, as in [394].

The idea of transfer learning, which may be viewed as a kind of analogical reasoning performed at
the meta level, is to take advantage of what has been learnt on a source domain in order to improve the
learning process in a target domain related to the source domain. When studying a new problem or a new
domain, it is natural to try to identify a related, better mastered, problem or domain from which, hopefully,
some useful information can be called upon for help. The emerging area of transfer learning is concerned
with finding methods to transfer useful knowledge from a known source domain to a less known target
domain.

The easiest and most studied problem is encountered in supervised learning. There, it is supposed that
a decision function has been learned in the source domain and that a limited amount of training data is
available in the target domain. For instance, suppose we have learnt a decision function that is able to
recognize poppy fields in satellite images. Then the question is: could we use this in order to learn to
recognize cancerous cells in biopsies rather than starting anew on this problem or when few labelled data
are available in the biological domain?

This type of transfer problem has witnessed a spectacular rise of interest in recent years thanks both
to the big data area that makes lots of data available in some domains, and to the onset of deep neural
networks. In deep neural networks, the first layers of neuron elaborate on the raw input descriptions
by selecting relevant descriptors, while the last layers learn a decision function using these descriptors.
Nowadays, most transfer learning methods rely on the idea of transferring the first layers when learning
a new neural network on the target training data, fine tuning only the last layers [660, 613, 519]. The
underlying motivation is that the descriptors are useful in both the source and target domains and what
is specific is the decision function built upon these descriptors. But it could be defended just as well
that the decision function is what is essential in both domains while the ML part should concentrate on
learning a representation appropriate for the target task. This has been achieved with success in various
tasks [126]. When prior knowledge is available in the form of ontologies and some form of logic, it is
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tempting to use it in order to better select and express what to transfer. For example, in [396], authors
propose a framework based on description logic to enhance transfer learning by incorporating semantics
and reasoning capabilities to decide when and what to transfer.

Another interesting line of work is related to the study of causality. Judea Pearl uses the term “trans-
portability” instead of transfer learning, but the fundamental issues are the same. Together with colleagues,
they have proposed ways of knowing if and what could be transferred from one domain to another [497].
The principles rely on descriptions of the domains using causal diagrams. Thanks to the “do-calculus”, for-
mal rules can be used in order to identify what can be used from a source domain to help solve questions in
the target domain. One foremost assumption is that causality relationships capture deep knowledge about
domains and are somewhat preserved between different situations. For instance, proverbs in natural lan-
guage are a way of encapsulating such deep causality relationships and their attractiveness comes from
their usefulness in many domains or situations, when properly translated.

One central question is how to control what should be transferred. A common assumption is that
transfer learning should involve a minimal amount of change of the source domain knowledge in order
for it to be used in the target domain. Several ways of measuring this “amount of change” have been put
forward (see for instance [134, 569]), but much work remains to be done before a satisfying theory is
obtained.

With the recent emergence of Large Language Models, one could be tempted to advocate that the
problem of transfer learning is solved. These systems are typically trained on vast amounts of text data
from diverse sources, covering a wide range of subjects and domains. And, at least in the field of Natural
Language Processing, they are able to answer queries about seemingly any topic. They might thus appear
as universal agents.

However, even if these systems are based on the processing of immensely vast databases, they are
still limited and have to be adapted for each application domain (e.g. finance, medicine, mathematics,
...). What’s more, they require extremely costly learning each time they are updated or adapted to a new
domain, which partly defeats the purpose of transfer learning, which aims to make learning for a new task
more economical.

Finally, transfer learning can be detrimental. Negative transfer can occur in human learning, when
you’ve been led down the wrong path, and it can also happen in machine learning, and certainly with
Large Language Models as well. What are the ingredients for predicting the performance to be expected
from transfer learning? Performance of the source hypothesis on the source domain? Proximity (how to
measure it?) of the source and target domains? Size of the target training set? Other dimensions? This is
still a great unknown and a fruitful area of research given the growing importance of “long life learning”.

In this issue [129] discusses and revisit some commonly held beliefs about assumptions needed for transfer
learning to work. In particular, it questions the need to have a good hypothesis on the source space and
demonstrates that the relation between the source and target space, even when those are different, can matter
more than the quality of the source hypothesis. It thus clarifies some of the conditions under which positive
transfer learning can occur.

6 Learning for knowledge acquisition

This section focuses on works whose aims are to extract knowledge from data in the form of if-then rules,
constraints, or preference relations. We have already encountered rules in logic programming settings in
Section 3 when presenting ILP, Statistical Relation Learning and Neural Symbolic AI. In this section, we
briefly survey formal concept analysis and rough sets that offer other frameworks for the extraction of
rules. Then, we discuss various kinds of if-then rules and their learning, ranging from fuzzy rules, default
rules to threshold rules, which respectively take into account the ill-definition of the range of applicability
of rules, the presence of exceptions in the data, or express acceptance or rejection in terms of thresholds
reached or not reached. Lastly, subsection 6.3 surveys works on constraint acquisition, and subsection 6.4
reports on preference learning and recommender systems. However, some important, well-known formats
of knowledge representation, such as Bayesian networks, or other graphical models are not presented in
this survey.

In this special issue, [114] presents recent advances on learning and inference using Bayesian networks:
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the compilation of Bayesian networks into arithmetic circuits in the form of tensor graphs and the exploitation
of partially known functional dependencies leads to significant performance improvements; that paper also
shows that one can significantly reduce the reliance on data and improve robustness if one complements data
with knowledge, and shows that one can sometimes recover from modelling errors by using the more expressive
Testing Bayesian networks.

6.1 Formal concept analysis and rough sets

Formal concept analysis and rough sets are two mathematical frameworks offering original tools for
extracting rules from data, which have emerged over the last forty years and developed within dynamic
autonomous communities on the fringes of mainstream AI.
6.1.1 Classical rules and formal concept analysis

Formal Concept Analysis (FCA) goes back to the 1980’s [259, 244] and can be related to Artificial Intelli-
gence since it offers a formalization of the notion of concept. It is a good example of a setting that stands
in between KRR and ML concerns. Moreover recent years have witnessed a renewed interest in FCA with
the emergence of Pattern Mining. FCA offers a mathematical framework based on the duality between a
set of objects and a set of descriptors or attributes. A set of attributes is often called an itemset in the
data mining literature. The basic setting starts from a formal context which is a relation linking objects
and (Boolean) attributes. Thus a formal context constitutes a simple repository of Boolean data. A concept
is then formalized as a pair composed of a set of attributes and a set of objects representing the intention
and the extension of the concept respectively; it has the property that these objects and only them satisfy
the set of attributes and this set of attributes refers to these objects and only them. Such a set of attributes
is called a closed pattern, an intent, or a closed itemset. More precisely, two operators, forming a Galois
connection, respectively associate, to a subset of objects, their common descriptors, and, to a subset of
attributes, the subset of objects that satisfy them. In an equivalent way, a pair made of a set of objects and
a set of attributes is a formal concept if and only if their Cartesian product forms a maximal rectangle for
set inclusion in the formal context. The set of concepts forms a complete lattice. It a possible to define an
equivalence relation between itemsets (two sets of attributes are equivalent if they share the same closure).
From closed itemsets, it becomes possible to extract, from a formal context, all the attribute implications
relating subsets of attributes, of the form “if objects satisfy a set of attributes then they satisfy another set
of attributes”. See [289, 259, 48].

Two extensions are especially worth mentioning. One uses fuzzy contexts, where the links between
objects and attributes are a matter of degree [52]. Many-valued contexts may be useful for handling
numerical attributes [450]. Another extension allows for structured or logical descriptors using so-called
pattern structures [258, 243, 28]. Besides, operators other than the ones defining formal concepts make
sense in formal concept analysis, for instance, to characterize independent subcontexts [211].

Association rules [9, 297] describe relations between attributes together with support degrees (reflect-
ing the frequency of objects satisfying the condition parts) and confidence degrees (conditional probabil-
ities). Such rules generalise attribute implications, for which the confidence degree is 1 (and that could
be supported by no object, i.e., have zero support). Association rules can be extracted from more general
data sets than formal contexts: The AMIE system [256] is a well-known example of association rule learner
mining an RDF knowledge base in a description logic.

6.1.2 Rough sets and decision rules

Rough sets [493, 118] are imprecise intensional descriptions of sets of objects by means of attribute values
in a data base. The idea is that due to the limited number of attributes, objects may be indiscernible in the
sense that they have the same description. Indiscernibility is an equivalence relation on the set of objects
of the database, determined by a set A of attributes. A subset S of objects in extension can generally only
be described by means of upper and lower approximations, each of them being subsets precisely expressed
as union of equivalence classes. The lower approximation contains objects certainly belonging to S, and
the upper approximation contains objects possibly belonging to S.

25



Such approximations can be useful in data mining [578, 284], where we face the problem of incon-
sistent data. As emphasised in [282], “Using rough set theory, conflicting cases are not removed from the
data set. Instead, concepts are approximated by new sets called lower and upper approximations.”

