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Abstract This paper addresses the problem of scene
understanding for driver assistance systems. In order

to recognize the large number of objects that may be
found on the road, several sensors and decision algo-
rithms have to be used. The proposed approach is based

on the representation of all available information in
over-segmented image regions. The main novelty of the
framework is its capability to incorporate new classes of
objects and to include new sensors or detection meth-

ods while remaining robust to sensor failures. Several
classes as ground, vegetation or sky are considered, as
well as three different sensors. The approach was evalu-

ated on real publicly available urban driving scene data.

Keywords Information fusion · Driving scene
understanding · Theory of belief functions · Intelligent
vehicles · Dempster-Shafer theory · Evidence theory

1 Introduction

Scene understanding is a very important task for ad-
vanced driver assistance systems and, more generally,
modern robotics. Within it, subtasks such as road recog-
nition, pedestrian detection or traffic sign understand-
ing, among many others, are already by themselves very
challenging. Many algorithms have been developed over
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Fig. 1 Overview of the fusion framework. N sensors, includ-
ing a camera, observe the scene and provide data to K inde-
pendent modules. The classification outputs are then fused in
a unified decision space built from an over-segmented image.

the last decades to tackle those individual problems,
each of them using different kinds of sensors. To make
the most of existing techniques, one has to find a way
to properly fuse all relevant sources of information.

There are two main difficulties when combining in-
formation of different nature. The first one is to fuse
modules that deal with different classes of objects and
be flexible enough to include new ones. The second one
is to represent, in a common space, the outputs of sen-
sors that perceive the world differently.



2 Philippe Xu et al.

Related Work In the field of intelligent vehicles, cam-
eras and LiDAR (Light Detection And Ranging) are
the most common sensors. LiDARs are often used to
detect static structures [29] but also to detect moving
objects [31]. Cameras are employed for a much wider
range of applications. Pedestrian detection is one of the
most studied cases [9], but more general traffic scene
understanding tasks have also been considered [11,17,
20]. Depth information from stereo camera systems has
proven useful to detect obstacles and mark out the
navigable space [2]. Regarding the fusion aspect, many
methods based on multiple sensor systems use a region
of interest approach. Typically, a first sensor, for exam-
ple a LiDAR [25] or a stereo camera [3], is used to select
a set of interesting regions that are further analyzed.
Other methods use geometric cues like the ground plane
to infer constraints for object detection [21]. Another
typical kind of fusion is the combination of several fea-
tures [9], which can include depth [11]. Such fusion ap-
proaches are specialized to achieve a single task and
are often implemented sequentially. Moreover, the out-

puts of classifiers such Adaboost or SVM, used in many
methods [9,11,20], cannot be directly combined with
other sources of information. To get probabilistic out-

puts, Hoiem et al. [17] used a logistic regression ver-
sion of Adaboost while Fröhlich et al. [14] used a ran-
dom decision forest with Gaussian process. However, if

new classes of objects have to be considered, the classi-
fiers need to be retrained completely. The existing ap-
proaches only partially achieve our goals. In contrast,
the method presented in this paper makes it possible

to directly fuse the outputs of different modules in any
order, regardless of their specific task.

Contributions In order to combine algorithms dealing
with different classes of objects, the theory of belief
functions, also known as Dempster-Shafer theory [26],
will be used. We will show how to model the infor-
mation returned by different kinds of modules and in
what ways the theory of belief functions is more ade-
quate than probability theory. In particular, we empha-
size the ability of Dempster-Shafer theory to cope with
imperfectness of information such imprecision and igno-
rance, which are typically not well represented by prob-
abilities. To handle different data representations from
several sensors, we will formulate the problem as an

image segment labeling one. Given an over-segmented
image, each module, regardless of how it perceives the
environment, will classify each image segment.

Overview The system considered here consists of sev-
eral sensors observing an urban scene, including a cam-

era that produces an over-segmented image as pictured

in Fig. 1. Each sensor provides data to one or more
modules, which are executed totally or partially in par-
allel to classify each image segment. The outputs from
each module are expressed as belief functions [26] and
combined to make a decision about the class of each re-
gion. We will show how this framework can be applied
in practice by considering three sensors: a monocular
camera, a stereo camera and a LiDAR. Several modules
will be described for a first simplified task: ground/non-
ground classification. The ability of the proposed ap-
proach to process any number of classes will be then
illustrated by adding vegetation and sky detection mod-
ules. The experimental validation of this method will be
performed using data from the KITTI Vision Bench-
mark Suite [15].