Based on the lower approximation, rules can be induced that need only cover non-conflicting examples
of a class or concept, and must exclude all other examples. For the upper approximation, one looks for
rules that cover every example of the class / concept, be it conflicting or not (and must exclude all examples
that are not equivalent to any example of the class / concept).

More precisely, consider, in rough set terminology, a decision table D where there are two kinds of
attributes: features a ∈ A and decisions d ∈ D, which corresponds to a set of examples: every line in the
table corresponds to an example, it describes an object (the values for the attributes in A), and an associated
decision (or class) - the values for the attributes in D. Each object x described in the decision table can
be associated to a decision rule of the form ∧a∈Aa(x)⇒ ∧d∈Dd(x). A decision table can be inconsistent,
in the sense that there may be at least two objects x and x ′, which have the same description in terms of
feature attributes a ∈ A but lead to different decisions.

In the case of inconsistent data, decision rules induced by the decision tables are certainty rules and
possibility rules. Consider the set of objects D(w) = {x : d(x) = wd , d ∈ D}. D(w) is the set of objects
associated with decision / class w (described by the values wd , d ∈ D). Let D∗(w) (resp. D∗(w)) be the
lower (resp. upper) approximation of D(w) induced by attributes a ∈ A. D∗(w) is the set of objects which
are necessarily in class w; D∗(w) contains D∗(w) and objects in w for which there exists at least one identical
object (in the sense of A) in another class.

This leads to the search for certainty rules, understood as the inclusion {x : a(x) = va, a ∈ T} ⊆ D∗(w),
and possibility rules, understood as the inclusion {x : a(x) = va, a ∈ T} ⊆ D∗(w), for some sets of attributes
T . Ideally minimal sets of antecedent attributes are computed. Rough-set-based rule induction systems
have been proposed quite early, as for instance the LERS system (see [281] for a bibliography), and its
probabilistic extension [283] . Besides, there exist bridges between rough set and formal concept analysis
approaches [657] as well as mathematical morphology [29] and Dempster-Shafer theory [101].

6.2 Learning other kinds of if-then rules

Knowledge representation by if-then rules is a format whose importance was early acknowledged in the
history of AI, with the advent of rule-based expert systems. Their modelling has raised the question of the
adequacy of classical logic for representing them, especially in case of uncertainty where conditioning is
often preferred to material implication. Moreover, the need for rules tolerating exceptions, or expressing
gradualness on their range of applicability, such as default rules and fuzzy rules has led KRR to develop
representation tools beyond classical logic. Those logical formalisms, classical and non-classical, can be
used as target languages for learning, understood as knowledge acquisition from data.

In this issue [215] emphasizes that possibility theory stands halfway between logical and probabilistic
representation frameworks, and that while qualitative possibility theory is totally compatible with classical
logic, quantitative possibility theory can be related to statistics. This suggests that possibility theory may
be an interesting setting for interfacing reasoning and learning; it is also a setting of interest for knowledge
representation, as recalled in the rest of this subsection.

6.2.1 Default rules

Reasoning in a proper way with default rules (i.e., having potential exceptions) was a challenging task
for AI during three decades [90]. Then a natural question is: can rules having exceptions, extracted from
data, be processed by a nonmonotonic inference system yielding new default rules? How can we insure
that these new rules are still agreeing with the data? The problem is then to extract genuine default rules
that hold in a Boolean database. It does not just amount to mining association rules with a sufficiently
high confidence level. We have to guarantee that any new default rule that is deducible from the set of
extracted default rules is indeed valid with respect to the database. To this end, we need a probabilistic
semantics for nonmonotonic inference. It has been shown [57] that default rules of the form “if p then
generally q”, denoted by p ; q, where ; obey the postulates of preferential inference [379], have both
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1. a possibilistic semantics expressed by the constraintΠ(p∧q)> Π(p∧¬q), for any max-decomposable
possibility measure Π (a set-function such that Π(p ∨ q) =max(Π(p),Π(q))),

2. a probabilistic semantics expressed by the constraint Prob(p∧q)> Prob(p∧¬q) for any big-stepped
probability Prob. This is a very special kind of probability such that if p1 > p2 > ... > pn−1 ≥ pn
(where pi is the probability of one of the n possible worlds), the following inequalities hold ∀i =
1, n− 1, pi > Σ j=i,n p j .

Then, one can safely infer a new default p ; q from a set of defaults ∆ = {pk ; qk|k = 1, K} if and only
if the constraints modeling ∆ entail the constraints modeling p ; q. Thus, extracting defaults amounts to
looking for big-stepped probabilities, by clustering lines describing items in Boolean tables, so as to find
default rules, see [55] for details. Then the rules discovered are genuine default rules that can be reused in
a nonmonotonic inference system, and can be encoded in possibilistic logic (assuming rational monotony
for the inference relation).

It may be also beneficial to rank-order a set of rules expressed in the setting of classical logic in order
to handle exceptions in agreement with nonmonotonic reasoning. This is what has been proposed in [561]
where a formalization of inductive logic programming (ILP) in first-order possibilistic logic allows us to
handle exceptions by means of prioritized rules. The possibilistic formalization provides a sound encoding
of non-monotonic reasoning that copes with rules with exceptions and prevents an example from being
classified in more than one class.

Possibilistic logic [207] is also a basic logic for handling epistemic uncertainty. It has been estab-
lished that any set of Markov logic formulas [523] can be exactly translated into possibilistic logic formulas
[383, 218], thus providing an interesting bridge between KRR and ML concerns. Taking lessons from this
parallel with Markov logic, the learning of default rules encoded as possibilistic logic rules has been futther
developed in [384, 385]. However, such a possibilistic encoding may lead to an inference mode that it is
not enough cautious with respect to the handling of exceptions; see [58] for a detailed discussion of more
or less cautious inference modes in default reasoning. In [590], the authors propose an approach called
STRiKE (for STRatified K-Entailment) where k-entailment limits the extent to which erroneous inferences
can propagate, by restricting to k the number of constants involved.

Let us also mention two other approaches, also motivated by knowledge completion issues. [255]
prefer adding exceptions into the bodies of rules in order to avoid that the prediction of facts by rules
introduces errors. In the AnyBURL system (standing for Anytime Bottom Up Rule Learning) [449], rules
ordered by their confidence levels are seen as default rules and the approach uses reinforcement learning
to find more valuable rules earlier in the search process.

On a quite different basis, let us also mention an attempt at relating non-monotonic inference and
neural nets [43, 261].

6.2.2 Possibilistic handling of uncertain rules

A possibilistic handling of a rule-based system was introduced in the 80’s [238, 240] and recently revisited
in [213]. In this framework, the uncertainty of a rule “if p then q” is handled by a matrix calculus for
conditional possibilities, based on max-min composition:

�

π(q)
π(¬q)

�

=

�

π(q | p) π(q | ¬p)
π(¬q | p) π(¬q | ¬p)

�

2max
min

�

π(p)
π(¬p)

�

where the matrix product 2max
min uses min as the product and max as the addition. In this matrix calculus,

the conditional possibility distributions in the uncertainty propagation matrix obey a qualitative form of
conditioning. The max−min composition governing this matrix calculus and the normalization conditions
max(π(p),π(¬p)) = 1, max(π(q | p),π(¬q | p)) = 1 and max(π(q | ¬p),π(¬q | ¬p)) = 1, ensure that
the possibility degrees of the conclusion q are normalized as well. An uncertainty propagation matrix of

the form

�

1 s
r 1

�

where s, r ∈ [0,1] are called the rule parameters, represents the rule “if p then q” with

certainty 1− r and the rule “if ¬p then ¬q“ with certainty 1− s.
The inference mechanism of a possibilistic rule-based system relies on this matrix calculus. Let a set of n

parallel uncertain rules be of the form (i = 1, . . . , n): “if a1
i (x) is P1

i and ... and ak
i (x) is Pk

i then bi(x) is Q i”

27



relating variables pertaining to the attribute values of some item x , and where the P j
i ’s and Q i are classical

subsets of their corresponding attribute domains. In [213], the authors revisited the work of [240] and
showed, on an example of a possibilistic rule-based system, that the output possibility distribution obtained
by inference can be computed as a min−max product of a matrix containing the rule parameters and a
vector whose coefficients are the possibility degrees of the rule premises. The general case for n parallel
rules is elaborated in [37]: a min−max matrix relation O = M2min

max I is established, where the matrix
containing the rule parameters is constructed by induction on n, the vector I contains the possibility degrees
of the rule premises, and the output vector O describes the output possibility distribution on a partition of
the output attribute set. In the case of a cascade, i.e. a possibilistic rule-based system composed of two
chained sets of parallel possibilistic rules, it is shown in [37] that an input-output relation between the
two matrix relations associated to each set of parallel possibilistic rules can be established. The resulting
cascade of matrix relations has a structural resemblance to a min-max neural network [37].

These developments lead to two main questions : how to explain the inference results of possibilistic
rule-based systems (studied in [240] and subsequently extended in [38, 34]), and how to develop a learning
paradigm for determining the rule parameters of possibilistic rule-based systems based on training data
[35]. In [35], the author introduced an equation system in order to learn the values of the rule parameters
according to a training dataset composed of the possibility degrees of rule premises inferred with the input
possibility distributions and a target output possibility distribution. The equation system is composed of a
matrix that contains the possibility degrees of rule premises, an output vector which describes a targeted
output possibility distribution, and the unknown part is a vector that contains the rule parameters. By
applying Sanchez’s results on systems of fuzzy relational equations [545] (since standard methods such as
gradient descent cannot be easily applied to the min-max composition due to its non-differentiable nature),
the author of [35] shows that solving this equation system yields values for the rule parameters that are
compatible with the training dataset used. This work was recently extended in [36], where the author
showed how to extend the equation system in order to take into account multiple training datasets. The
results of [36] on the inconsistency of systems of fuzzy relational equations allows us to obtain approximate
solutions of the equation system by modifying as little as possible the right-hand side of the equation system.
It can also be used to estimate the quality of a training dataset.

6.2.3 Fuzzy rules

The idea of fuzzy if-then rules was first proposed by Zadeh [662]. They are rules whose conditions and
/or conclusions express fuzzy restrictions on the possible values of variables. Reasoning with fuzzy rules is
based on a combination / projection mechanism [663] where the fuzzy pieces of information (rules, facts)
are conjunctively combined and projected on variables of interest. It generalizes classical logic inference.

Special kinds of fuzzy rules have been used to design fuzzy rule-based controllers in systems engineer-
ing: fuzzy rules may specify the fuzzy graph of a control law, as the union of fuzzy granules; once applied
to an input it yields a fuzzy output that is usually defuzzified [433]. Other kinds of rules have precise con-
clusions that are combined on the basis of the degrees of matching between the current situation and the
fuzzy condition parts of the rules [592]. In both cases, an interpolation mechanism is at work, implicitly
or explicitly [664]. Such fuzzy rule-based controllers are universal approximators [105] and can be used
to represent continuous non-linear systems.

There are other kinds of fuzzy rules whose primary goal is not to approximate functions, but rather to
offer mathematical representations of various kinds of if-then statements in natural language [209]. This
is, for instance, the case of gradual rules, which express statements of the form “the more x is A, the more y
is B”, where A and B are gradual properties modelled by fuzzy sets [559, 486]. It is possible to quantify the
association between condition and consequent parts for such fuzzy rules with respect to a database. See
[206] for the proper assessment of confidence and support degrees for fuzzy rules. Fuzzy rough sets have
been used for extracting gradual decision rules [277]. The mining of gradual patterns has been studied
quite extensively by Laurent et al., see, e.g., [486].

The functional equivalence between a radial basis function-based neural network and a fuzzy inference
system has been established under certain conditions [352]. Moreover, fuzzy rules may provide a rule-
based interpretation [143, 541] for (simple) neural nets, and neural networks can be used for extracting
fuzzy rules from the training data [498, 254].
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In the perspective of classification, learning methods for fuzzy decision trees have been devised in [445],
in the case of numerical attributes. The use of fuzzy sets to describe associations between data and decision
trees may have some interest: extending the types of relations that may be represented, making easier the
interpretation of rules in linguistic terms [219], and avoiding unnatural boundaries in the partitioning of
the attribute domains.

6.2.4 Threshold rules

Another format of interest is the one of multiple threshold rules, i.e., selection rules of the form “if x1 ≥ α1
and · · · x j ≥ α j and · · · then y ≥ γ” (or deletion rules of the form ‘if x1 ≤ β1 and · · · x j ≤ β j and · · ·
then y ≥ δ”), which are useful in monotone classification / regression problems [278]. An algorithm
[74], called VC-DomLEM, based on a rough set approach (where the equivalence relation is replaced by
a dominance relation for handling ordered data) provides a mechanism for inducing such rules. Indeed
when dealing with data that are made of a collection of pairs (xk, yk), k = 1, ..., N , where xk is a tuple
(xk

1 , ..., xk
n) of feature evaluations of item k, and where y is assumed to increase with the x i ’s in the broad

sense, it is of interest of describing the data with such rules of various lengths. It has been noticed [279, 217]
that, once the numerical data are normalized between 0 and 1, rules where all (non trivial) thresholds are
equal can be represented by Sugeno integrals (a generalization of weighted min and weighted max, which
is a qualitative counterpart of Choquet integrals [275]). Moreover, it has been shown recently [89] that
generalized forms of Sugeno integrals are able to describe a global (increasing) function, taking values on
a finite linearly ordered scale, under the form of general thresholded rules. Another approach, in the spirit
of the version space approach [461], provides a bracketing of an increasing function by means of a pair of
Sugeno integrals [506, 505].

6.3 Constraint learning

Constraint Programming (CP) [533] is a declarative framework for solving combinatorial problems. In
such a framework, a problem is specified by a set of variables V , a set of domains D, a domain Di for each
variable x i and a set C of constraints, where a constraint is put on a subset of variables and specify the
values that are allowed. For instance, if x1 and x2 are two variables, a constraint x1 6= x2 means that in a
solution of the problem, the values of x1 and x2 must be different. Such a formalization of the combinatorial
problem is called a constraint network. Two kinds of problems are considered: satisfaction problems that
aim at finding an assignment of the variables of V satisfying all the constraints and optimization problems
that given an optimization criteria aims at finding the best solution satisfying the constraints. Solving a
problem in CP is done through two operations: constraint propagation, or filtering, allowing to reduce the
possible domains of variables by removing inconsistent values from the variable domains and branching
that consists in choosing a variable, splitting its domain and creating branches in the search tree, one for
each split. Solvers have been made more efficient by the development of global constraints embedding
a set of constraints and for which more powerful filtering algorithms have been defined. For instance a
alldifferent global constraint expressing that a set of variables must be assigned to different values has
been defined and a filtering algorithm has been developed, which is more efficient than considering the
conjunction of elementary pairwise different constraints between variables. The efficiency of CP depends
on the way a problem is modeled (the choice of the variables and of the constraints) and on the search
strategies for branching, making its use difficult for a non expert of CP. A new research domain, called
constraint acquisition aims at learning a constraint network, given a library of constraints and a set of
positive and possibly negative examples of assignments of variables for the target constraint network.

Constraint acquisition is often formulated as a concept learning problem, where the hypothesis space
is defined through biases put on the form constraints can take and positive (resp. negative examples) are
specified by solutions (resp. non solutions) to the combinatorial problem. The system Conacq introduced
in [124] relies on a version space algorithm [463], formalized as a SAT-problem in [68], whereas [391]
proposes a framework based on Inductive Logic Programming. [516] proposes an interesting study on
the relations between constraint network learning and inductive logic programming (ILP), formalizing
different works in a ILP setting. It emphasizes the specificities of constraint learning, in particular the fact
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that the number of positive examples is usually small and that the number of constraints can be large with
many syntactic variants.

In this issue, [508] propose a novel, statistical approach based on sequential analysis that is fast, can
handle large biases, and can accurately learn constraints from noisy data.

These approaches suffer for several drawbacks: all positive and negative examples must be given at
the beginning of the learning process, which might be difficult for an expert and a bias on the constraint
language must be specified (e.g. a set of constraints as in [68], a catalog of global constraints as in [50])
[69] introduces active constraint learning, where membership queries that are complete instantiations

of variables are generated and presented to the user, who has to classify each query as positive or negative
examples. The idea of using queries to learn an unknown concept was first introduced in Machine Learning
in [21]. Convergence is reached when (1) a constraint network satisfying all the positive and negative
examples is found and (2) all other constraint networks satisfying (1) are equivalent, i.e. have the same
set of solutions. As in all active learning systems, the problem is then to generate queries that are sufficiently
informative to reduce the number of queries that have to be asked to the user before converging to the
expected constraint network. [69] introduces the notion of irredundant queries, i.e. queries that cannot
be inferred by the current constraint network and the notion of optimistic queries. A synthesis of the
work performed around the system Conacq and its extension to active constraint learning can be found in
[71]. Nowadays most works on active learning consider only partial queries and many variants have been
introduced to limit the number of queries [67, 26, 608, 65, 606]. Nevertheless the efficiency of the systems
depend on the size of the constraint language. Meta algorithms [604, 605] have been proposed to overcome
this: the first one tends to call a constraint acquisition system on a growing set of variables, thus starting
by a small bias (constraint language), the second one proposes to use a probabilistic classification model
to generate more promising queries. Extensions have been proposed: [607] introduces Limited Member
Queries for which the user can answer ’yes’, ’no’ or ’I don’t know’; [66] proposes a weighted partial max-sat
approach to learn a constraint network over unknown constraint language, given the assumption that the
size of the language and the arity of the relations between variables being fixed.

In this section we have focused on hard constraint learning. [517] presents a more general, logical-
based view of constraint learning, including soft constraint learning.

6.4 Preferences and recommendation

The importance of the notion of preference seems to have emerged first in economics and decision theory,
and research in these fields focused essentially on utilitarian models of preferences, where utility function
associates a real number with each one of the objects to be ordered. Also in this field, research developed
on preference elicitation, where some interaction is devised to help a decision maker form / lay bare her
preferences, usually over a relatively small set of alternatives, possibly considering multiple objectives.