The rest of the paper is organized as follows. The
task assigned to our system will first be described as
an image labeling one (Section 2). The theory of be-
lief functions will then be introduced and contrasted
with the probability theory (Section 3). The construc-
tion of mass functions will then be explained and ap-

plied to scene understanding in Section 4. Finally, the
whole multimodal system will be evaluated on real ur-
ban driving scene data in Section 5, and Section 6 will

conclude the paper.

2 Image segment labeling formulation

As explained above, our goal is to fuse information
from different sensors, which may perceive the envi-
ronment in different ways. In the context of a driver

assistance system, where the task is to warn drivers
about potential dangers, it seems relevant to use a la-
beled image that reflects what the driver sees. Reason-
ing at the pixel level may be too local and difficult,

while reasoning at the object level (e.g., inside rectan-
gular bounding boxes) is inadequate for certain classes
of objects such as the road. We chose an intermedi-
ate way by over-segmenting the image as proposed by
several authors [17,20]. Many over-segmentation algo-
rithms based on mean-shift [7], graphs [13] or the k-
means algorithm [1] can be found in the literature. We
chose to use the SLIC (Simple Linear Iterative Clus-
tering) algorithm [1], as it provides a grid-like segmen-
tation and gives the possibility to control the size of
the segments. Fig. 2 shows the over-segmentation ob-
tained by the graph-based algorithm of Felzenszwalb
and Huttenlocher [13] and the SLIC algorithm. The re-

sult obtained with SLIC is more regular.

After an over-segmentation has been performed, the
common task of all the modules, whatever the data rep-

resentation they use (image, 3D points cloud or optical
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(a) (b)

Fig. 2 (a) Over-segmentation obtained using the graph-based approach proposed by Felzenszwalb and Huttenlocher [13]. (b)
Results obtained using the SLIC algorithm [1].

flow), then becomes to label each individual image seg-
ment. The labeling is done by assigning some support to
each of the classes. However, as modules may consider
different kinds of objects, it is necessary to use a more
general representation than the one based on probabil-
ities. The theory of belief functions will be used for this
purpose.

3 Combination of imperfect information

Let Ω = {ω1, . . . , ωK} be a set of mutually exclusive
classes called the frame of discernment, which corre-

sponds to the set of all classes. In this section, we ex-
plain how to model and combine imperfect information
about the class ω ∈ Ω of an observed instance. There

exist many kinds of imperfect information that cannot
be properly modeled by probabilities. In particular, the
notions of uncertainty, imprecision and ignorance are
crucial in our combination framework.

3.1 Probabilistic fusion

The use of probabilistic measures is the most com-
mon way to model imperfect information. The imper-
fect knowledge about the true class ω ∈ Ω of an in-
stance, after observing some data x ∈ X, is modeled by
a probability distribution over Ω.

Bayesian fusion. Probabilistic fusion relies mainly on
Bayes’ rule. Let P (ωi|x1) and P (ωi|x2), for i=1, . . . ,K,
be the probability distributions over Ω returned by two

modules after observing some data x1 ∈ X and x2 ∈ X,
respectively. By assuming conditional independence, we
get:

p(x1,x2|ωi) = p(x1|ωi)p(x2|ωi), ∀i ∈ {1, . . . ,K}. (1)

Bayes’ rule then yields, for all i ∈ {1, . . . ,K}:

P (ωi|x1,x2) =
P (ωi)p(x1,x2|ωi)

p(x1,x2)
(2a)

=
P (ωi)

p(x1,x2)
p(x1|ωi)p(x2|ωi) (2b)

=
p(x1)p(x2)

p(x1,x2)

P (ωi|x1)P (ωi|x2)

P (ωi)
(2c)

∝ P (ωi|x1)P (ωi|x2)

P (ωi)
. (2d)

In practice, the prior class distribution P (ωi) is difficult
to estimate and is often replaced by a uniform distri-
bution. The combination rule (2) will be referred to as

the product rule. Other combination rules that replace
the product by the sum, the minimum or the maxi-
mum operator can be derived from the product rule by
using different approximations [19]. In the rest of the

paper, the notation PΩx (ω) will be used for the proba-
bility P (ω|x) defined over the frame of discernment Ω.
The product rule will be written as PΩx1,x2

= PΩx1
∗PΩx2

.
It is important to note that, to combine two probabil-
ity distributions, they have to be defined over the same
frame of discernment.