In contrast, preferences in AI often bear on combinatorial objects, like models of some logical theory
to indicate for instance preferences over several goals of an agent; or, more recently, like combinations of
interdependent decisions or configurable items of some catalog. Thus, in KRR as well as in ML, the objects
to be ordered are generally characterised by a finite number of features, with a domain / set of possible
values for each feature. When talking about preferences, the domains tend to be finite ; continuous domains
can be discretised.

Preferences are now an important ingredient in AI. It has been an active research topic in several
communities, in particular in AI and Operations Research, as shown by e.g. journal special issues [357,
196]), continuing series of workshops (DA2PL,MPREF).

In both KRR and ML, models have evolved from binary ones (classical propositional or first-order logic,
binary classification) to richer ones that take into account the need to propose less drastic outputs. One
approach has been to add the possibility to order possible outputs / decisions. In multi-class classification
tasks for instance, one approach [203] is to estimate, given an instance, the posterior probability of be-
longing to each possible class, and predict the class with highest probability. The possibility of learning to
“order things” has numerous applications, e.g., in information retrieval, recommender systems. In KRR,
the need to be able to order interpretations (rather than just classify them as possible / impossible, given
the knowledge at hand) has proved to be an essential modelling paradigm, see, e.g., the success of valued
CSPs [549], Bayesian networks [494], possibilistic / fuzzy logics among others.
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At the intersection of ML and KRR, the field of “preference learning” has emerged. Furnkranz et al.
[252, 253] describe various tasks that can be seen as preference learning, some where the output is a
function that orders possible labels for each unseen instance, and some where the output is a function that
orders any unseen set of new instances.

Because of the combinatorial nature of the space of objects, research in AI emphasized the need for
compact models of preferences. Some probabilistic models, like Bayesian networks or Markov random
fields, fall in this category, as well as e.g., additive utilities [248] and their generalisations. This focus
on combinatorial objects also brought to light one difficulty with the utilitarian model: although it is
often easy to compute the utilities or probabilities associated with two objects and compare them on such
a basis, it appears to be often NP-hard to find optimal objects from a combinatorial set with numerical
representations of preferences. Thus one other contribution of research in KRR is to provide preference
representation languages where optimisation is computationally easy, like CP-nets [88]. See e.g. [236, 235]
for comparisons of the complexity of queries for some popular preference representation models.

These complex models of preferences have been studied from an ML perspective, both in an elicitation
/ active learning setting, and in a batch / passive learning setting. One particularity of these compact
preference models is that they combine two elements: a structural element, indicating probabilistic or
preferential interdependencies between the various features characterizing the objects of interest; and
“local” preferences over small combinations of features. It is the structure learning phase which is often
demanding, since finding the structure that best fits some data is often a hard combinatorial search problem.
In contrast, finding the local preferences once the structure has been chosen is often easy.

The passive learning setting is particularly promising because of the vast dataset available in potential
applications of preference learning in some decision aid systems like recommender systems or search en-
gines. The possibility to learn Bayesian networks from data has been a key element for their early success in
many applications. Note that in some applications, in particular in the study of biological systems, learning
the structure, that is, the interdependencies between features, is interesting; in such applications, “black-
box” models like deep neural networks seem less appropriate. This is also the case in decision-support
systems where there is a need to explain the reasons justifying the computed ordering of possible decisions
[49].

At the frontier between learning and reasoning lies what could be named lazy preference learning:
given a set of preference statements which do not specify a complete preference relation, one can infer
new pairwise comparisons between objects, by assuming some properties the full, unknown preference
relation. As a baseline, many settings in the models studied in KRR assume transitivity of preferences,
but this alone does not usually induce many new comparisons. A common additional assumption, made
by [49], is that the preference relation can be represented with an additive utility function, and that the
ordering over the domain of each feature is known. In [637, 638, 639], richer classes of input preference
statements are considered, and the assumption is made that the preference relation has some kind of
(unknown) lexicographic structure.

At first sight, the task of recommending products, such as restaurants, movies, goods etc. could be
considered as a natural application field of preference learning, albeit with a truly impressive scale. For
instance, the Amazon platform sells 350 million products to 300 million customers5 and Youtube has 2.6
billion monthly active users who can potentially watch more than 5 billion videos6. But, actually, the
fields of preference learning on the one hand, and automatic recommendation on the other, have followed
essentially distinct evolutions.

The rise of the web in the nineties started the interest in recommender systems. Earlier recommenda-
tions systems were mostly content-based [42]. In this approach, items are described with descriptive sets
of attributes. Content-based recommender systems try to match users to items that are similar to what
they have rated high in the past. Users are described by their profile. A profile may be an explicit set
of preferences expressed by the user, say “I like spy stories with lot of actions”, or it can be based on the
ratings of past seen products. One advantage is that it is easy to introduce new products as long as they
are properly described. The recommendations for one user do not depend on the other users. On the other

5https://www.bigcommerce.com/blog/amazon-statistics/
6https://www.globalmediainsight.com/blog/youtube-users-statistics/
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hand, a disadvantage is that content-based recommendations tend to be overspecialized on the user and
do not offer a high level of serendipity, that is they often present little surprise to the user.

Because it is not easy to devise before hand the set of relevant attributes for describing products and
users, but there exists an enormous amount of interaction history between the usually very large set of
users and products, another approach has gained prominence in the first decade of the 21st century:
collaborative-based recommendations. In this approach, the history of interactions between users and po-
tential items is expressed as an enormous preference matrix where each cell condenses the judgement of
one user on one item if this user has expressed explicitly or implicitly an opinion about this item in the past.
Obviously, this matrix is extremely sparse, since each user has seen at most several hundreds of items out
of possibly millions. The whole trick is therefore to find methods in order to “fill” the missing entries. One
common way to fill the empty cells of the preference matrix is to resort to Singular Value Decomposition
(SVD) which compresses the matrix through a linear approximation and then re-expands it. One measure
of performance commonly used is the Mean-Absolute-Error (MAE). In essence, the ratings of like-minded
users to the target one, because they have rated some common items in the past in a similar way, are used
in order to make the recommendations. For a given item, a weighted average of the ratings expressed by
this peer group is used to evaluate the likely rating that the target user would give to this item.

Another way to compress the information of the preference matrix has been proposed [302], which
uses neural networks trained to predict the relevance scores of user-item pairs, therefore enabling to return
personalized top-K items for each user.

Recently, Large Language Models (LLMs) have attracted attention in the field of recommending systems.
These models trained on massive amounts of data have demonstrated remarkable success in learning what
appears as universal representations. In the context of recommendation making, they can leverage the
extensive knowledge encoded within them and respond to users’ prompts by high quality textual answers
and explanations [640].

From these successive phases of the field, it can be seen that after the period of content-based methods,
approaches have tended to ignore altogether conceptual descriptions of users and items to rely exclusively
on the exploitation of the preference matrix. The recent turn towards using LLMs reintroduces the notions
of knowledge representations, albeit in a not straightforward manner. Lot of research remains to be done
to better understand these “foundation models”, their true potential and their limits.

7 Learning for reasoning

This topic focuses on situations where learning is exploited so as to help or guide reasoning tasks, as a
reciprocal to section 5, where reasoning is exploited to help perform a learning task. We also do not
consider here learning for knowledge acquisition, where the results provided by the learning step offer
valuable knowledge that can be reused in a larger reasoning system: this has been covered in the previous
section.

This section provides a brief overview of the applications of ML in practical Automated Reasoners7.
With a few exceptions, the subsection emphasizes recent work, published over the last decade. Tightly
related work, e.g. inductive logic programming (see Section 3.1) or statistical relational learning [170], is
beyond the scope of this subsection. The section is organized in two main parts. First, 7.1 overviews the
applications of ML in developing and organizing automated reasoners. Subsection 7.2 covers a number of
recent topics at the intersection of automated reasoning and ML.

Recent uses of automated reasoning in learning ML models, improving the robustness of ML models,
but also in explaining ML models, are covered in Section 8.

7.1 Machine Learning vs. Automated Reasoners

Until recently, the most common connection between ML and automated reasoning would be to apply the
former when devising solutions for the latter. As a result, a wealth of attempts have been made towards

7We adopt a common understanding of Automated Reasoning as “The study of automated reasoning helps produce computer
programs that allow computers to reason completely, or nearly completely, automatically” (from https://en.wikipedia.org/wiki/
Automated_reasoning).
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applying ML in the design of automated reasoners, either for improving existing algorithms or for devising
new algorithms, built on top of ML models. Uses of ML can be organized as follows. First, uses of ML for
improving specific components of automated reasoners, or for automatic configuration or tuning of auto-
mated reasoners. Second, approaches that exploit ML for solving computationally hard decision, search
and counting problems, and so offering alternatives to dedicated automated reasoners.