Information representation. After observing some data
x ∈ X, the probability PΩx (ωi) can be interpreted as the
confidence degree of the class ωi ∈ Ω. If there exists a
singleton ωj ∈ Ω such that PΩx (ωj) = 1, the informa-
tion is said to be certain. Otherwise, it is uncertain.
The closer the probability distribution is to the uni-
form distribution, the less informative it is. In partic-
ular, ignorance is handled by the principle of indiffer-
ence, which states that, in the absence of any evidence,
a uniform distribution should be defined over all pos-
sible outcomes. Ignorance can occur when the data x
conveys no relevant information or when is it known to

be unreliable. In this case, the uniform distribution UΩx
over Ω is used:

UΩx (ωi) =
1

K
, ∀ωi ∈ Ω. (3)
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Fig. 3 Illustration of multi-class fusion. A ground detector
can be combined with a sky detector by defining the “vertical”
class which refers to anything that is not the ground or the
sky. The combination with a vegetation detector leads to an
even finer class decomposition. The “obstacle” class refers to
anything that is neither the sky, the ground nor vegetation.

Reliability. If the reliability r ∈ {0, 1} of the source

of information is known, it can be combined with the
initial probability distribution PΩx . If the source of in-
formation is reliable, i.e., r = 1, then PΩx is kept as it

is, otherwise it is replaced by UΩx . The combined prob-
ability PΩx,r is derived from the law of total probability:

PΩx,r(ωi) =PΩx (ωi|r = 1)PR(r = 1) (4a)

+ PΩx (ωi|r = 0)PR(r = 0)

=PΩx (ωi)PR(r = 1) + UΩ(ωi)PR(r = 0), (4b)

for all ωi ∈ Ω.

Refinement. When several modules deal with different
kinds of objects, it is necessary to reason with several
frames of discernment with varying granularities. As
stated before, two probability distributions can be com-
bined only if they are defined over the same frame of
discernment. From a frame of discernment Ω, a refine-
ment Θ can be defined by splitting some or all its ele-
ments into new classes. A refinement from Ω to Θ can
be defined [26] by an application ρ : 2Ω → 2Θ such

that:

• {ρ ({ω}) , ω ∈ Ω} ⊆ 2Θ is a partition of Θ; (5a)

• ∀A ⊆ Ω, ρ (A) =
⋃
ω∈A

ρ ({ω}) . (5b)

The notation 2Ω refers to the power set of Ω, which is
the set of all subsets of Ω.

For instance, if a ground detector reasoning over
Ωg = {ground, ground} has to be combined with a sky
detector reasoning over Ωs = {sky, sky}, a common
frame of discernment Λ = {ground, vertical, sky} has

to be defined, as illustrated in Fig. 3. The refinement
from the Ωg to Λ is defined by:{
ρ({ground}) = {ground},
ρ({ground}) = {vertical, sky}. (6)

Condition (5b) will simply give ρ(Ωg) = ρ(Λ). The no-
tation {ground} is used instead of {ground} whenever
we want to specifically refer to the non-ground class
as a singleton, but they both semantically refer to the
same thing. The class “vertical” actually corresponds
to everything that is neither the ground nor the sky,
i.e., {vertical} = {ground} ∩ {sky}.

Imprecise information. An important type of imper-
fection that occurs when dealing with refinements is
imprecise information. For example, assume that the
output of a ground detector, initially defined on Ωg, is
expressed in the refined frame of discernment Λ. Let
xg ∈ X be some observed data and PΩg

xg
be the proba-

bilities returned by a ground detector defined as follows:

PΩg
xg

(ground) = q, PΩg
xg

(ground) = 1− q, (7)

where q ∈ [0, 1]. The information represented by PΩg
xg

can be rewritten over the refined frame Λ as:

PΛxg
(ground) = q, PΛxg

({vertical, sky}) = 1− q. (8)

However, expression (8) does not fully define the proba-
bility PΛxg

. Actually, every probability distribution P so
that P (vertival)+P (sky) = 1−q, verifies the constraints

defined by (8). We say that the information represented
by (8) is imprecise [30]. In such situations, the principle
of indifference leads to the following probability:

PΛxg
(ground) = q, (9a)

PΛxg
(vertical) = PΛxg

(sky) =
1− q

2
. (9b)

As the ground detector cannot differentiate the “verti-
cal” class from the “sky” class, the initial probability
assigned the non-ground class is uniformly distributed
to these two refined classes.