Improving Reasoners. Earlier efforts on exploiting ML in automated reasoners was to improve specific
components of reasoners by seeking guidance from some ML model. A wealth of examples exist, includ-
ing the improvement of restarts in Boolean Satisfiability (SAT) solvers [296], improvement of branching
heuristics [249, 280, 408, 407, 409], selection of abstractions for Quantified Boolean Formulas (QBF) solv-
ing [353, 397], but also for improving different components of theorem provers for first-order and higher
order logics [609, 360, 363, 361, 345, 423, 120]. It should be noted that the performance gains obtained in
automated reasoners (e.g. SAT solvers) over the past three decades hinge in good part from changing the
original logic formula by learning new clauses [441]. While the learning of new clauses cannot be viewed
as the direct result of using machine learning, one can envision applying machine learning for improving
the learning of new clauses.

ML has found other uses for improving automated reasoners. A well-known example is the organization
of portfolio solvers [650, 335, 337, 376, 447]. Another example is the automatic configuration of solvers,
when the number of options available is large [336, 576]. One additional example is the automatic building
of automated reasoners using ML [376].

Tackling Computationally Hard Problems. Another line of work has been to develop solutions for solv-
ing computationally hard decision and search problems. Recent work showed promise in the use of NNs for
solving satisfiable instances of SAT represented in clausal form [555, 556, 554, 627], for solving instances
of SAT represented as circuits [14, 15], but also NP-complete problems in general [507]. The most often
used approach has been to exploit variants of Graph Neural Networks (GCNs) [548], including Message
Passing Neural Networks (MPNNs) [266]. There has also been recent work on solving CSPs [647] using
convolutional NNs. Furthermore, there have been proposals for learning to solve SMT [44], combinatorial
optimization problems [374, 51, 405, 61], planning problems [195], but also well-known specific cases of
NP-complete decision problems, e.g. Sudoku [489] and TSP [619].

Efforts for tackling computationally harder problems have also been reported, including QBF [656],
ontological reasoning [316], probabilistic logic programming [434], inference in probabilistic graphical
models [659] and theorem proving for first order [362, 325, 46, 488, 324] and higher order logics [636,
626, 359, 655].

7.2 More on Learning vs. Reasoning

The previous two subsections summarize recent efforts on using machine learning for automated reasoning,
but also on using automated reasoning for learning, verifying and explaining ML models. This subsection
identifies additional lines of research at the intersection of ML and automated reasoning.

Integrating Logic Reasoning in Learning. A large body of work has been concerned with the integration
of logic reasoning with ML. One well-known example is neural-symbolic reasoning [260, 161, 64, 491, 72,
436, 155]. See also Subsection 3.2. Examples of applications include program synthesis [673, 672, 491, 94]
and neural theorem proving [456]. Other approaches do exist, including deep reasoning networks [112],
neural logic machines [198], and abductive learning [142, 677]. An alternative is to embed symbolic
knowledge in neural networks [644].

Learning for Inference. One area of work is the use of ML models for learning logic representations,
most often rules [526, 527, 654, 229, 228], which can serve for inference or for explaining predictions.
See also Subsection 3.2.
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Understanding Logic Reasoning. A natural question is whether ML systems understand logical formu-
las in order to decide entailment or unsatisfiability. There has been recent work on understanding en-
tailment [230, 547], suggesting that this is not always the case, e.g., for convolutional NNs. In a similar
fashion, recent work [115] suggests that GNNs mail fail at deciding unsatisfiability.

Synthesis of ML Models. Recent work proposed the use of automated reasoners for the synthesis (i.e.,
learning) of ML models. Concrete examples include [247, 678, 415]. These approaches differ substantially
from approaches for the synthesis of interpretable models, including decision trees and sets and decision
lists.

As witnessed by the large bibliography surveyed in this subsection, the quantity, the breadth and the
depth of existing work at the intersection between ML and automated reasoning in recent years, provides
ample evidence that this body of work is expected to continue to expand at a fast pace in the near future.

8 Model accountability

For accountability and intelligibility purposes, it may be desirable to ensure that a model possess some
abilities, or obey to some natural or imposed constraints. This typically corresponds to requiring the model
to have additional reasoning features mainly coming in the form of symbolic structures: being readable
by a human expert; modelling or discovering causal, non-symmetric relationships; being able to explain
in some sense the made predictions. In this section, we are concerned with approaches that increase the
model accountability and intelligibility. This concern has been recently emphasized at an institutional level,
AI regulation texts, such as the AI Act from the European Parliament mentions that users need to dispose
of a “right to explanation”, while remaining vague on the definition of the latter.

Data intelligibility may also be increased by means of rules extracted from the data, e.g. gradual rules,
getting structured outputs and patterns from data, cluster labelling, ...); this point is outside the scope of
this section and has been covered (at least in part) in Section 6.

This section first surveys recent works about explainability and interpretability, before addressing the
issues of robustness and fairness in machine learning.

8.1 Explainability and interpretability

This subsection overviews the uses of automated reasoning approaches for verifying, explaining and learn-
ing ML models.

Explanations with Abductive Reasoning. In many settings, interpretable models are not often the option
of choice, being replaced by so-called black-box models, which include any ML model from which rules
explaining predictions are not readily available. 8 Concrete examples include (deep) neural networks
(including binarized versions), and boosted trees and random forests, among many other alternatives.

Most existing works on computing explanations resort to so-called local explanations. These models
are agnostic and heuristic in nature [521, 426, 522]. Recent works [479, 343] revealed that local explana-
tions do not hold globally, i.e., it is often the case that there are points in feature space, for which the local
explanation holds, but for which the model’s prediction differs. Since 2018, a number of attempts have
been reported, which propose rigorous approaches for computing explanations. Concretely, these recent at-
tempts compute so-called abductive explanations, where each explanation corresponds to a prime implicant
of the discrete function representing the constraint that the ML model predicts the target prediction. A first
attempt based on compiling such a function into a tractable representation is reported elsewhere [571]. For
such a representation, (shortest) prime implicants can then be extracted in polynomial time. The down-
side of this approach is that compilation may yield exponential size function representations. Another

8The definition of explanation is the subject of ongoing debate [454]. We use the intuitive notion of explanation as a IF-THEN
rule [521, 426, 522], where some given prediction is made if a number of features values hold true. The importance of reasoning
about explanations is illustrated by a growing number of recent surveys [312, 314, 73, 469, 377, 313, 5, 11, 200, 315, 288, 543,
544, 454, 453, 22, 465, 646, 471].
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attempt [342] is based on computing explanations of demand, by encoding the instance, the ML model
and the prediction into some logic representation. In this case, reasoners such as SMT, ILP or SAT solvers
are then used for extracting (shortest) prime implicants.

The progress observed in computing abductive explanations in recent years is summarized in several
recent works [439, 437, 147]. More importantly, by relating abductive explanations with adversarial exam-
ples, recent work demonstrated that abductive explanations can be computed for fairly complex block-box
ML models [327, 641].

In this issue the paper [16] is directly concerned with abductive and logical explanations. it proposes to
extend necessary explanation of robust additive models by possible, yet non-necessary steps in order to explain
a preference in order to extend the scope of explanation engines. Among other things, this allows the decision
maker to scrutinize and confirm or criticize the provided explanations.

Interpretable ML Models. Interpretable ML models are those from which rule-like explanations can be
easily produced. For example, decision trees, decision sets (or rule sets) and rule lists are in general
deemed interpretable, since one can explain predictions using rules. On area of research is the learning (or
synthesis) of interpretable ML models using automated reasoning approaches. There have been continued
efforts at learning decision trees [484, 483, 70, 485, 616, 477, 617, 614, 321, 8, 173], decision sets [390,
344, 430, 265] and rule lists [18, 19]. Examples of reasoners used include SAT, CP, and ILP solvers, but
dedicated complete methods based on branch and bound search have also been considered. Despite a
recent explosion of works on black-box ML models, there exist arguments for the use of interpretable
models [536].

In this issue [304] intends to learn a set of easy-to-interpret models, namely scoring rules (notably used by
physicians), so that the decision model can be adapted to the context as well as to the information at hand.

Despite ever-increasing efforts towards the learning of interpretable models, it has been shown that
these so-called interpretable models must be explained, i.e. explanations for predictions are not trivially
obtained by manual inspection of such models [346, 347, 440], and so explanations (see the following
section) must be computed.

Explanations vs. Adversarial Examples. In recent years, different works realized the existence of some
connection between adversarial examples (AE’s) and explanations (XP’s) [420, 593, 532, 597, 649, 490,
107]. Nevertheless, a theoretical connection between AE’s and XP’s has been elusive. Recent work [342]
showed that adversarial examples can be computed from the set of explanations for some prediction.
Furthermore, this work introduced the concept of counterexample (CEx) to some prediction, and identified
a minimal hitting set relationship between XP’s and CEx’s, i.e., XP’s are minimal hitting sets of CEx’s and
vice-versa.

Later work established minimal hitting-set duality between the sets of abductive and contrastive ex-
planations [340]. In practice, this duality relationship serves for the enumeration of both abductive and
contrastive explanations.

In this issue [666] studies the difficulty of performing counter-factual queries that explicitly account for
causal structures. In particular, it shows that sets of probabilities (a.k.a. credal sets) are well-adapted to
deal with such queries, but that their exact resolution is NP-hard, offering a an efficient heuristic to bypass
this computational bottleneck. It therefore addresses two important aspects of accountability that are counter-
factuals and causality, this last aspects being also important from a modelling perspective. Counter-factuals
are also strongly connected to explanations as well as adversarial examples.

8.2 Robust Machine Learning

Concerns about the behavior of neural networks can be traced at least to the mid 90s and early 00s [634,
667, 552]. Additional early work on ensuring safety of neural networks also involved SAT solvers [511].
More recently, efforts on the verification of neural networks have focused on the avoidance of so-called
adversarial examples.

Adversarial examples [591], already briefly mentioned in Subsection 2.4, illustrate the brittleness of ML
models. In recent years, a number of unsettling examples served to raise concerns on the fragility neural
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networks can be in practice [30, 231, 106, 246, 303]. Among other alternative approaches, automated
reasoners have been applied to ensure the robustness of ML models, emphasizing neural networks. A
well-known line of work focuses on the avoidance of adversarial examples for neural networks using ReLU
units [475] and proposes Reluplex, an SMT-specific dedicated reasoning engine for implementing reasoning
with ReLU units [369, 273, 370]. Another recent line of work addresses binarized neural networks [329]
and develops a propositional encoding for assessing the robustness of BNNs [478, 476, 400]. Additional
lines of work have been reported in the last two years [326, 535, 103, 386, 263, 460, 573, 575, 574, 33,
221, 97, 220, 512, 222, 624, 96, 632, 95, 564, 201, 45]. In the case of complex neural networks, recent
advances in robustness tools have been assessed in a dedicated competition [91].

8.3 Fairness

The problem of fairness in machine learning algorithms arises when such algorithms are applied to critical
tasks that impact people. By design, machine learning algorithms aim at identifying biases in the data and
generalizing them for decision-making tasks. However, the use of certain features, such as gender, political
or religious opinions, ..., is prohibited by law or may not align with ethical considerations [242, 202].

Fairness usually addresses situations where an algorithm exhibits different behavior for two distinct
subgroups of the population, although these subgroups should not influence its outcome. This situation is
often modeled as follows: the algorithm should aim at forecasting a variable Y based on observations X .
Fairness is then defined with respect to a protected variable, called a protected attribute, S, which represents
membership in each population subgroup. An algorithm is considered fair if its predictions do not depend
too much on S. The question of fairness in machine learning is first to evaluate if a model’s decision is
influenced by a protected variable S and, in such cases, correct the model to remove this dependency
[223, 669].

In this issue, [75] propose an exact learning algorithm to extract a Horn theory that corresponds in some
sense to a given learnt model: this Horn theory can be used to explore existing biases in the model; they apply
it in particular to probe occupational gender biases in BERT-based language models.

The bias in the data may come from many sources, such as existing societal biases or biased sampling
of the data [251]. It is important to note that simply removing the protected variable from the dataset is
generally not sufficient since other variables may be correlated with S [152]. Moreover, in some situations,
such as machine learning with images, removing a feature is not straightforward. There are two major
approaches to correcting the fairness of a model. The first approach consists of repairing the dataset by
removing the dependence with respect to the protected variable with minimal alteration of the dataset
[242, 251]. Another way to achieve fairness is to constrain the model to make fair decisions [665].

9 Handling imperfect data and information in learning methods

The idea of combining KRR notions with ML tools is not new. In KRR it is usual to deal with imperfect
information, especially incomplete one: it is very rare that a knowledge base is complete. This situation
contrasts with statistical and machine learning, that assumes by default that data, predictions are either
precise or random. It of course does not mean that statistics and machine learning never deal with missing
information, as we shall discuss in the next sections.

We will discuss the general problems on which we focus in Section 9.1, and will then make a focus on
various methods mixing KR and ML components.

9.1 Uncertainty in ML: in the data and in the model

We will focus on two aspects in which cross-fertilisation of ML with KRR could be envisaged: uncertainty
in the data and uncertainty in the models/predictions. Note that we will not deal with imperfections due
to an adversarial modification of the data, a topic partially covered in Section 8.2.
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9.1.1 Learning under uncertain and coarse data

In general, learning methods assume the data to be complete, typically in the form of examples modelled
by (tuples of) precise values (in the unsupervised case) or precise input/output pairs (in the supervised
case). There are however various situations where data can be expected to be uncertain, such as when
they are provided by human annotators in classification, or measured by low-quality sensors, or yet even
missing, such as when sensors have failed or when only few examples could be labelled. An important
remark is that the uncertainty attached to a particular piece of data can hardly be said to be of objective
nature (representing frequency) as it has a unique value, and this even if this uncertainty is due to a random
process.

While the case of missing (fully imprecise) data is rather well-explored in the statistical [418] and
learning [109] literature, the general case of uncertain data, where this uncertainty can be modelled us-
ing different representation tools of the literature, largely remains to be explored. In general, we can
distinguish between two strategies:

• The first one intends to extend existing methods for precise data to the handling of uncertain data,
while retrieving a precise model from them. The most notable approaches consist in either extending
the likelihood principle to uncertain data (e.g., [178] for evidential data, or [136] for coarse data),
or to provide a precise loss function defined over partial data and then using it to estimate the
empirical risk, see for instance [330, 133, 121, 332]. Such approaches are sometimes based on
specific assumptions, usually hard to check, about the process that makes data uncertain or partial.
Some other approaches such as the evidential likelihood approach outlined in [178] do not start
from such assumptions, and simply propose a generic way to deal with uncertain data. We can also
mention transductive methods such as the evidential K-nearest neighbour (K-NN) rule [176, 189,
186], which allows one to handle partial (or “soft”) class labels without having to learn a model. In
this issue, [100] studies the complexity of applying generalized risk minimisation (GRM) to uncertain
supervised data when uncertainty is described by fuzzy sets. It shows in particular that obtaining good
models with theoretical guarantees using GRM may be computationally challenging, and proposes an
alternative learning using randomisation and ensembling that is efficient and provides good empirical
performances;

• The second approach, much less explored, intends to make no assumptions at all about the under-
lying process making the data uncertain, and considers building the set of all possible models con-
sistent with the data. Again, we can find proposals that extend probability-based approaches [163],
as well as loss-based ones [138]. The main criticisms one could address to such approaches is that
they are computationally very challenging and also sometimes too conservative, as adding impre-
cise/uncertain instances will systematically enlarge the models. Moreover they do not yield a single
predictive model, making the prediction step potentially difficult, even if more robust. In theory, such
criticisms can be mitigated by trying to find a compromise between being fully skeptical and picking
an inductive bias leading to a single, precise model, as sometimes done when learning imprecise
models [24]. Although such middle ground approaches are still very rare for uncertain data, one can
find some attempt, e.g., in preference or voting modelling [380, 233].

The problem of handling partial and uncertain data is certainly widely recognised in the different fields of
artificial intelligence, be it KRR or ML. One remark is that mainstream ML has, so far, almost exclusively
focused on providing computationally efficient learning procedures adapted to imprecise data given in the
form of sets, as well as the associated assumptions under which such a learning procedure may work [419].
While there are proposals around that envisage the handling of more complex form of uncertain data than
just sets, such approaches remain marginal, at least for two major reasons:

• More complex uncertainty models require more efforts at the data collection step, and the benefits
of such an approach (compared to set-valued data or noisy precise data) do not always justify the
additional efforts. However, there are applications in which the modelling of data uncertainty does
improve the performance of classification tasks [117, 514], or allow to robustify the results of the
learning algorithm [413, 414]. Another possibility could be that those data are themselves predicted
by an uncertain model, then used in further learning procedures, as for example already done in
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stacking [225] or self-supervised procedures [412, 528], in which case increased performances have
also been observed;

• Using more complex representations may involve a higher computational cost, and the potential gain
of using such representations is not always worth the try. However, some specific methods extended
to the belief function setting such as the EM algorithm [178] or the K-NN rule [186] , make it possible
to handle uncertain data without additional cost. Similarly, some adaptations of the cost functions
together with a suitable choice of uncertainty representation lead to differentiable learning procedure
presenting the same computational complexity as standard learning [413].

9.1.2 Uncertainty in the prediction model

Another step of the learning process where uncertainty can play an important role is in the characterisation
of the model or its output values. In the following, we will limit ourselves to the supervised setting where we
try to learn a (predictive) function f :X →Y linking an input observation x ∈ X to an output (prediction)
y ∈ Y . Assessing the confidence one has in a prediction can be important in sensitive applications. This
can be done in different ways:

• By directly impacting the model f itself, for instance associating to every instance x not a determinis-
tic prediction f (x), but an uncertain output on the domainY . The most common type of output is of
course probability distributions, but other solutions such as possibility distributions, belief functions
or convex sets of probabilities are possible;

• Allowing the prediction to become imprecise, the main idea behind such a strategy is to have weaker
yet more reliable predictions. In the classical setting, this is usually done by an adequate replacement
of the loss function [295, 276], yet recent approaches take a different road. For instance, imprecise
probabilistic approaches consider sets of models combined with a skeptic inference (also a typical
approach in KR), where a prediction is rejected if it is so for every possible model [125]. Approaches
to quantify statistical predictions in the belief function framework are described in [364, 652, 187]
and, more recently, in the epistemic random fuzzy set framework in [181, 183]. Conformal prediction
and approaches [566, 20], rooted in the old idea of order and non-parametric statistics, is another
approach that can be plugged in to any model output to obtain set-valued predictions, and that is
gaining traction in machine learning, due to its simplicity, flexibility and theoretical justification.