One major issue with such an approach is that the

information represented by (9) is not exactly the same
as (7). Suppose that the observation xg conveys no
relevant or reliable information. The initial probabil-
ity PΩg

xg
should be uniform (q = 1/2), in which case

the ground detector cannot make any decision. Rea-
soning on another frame of discernment such as Λ does
not change the information at hand, which should still
be modeled by a uniform distribution. However, equa-
tion (9) does not define a uniform distribution. Even
worse, the ground detector would then be able to make

a decision and choose the “ground” class as the most
probable one. Paradoxically, if instead of {ground}, the
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class {ground} had been refined into {grass, road}, then
the same ground detector would have chosen the “non-
ground” class as the most probable one. This shows
that traditional probability theory cannot properly rep-
resent imprecise information.

3.2 Theory of belief functions

The issues mentioned above can be dealt by extending
the notion of probability to sets of classes. The the-
ory of belief functions, also known as Dempster-Shafer
theory or evidence theory, offers a well-founded and el-
egant framework to do so. It is also very well suited for
information fusion [18].

Information representation. A mass function, or basic
belief assignment, over a frame of discernment Ω is a
function m : 2Ω → [0, 1] verifying:

m(∅) = 0 and
∑
A⊆Ω

m(A) = 1. (10)

Given an object of class ω ∈ Ω, our belief about its
membership to some subsets of Ω can be modeled by a
mass function m. The quantity m(A), for a given subset
A ⊆ Ω, represents the belief committed exactly to the

hypothesis ω ∈ A. It is important to understand that
the hypothesis ω ∈ A does not support the membership
of ω to any subset B  A.

If m(A) > 0, then A is said to be a focal element of
m. The state of total ignorance is then easily defined
by the vacuous mass function, which only has Ω as
focal element, i.e., m(Ω) = 1. The information repre-

sented by a mass function is said to be imprecise if there
exists at least one non-singleton focal element. Other-
wise, if a mass function has only singletons as focal

elements, it actually defines a probability distribution
and it is said to be Bayesian. Therefore, a probability
distribution is a particular kind of mass function that
encodes precise information. Finally, any non-vacuous
mass function with only one focal element will be said
to be categorical. These particular mass functions actu-
ally represent certain information that may precise.

Discounting. In the theory of belief functions, knowl-
edge about the reliability of a source of information
can be handled by a discounting factor [26]. It is used
to weaken a mass function by transferring some mass

to the ignorance state. For a factor α ∈ [0, 1], the dis-
counted mass function αm is defined as:

αm(A) = (1− α)m(A), ∀A ( Ω,
αm(Ω) = (1− α)m(Ω) + α. (11)

If α = 0, the information is considered reliable and is
kept as is. On the other hand, if α = 1, the information
is totally unreliable and we get the vacuous mass func-
tion. Smets [27] actually showed that the discounting
equation (11) can be derived by interpreting α as the
probability that the source of information is not reli-
able. Thus, the discounting factor α plays a role equiv-
alent to PR(r = 0) in the probabilistic case (4).

Refinement. Because mass functions are directly de-
fined over sets of classes, refinement and imprecise in-
formation can be easily handled. Given a refinement
ρ : 2Ω → 2Θ, a mass function mΩ defined over Ω can
be transformed into a mass mΘ defined over Θ, such
that for all B ⊆ Θ:

mΘ(B) =

{
mΩ(A) if ∃A ⊆ Ω, B = ρ(A),
0 otherwise.

(12)

On the ground detector example (Sec. 3.1, paragraph
Refinement), a mass initially assigned to {ground} will
be transferred to {grass, road}; it will not be uniformly
distributed to these two subclasses as in the Bayesian

case.

Evidential combination. Given two mass functions m1

and m2 induced, respectively, by observations x1 ∈ X
and x2 ∈ X, which are supposed to be independent, one

can combine them using Dempster’s rule to compute a
new mass function m1,2 = m1 ⊕m2 defined as follows:

m1,2(∅) = 0, (13a)

m1,2(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅, (13b)

where

κ =
∑

B∩C=∅

m1(B)m2(C). (14)

The quantity κ measures the conflict between the two
mass functions. This combination rule has the vacuous
mass as unique neutral element. When Dempter’s rule
is used to combine two Bayesian mass functions, it is
equivalent to the probabilistic product rule (2). In par-
ticular, the combination of any mass function with a
Bayesian one always yields a Bayesian mass function.

Decision making. There exist several strategies for de-
cision making [8] when reasoning within the theory of
belief functions. In most cases, the mass function is first
transformed into another representation. Two very im-
portant representations are the belief and plausibility
functions defined, respectively, as:

bel(A) =
∑
B⊆A

m(B), ∀A ⊆ Ω, (15)

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω. (16)
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For A ⊆ Ω, bel(A) measures the degree of support of
A, while pl(A) = 1 − bel(A) measures the lack of sup-
port to the complement of A. One has, for all A ⊆
Ω, bel(A) ≤ pl(A). There exists a one-to-one correspon-
dence between mass, belief and plausibility functions.
For decision making, two simple strategies consist in
choosing the singleton with maximum belief or plausi-
bility [8]. They are called, respectively, the pessimistic
and optimistic strategy.

Another widely used strategy is to transform the
mass function into a probability measure called the pig-
nistic probability BetP [28], defined as:

BetP (ωk) =
∑

A⊆Ω,ωk∈A

m(A)

|A|
, ∀ωk ∈ Ω. (17)

The mass assigned to a set A is simply equally dis-
tributed to its elements. The singleton with maximum
probability is then selected. In this paper, we adopted
the optimistic strategy, which selects the singleton with

maximum plausibility. This choice was motivated by
the fact that this strategy is consistent with respect to
refinements and is computationally efficient [4,6]. An
example for which the three mentioned strategies yield

different decisions is given in Appendix A.

4 Belief functions for scene understanding

We applied our framework to a multi-modal system in-
cluding a stereo camera and a LiDAR sensor, which are
supposed to be calibrated [15]. Several modules inde-

pendently process the outputs of these sensors to clas-
sify each segment of the image in Fig 4(a). Some simple
classification rules are first applied directly using pixel
coordinates. The 3D information from the stereo im-
ages and the LiDAR are then used to detect the ground.
Next, two monocular-based approaches allow us to in-
fer the scene layout and further extend it by including a

vegetation class. Finally, a temporal propagation mod-
ule is used to link two consecutive images. The inputs
of the different modules described below are shown in
Fig. 4.

4.1 Classification from pixel location

Some very simple rules can be directly inferred from
pixel coordinates. For example, we are certain that the
“lower” part of the image cannot be the sky and the
“upper” part cannot be the ground. By assuming a
maximum pitch angle of ±5◦, upper (Vmax) and lower
(Vmin) bounds of the horizon line can be computed as
illustrated by the blue and green lines in Fig. 5(a). This
assumption may not hold in certain complex situations

such as uphills or downhills, for which a robust hori-
zon line estimator would be needed. A segment in the
image can be described by its minimum and maximum
vertical coordinate (v, v). Two distinct mass functions
can then be constructed. The first one is defined over
the frame of discernment Ωs = {sky, sky} as follows:

mΩs

v ({sky}) =

{
1 if v ≤ Vmin,
0 otherwise,

(18a)

mΩs

v ({sky}) = 0, (18b)

mΩs

v (Ωs) = 1−mΩs

v ({sky}). (18c)

This mass function states that, if the maximum vertical
coordinate is lower that the lower bound Vmin, then the
segment cannot be the sky. Otherwise, we do not know
if the segment corresponds to the sky or not, which is
represented by the vacuous mass function mΩs

v (Ωs) = 1.
Similarly, a second mass function is defined over Ωg =
{ground, ground} as follows:

mΩg
v ({ground}) =

{
1 if v ≥ Vmax,

0 otherwise,
(19a)

mΩg
v ({ground}) = 0, (19b)

mΩg
v (Ωg) = 1−mΩg

v ({ground}). (19c)

These two mass functions can be combined by Demp-

ster’s rule on a common refinement Λ ={ground, verti-
cal, sky}, yielding:

mΛ
v,v

(
{sky}

)
=

{
1 if v ≤ Vmin,
0 otherwise,

(20a)

mΛ
v,v

(
{ground}

)
=

{
1 if v ≥ Vmax,
0 otherwise,

(20b)

mΛ
v,v(Λ) = 1−mΛ

v,v

(
{sky}

)
−mΛ

v,v

(
{ground}

)
(20c)

where {sky} ={ground, vertical} and {ground} ={ver-
tical, sky}. Fig. 5(b) illustrates the combined mass func-
tions.