If such approaches are relatively well characterised for the simpler cases of multi-class classification, their
extension to more complex settings, such as multi-label or ranking learning problems that involve combi-
natorial spaces, remain largely unexplored, with only a few contributions (see [116, 25, 233, 10, 482, 188]
for a few ones). It is quite possible that classical AI tools such as SAT or CSP solvers could help deal with
such combinatorial spaces.

In this issue [468] studies probabilistic circuits, that are emerging as an efficient tool to integrate knowledge
in learning techniques, as well as to derive generative models with a clear probabilistic semantic. They are also
computationally attractive, as many queries can be performed in polynomial time. The authors of this paper
study their robust counter-part, where probabilities are allowed to become imprecise. It shows that in such
a situation, performing queries becomes non-polynomial in many cases, but the paper proposes efficient and
accurate heuristics to solve this issue.

9.2 Dempster-Shafer Reasoning and Generalized Logistic Regression Classifiers

The theory of belief functions originates from Dempster’s seminal work [174] who proposed, at the end
of the 1960’s, a method of statistical inference that extends both Fisher’s fiducial inference and Bayesian
inference, generating imprecise probabilities. In a landmark book, Shafer [565] reconsidered Dempster’s
lower and upper probabilities and extended their domain of application to the representation of subjective
belief. Shafer showed that it could be proposed as a general language to express “probability judgements”
(or degrees of belief) induced by items of evidence. This new theory rapidly became popular in Artificial
Intelligence where it was named “Dempster-Shafer (DS) theory”, evidence theory, or the theory of belief
functions [184]. DS theory can be considered from different perspectives:
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• A belief function can be defined axiomatically as a Choquet monotone capacity of infinite order [565].

• Belief functions are intimately related to the theory of random sets: any random set induces a belief
function and, conversely, any belief function can be seen as being induced by a random set [481].
However, it is a random disjunctive set, each set being a disjunction of mutually exclusive values.

• Disjunctive sets are in one-to-one correspondence with so-called “logical” belief functions, and proba-
bility measures are another special case of belief functions. A belief function can thus be seen both as
a generalised probability measure and as a generalised set; it makes it possible to combine reasoning
mechanisms from probability theory (conditioning, marginalisation), with set-theoretic operations
(intersection, union, cylindrical extension, interval computations, etc.)

DS theory thus provides a very general framework allowing us to reason with imprecise and uncertain
information. In particular, it makes it possible to represent states of knowledge close to total ignorance
and, consequently, to model situations in which the available knowledge is too limited to be properly
represented in the probabilistic formalism. Dempster’s rule of combination [565] is an important building
block of DS theory, because it provides a general mechanism for combining independent pieces of evidence.
Recently, on extension of DS theory based on random fuzzy sets and a product-combination rule has been
introduced [180, 182], allowing, in particular, to define practical models of belief functions in Rp.

The first applications of DS theory to machine learning date back to the 1990’s and concerned classifier
combination [651, 530], each classifier being considered as a piece of evidence and combined by Dempster’s
rule (see, e.g., [515] for a refinement of this idea taking into account the dependence between classifier
outputs). In [176], Denœux combined Shafer’s idea of evidence combination with distance-based classifi-
cation to introduce the evidential K-NN classifier [176]. In this method, each neighbour of an instance to
be classified is considered as a piece of evidence about the class of that instance and is represented by a
belief function. The K belief functions induced by the K nearest neighbours are then combined by Demp-
ster’s rule. Extensions of this simple scheme were later proposed in [680, 406, 186]. An neural network
version based on prototypes was introduced in [177] and combined with deep architectures in [599, 598].
A neural network model for regression based on similar ideas and quantifying prediction uncertainty using
random fuzzy sets was recently described in [181].

The evidential K-NN rule is, thus, the first example of an “evidential classifier”. Typically, an eviden-
tial classifier breaks down the evidence of each input feature vector into elementary mass functions and
combines them by Dempster’s rule. The combined mass function can then be used for decision-making.
Thanks to the generality and expressiveness of the belief function formalism, evidential classifiers provide
more informative outputs than those of conventional classifiers. This expressiveness can be exploited, in
particular, for uncertainty quantification, novelty detection and information fusion in decision-aid or fully
automatic decision systems [186].

In [186], it is shown that not only distance-based classifiers such as the evidential K-NN rule, but also
a broad class of supervised machine learning algorithms, can be seen as evidential classifiers. This class
contains logistic regression and its non linear generalizations, including multilayer feedforward neural
networks, generalized additive models, support vector machines and, more generally, all classifiers based
on linear combinations of inputs or higher-order features and their transformation through the logistic
or softmax transfer function. Such generalized logistic regression classifiers can be seen as combining el-
ementary pieces of evidence supporting each class or its complement using Dempster’s rule. The output
class probabilities are then normalized plausibilities according to some underlying belief function. This
“hidden” belief function provides a more informative description of the classifier output than the class
probabilities, and can be used for decision-making. Also, the individual belief functions computed by each
of the features provide insight into the internal operation of classifier and can help interpret its decisions.
This finding opens a new perspective for the study and practical applications of a wide range of machine
learning algorithms.

9.3 Maximum Likelihood Under Coarse Data

When data is missing or just imprecise (one then speaks of coarse data), statistical methods need to be
adapted. In particular, the question is whether one wishes to model the observed phenomenon along
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with the limited precision of observations or despite such imprecision. The latter view comes down to
completing the data in some way (using imputation methods). A well-known method that does it is the
EM algorithm [175]. This technique makes strong assumptions on the measurement process so as to relate
the distribution ruling the underlying phenomenon and the one ruling the imprecise outcomes. The EM
algorithm and its extensions is extensively used for clustering (using Gaussian mixtures) and learning
Bayesian nets.

However, the obtained result, where by virtue of the algorithm, data has become complete and precise,
is not easy to interpret. If we want to be faithful to the data and its imperfections, one way is to build
a model that accounts for the imprecision of observations, i.e., a set-valued model. This is the case if a
belief function is obtained via maximum likelihood on imprecise observations: one optimises the so-called
visible likelihood function [136]. The idea is to cover all precise models that could have been derived, had
the data been precise. Imprecise models are useful to lay bare ignorance when it is present, so as to urge
finding more data, but it may be problematic for decision or prediction problems, when we have to act or
select a value despite ignorance.

Ideally we should optimize the likelihood function based on the actual values hidden behind the im-
precise observations. But such a likelihood function is ill-known in the case of coarse data [136]. In that
case, we can adopt several strategies:

• We can make assumptions on the measurement process so as to create a tight link between the hidden
likelihood function pertaining to the outcomes of the real phenomenon, and the visible likelihood of
the imprecise observations, for instance the CAR (coarsening at random) assumption [305], or the
superset assumption [331]. In that case, the coarseness of the data can be in some sense ignored.
See [349] for a general discussion.

• Another approach is to pick a suitable hidden likelihood function among the ones compatible with
the imprecise data, for instance using an optimistic maximax approach that considers that the true
sample is the best possible sample in terms of likelihood compatible with the imprecise observation
[330]. This approach chooses a compatible probability distribution with minimal entropy, hence
tends to disambiguate the data. On the contrary, the maximin approach considers that the true
sample is the worst compatible sample in terms of likelihood. This approach chooses a compatible
probability distribution with maximal entropy. Those two approaches adopt extreme points of view
on the entropy of the probability distribution. More recently, an approach based on the likelihood
ratio that maximizes the minimal possible likelihood ratio over the compatible probability distribu-
tions is proposed in [290]. This method achieves a trade-off between the previous two more extreme
approaches and is able to quantify the quality of the chosen probability distribution in regards to all
possible ones. In these approaches, the measurement process is ignored.

• Yet another approach is to extend the notion of likelihood to the case of imprecise and uncertain data.
In the classical case of precise data, the likelihood can be seen as a measure of agreement between the
data and a model. In [178], Denœux generalized this idea to the case of imprecise and uncertain data
by defining the likelihood as one minus the degree of conflict (in the sense of Dempster-Shafer theory)
between the probabilistic model and the data, represented by belief functions. An extension of the
EM algorithm, called the Evidential EM (E2M) algorithm, allows us to maximize this generalized
likelihood. This approach has been applied, e.g., to classification with soft labels [514], partially
supervised independent factor analysis [117] and hidden Markov models with partial knowledge of
hidden states [520].

See [137, 332, 192] for more discussions about such methods for statistical inference with poor quality
data.

Besides, another line of work for taking into account the scarcity of data in ML is to use a new cumulative
entropy-like function that together considers the entropy of the probability distribution and the uncertainty
pertaining to the estimation of its parameters. It takes advantage of the ability of a possibility distribution
to upper bound a family of probabilities previously estimated from a limited set of examples [562, 563],
and of the link between possibilistic specificity order (fuzzy set inclusion) and probabilistic entropy [205].
This approach enables the expansion of decision trees to be limited when the number of examples at the
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current final nodes is too small. Similar ideas can also be found in the imprecise probability literature,
where upper entropies over sets of probabilities are used to limit the growth of the tree [3], and it would
not be surprising to find strong formal links between the two approaches.

9.4 The EM Algorithm and Belief Revision

Injecting concepts from KRR, when explaining the EM algorithm, may help better figure out what it does.
In the most usual case, coarse data are elements of a partition of the domain of values of some hidden
variable. Given a class of parametric statistical models, the idea is to iteratively construct a precise model
that fits the data as much as possible, by first generating at each step a precise observation sample in
agreement with the incomplete data, followed by the computation of a new model obtained by applying
the maximum likelihood method to the last precise sample. These two steps are repeated until convergence
to a model is achieved.

In [135], it has been shown that the observation sample implicitly built at each step can be repre-
sented by a probability distribution on the domain of the hidden variable that is in agreement with the
observed frequencies of the coarse data. It is obtained by applying, at each step of the procedure, the
oldest (probabilistic) revision rule well-known in AI and epistemology, namely Jeffrey’s rule [355], to the
current best parametric model. This form of revision considers a prior probability p(x ,θ ) on the domain
X of a variable X , and new information made of a probability distribution over a partition {A1, A2, . . . , An}
of X (representing the coarse data). If p′i is the “new” probability of Ai , the old distribution p(x ,θ ) is
revised so as to be in agreement with the new information. The revised probability function is of the form
p′(x ,θ ) =

∑n
i=1 p′i · p(x ,θ |Ai). The revision step minimally changes the prior probability function in the

sense of Kullback-Leibler relative entropy.
In the case of the EM algorithm, p′i is the frequency of the coarse observation Ai , and p(x ,θ ) is the

current best parametric model. The distribution p′(x ,θ ) corresponds to a new sample of X in agreement
with the coarse observation. In other words, the EM algorithm revises the parametric model so as to
make it consistent with the coarse data, minimizing the relative (entropic) distance between the current
parametric model and the new probability distribution in agreement with the coarse data, then applies
maximum likelihood to the new obtained sample, so as to get a new parametric model, and so on, till
convergence is attained.

Note that other recent works have also bridged belief change with classification [130, 553].

9.5 Possibility theory in Statistics

Possibility theory [208] is the simplest non-additive uncertainty model devoted to incomplete informa-
tion. It has several formal frameworks, ranging from purely ordinal representations to numerical settings.
Numerical possibility theory has connections to statistics [204], hence to machine learning.

Possibility measures ideally account for imprecise but coherent data (e.g. a bunch of nested intervals),
while probability theory is tailored to precise randomly scattered data. In general, data are neither precise
nor nested, and possibility theory can be used as an approximate representation of such imprecision-tainted
data. Interestingly possibilistic representations also fit the situations when precise data is scarce, often
obtaining non-parametric models using probabilistic inequalities. See [212] for various techniques for
representing data using possibility distributions.

Possibility distributions are also a powerful tool to represent the dispersion of probability distributions
[448]. This is done by transforming probability distributions into possibility distributions and pointwisely
comparing the latter. This way of comparing the peakedness of probability distributions has been proved
to have some connections with entropy[205].

Finally, possibility theory can be used in inferential statistics, noticing that a likelihood function is a kind
of possibility distribution. In particular, the maximum likelihood principle can be seen as an application of
possibility theory. Besides there is a counterpart of Bayes theorem in possibility theory. As a consequence,
we can adapt the maximum likelihood approach to conditional distributions as well. While such formal
links have been known since a long time [623], Denœux [180, 182] has recently taken this idea a step fur-
ther and has shown that statistical predictions can be made by combining knowledge about the parameters
given by the relative likelihood function seen as a possibility distribution, with a probability distribution

41



representing randomness. The result is a random fuzzy set that describes prediction uncertainty. This
approach has been applied to logistic regression in [183].

For more details, the reader is referred to the survey paper by Dubois and Prade on possibility theory
and learning in this special issue [215].

9.6 Beyond possibility theory: learning an imprecise linear model.

The simplest regression models associating input/output pairs are linear. A linear model can be formulated
in probabilistic terms, where the output is an expectation of the inputs with respect to a probability mea-
sure. In such a case, estimating the weight associated with each input is enough to determine the model.
To reflect the difficulty of estimating these weights from a finite training set, or to impact the potential
imprecision of the observations, it may be interesting to replace the probabilistic model with a Choquet
capacity defining a credal set, i.e. the set of probability measures that are dominated by the Choquet ca-
pacity. However, as mentioned in Section 9.1.1, such a model can be computationally very challenging.
Modeling the credal set by a possibility measure is a good compromise [204] since it suffices, as in the
probabilistic case, to estimate the weight associated with each input. One of the particularities of such a
model is that its output is imprecise, as being the set of outputs obtained by an expectation with respect to
any probability belonging to the credal set [425]. The result is a kind of imprecise linear model. However,
this approach only concerns processes whose precise model is a probabilistic expectation.

In [587], it is proposed to extend this approach to any process that can be modeled by a linear combi-
nation. It uses a non-monotonic extension of the possibility measures, the MacSum set function, where the
weights associated to each input can be positive or negative. The MacSum set function is the sum of a max-
itive function associated with positive weights and a minitive function associated with negative weights.
This structure makes it possible to define a convex set of linear combinations whose sum of weights is iden-
tical, i.e. an imprecise linear model. Learning such a model can be carried out in regression form [311], as
in the precise linear case, and admits both precise and imprecise data [586]. In the case where the inputs
are imprecise, two extreme situations can arise: either the imprecision of the inputs and the model add up
(disjunctive modeling) or they compensate for each other (conjunctive modeling).

10 Conclusion

KRR and ML, the two main areas of AI, have been developed rather independently for several decades. As
a consequence, most of the researchers in one area are, to a large extent, ignorant of what has been going
on in the other area. The intended purpose of this joint work is to provide an inventory of the meeting
points between KRR and ML lines of research. The paper has reviewed some concerns that are shared by
the two areas, maybe in different ways, surveyed various paradigms that are at the border between KRR
and ML and provided an overview of different hybridizations of KRR and ML tools. The works covered
may be old or recent, well-known as well as overlooked.

By the breadth of subjects covered, this article is a real challenge. However, even if the paper has been
substantially revised, refreshed and expanded since its original version was made available [86], some
subsections may still be found too sketchy. There is absolutely no claim of completeness of any kind, not
even of being fully up to date. Here are just a few examples of topics not addressed or poorly handled in the
article: namely, reinforcement learning, ontology representation and learning [27] (and more generally
the learning of graphical representations), argumentation and ML [13], or the logical analysis of data [80]
(see also [118, 459]). Moreover, each topic covered in this paper is only outlined and would deserve to be
discussed in further details. Even if the current list of references is lengthy, it is certainly incomplete and
not ideally balanced. However, this work is complemented by the articles in the same volume, which are
briefly introduced in this article and which develop some of the issues raised, or address topics not covered,
while providing additional references.

The aim of this paper is to help facilitating the understanding between researchers in the two areas, with
a perspective of cross-fertilisation and mutual benefits. Yet, we should be aware that the mathematics of ML
and the mathematics of KRR are quite different if we consider the main trends in each area. In ML the basic
paradigm is a matter of approximating functions in continuous spaces (which then calls for optimization in

42



continuous spaces). The mathematics of ML are close to those of signal processing and automatic control
(as pointed out in [395]]), while KRR is dominated by logic and discrete mathematics, leading to an – at
least apparent – opposition between geometry and logic [431]9. But functions also underlie KRR, once one
notices that a set of (fuzzy or weighted) rules is like an aggregation function [210], whose computation
may take the form of a generalized matrix calculus (‘generalized’ in the sense that the operations are not
necessarily restricted to sum and product) [36]. Let us also note that the convolution of functions (a key
tool in signal processing) is no longer restricted to a linear, sum/product-based setting [466]. Besides, let
us note that deep learning methods are now able to predict Boolean functions, e.g., [151], which is another
clue that the gap between Logic and ML is diminishing.

ML methods are to a large extent highly quantitative (artificial neurons remain quantitative), while
KRR approaches are often qualitative. Even if being quantitative often contributes to good performance, it
may be of interest of also developing more qualitative views to facilitate the interface with KRR methods,
just as “System 1” and “System 2” (in the sense of [358]) interact in human beings.

Examples of states of fact that might call for some cooperation between ML and KRR are for instance,
as low shot learning, unsupervised learning of disentangled representations is fundamentally impossible
without inductive biases on both the models and the data [422]; the local explanation methods for deep
neural networks lack sensitivity to parameter values [6]; when trained on one task, then trained on a
second task, many machine learning models “forget” how to perform the first task [271].

Generally speaking, dealing with KRR projects without any ML concern may narrow the horizon of the
research problems, and it seems also difficult to envisage ML without KRR in some situations. In any case,
it can be observed that there are more and more research works mixing KRR and ML tools. Trustworthy
AI and accountability, frugal AI [53] are important and popular issues that may benefit in the long range
of better synergies between KRR and ML.
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