Following the same reasoning, a probabilistic ap-
proach would lead to the following probabilities:

PΩs

v (sky) =

{
1 if v ≤ Vmin,

1/2 otherwise,
(21a)

PΩs

v (sky) =

{
0 if v ≤ Vmin,

1/2 otherwise,
(21b)

and

PΩg
v (ground) =

{
1 if v ≥ Vmax,

1/2 otherwise,
(22a)

PΩg
v (ground) =

{
0 if v ≥ Vmax,

1/2 otherwise.
(22b)
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(a) Over-segmentation (b) Disparity map

(c) Laser points (d) Optical flow

Fig. 4 Inputs to the multi-sensor system. (a) The over-segmentation is obtained using the SLIC algorithm [1]. (b) The
disparity map is computed from the ELAS algorithm [16]. (c) A single laser layer is extracted from a Velodyne LiDAR. (d)
The optical flow is computed using the TV-L1 formulation as implemented in OpenCV [36].

mΛv,v ({vertical, sky}) = 1

mΛv,v(Λ) = 1

mΛv,v ({ground, vertical}) = 1

(a) Lower and upper bounds (b) Mass function

PΛv,v(ground) = 0, PΛv,v(vertical) = 1/3, PΛv,v(sky) = 2/3

PΛv,v(ground) = 2/5, PΛv,v(vertical) = 1/5, PΛv,v(sky) = 2/5

PΛv,v(ground) = 2/3, PΛv,v(vertical) = 1/3, PΛv,v(sky) = 0

QΛv,v(ground) = 0, QΛv,v(vertical) = QΛv,v(sky) = 1/2

QΛv,v(ground) = QΛv,v(vertical) = QΛv,v(sky) = 1/3

QΛv,v(ground) = QΛv,v(vertical) = 1/2, QΛv,v(sky) = 0

(c) Combined probability (d) Uniform probability

Fig. 5 Classification from pixel coordinates. (a) Lower and upper bounds of the horizon line: Vmin (green), Vmax (blue). (b)

Mass function mΛv,v = mΩG
v ⊕mΩS

v . (c) Probability PΛv,v = PΩS

v ∗ PΩG
v . (d) Probability QΛv,v.

By using the product rule (2) over Λ ={ground, verti-
cal, sky}, with a uniform prior distribution, the com-
bined probability is defined as follows:

PΛv,v v ≤ Vmin v ≥ Vmax otherwise

ground 2/3 0 2/5

vertical 1/3 1/3 1/5

sky 0 2/3 2/5

(23)

The resulting probability PΛv,v = PΩs

v ∗ PΩg
v is counter-

intuitive and does not encode the same information as
PΩs

v and PΩg
v . In particular, complete ignorance, which

is represented differently by PΩs

v = UΩs

v and PΩg
v =

UΩg
v , is not encoded by a uniform distribution in Λ.

By reasoning directly on Λ, the principle of indifference
would actually lead to the following probability:

QΛv,v v ≤ Vmin v ≥ Vmax otherwise

ground 1/2 0 1/3

vertical 1/2 1/2 1/3

sky 0 1/2 1/3

(24)

The probability distributions QΛv,v ans PΛv,v are illus-

trated in Fig. 5(c-d). The probability QΛv,v seems much

more reasonable than PΛv,v. In particular, the red zone,
where nothing can actually be inferred, is well repre-
sented by a uniform distribution with QΛv,v but not with

PΛv,v.

However, if a new class, such as vegetation, has to
be added, none of them would actually be correct. This
example clearly shows that imprecise information can-
not be properly represented by probabilities. Moreover,

the information on the upper and lower part of the im-
age remains certain when using belief functions while it
is encoded as uncertain with probabilities.

4.2 Stereo-based classification

3D information is very useful for scene understanding.
A disparity map (Fig. 4(b)) encoding the depth of each



8 Philippe Xu et al.

2−10

2−8

2−6

2−4

2−2

20

22

24

2−10

2−8

2−6

2−4

2−2

20

22

24

(a) Distance to ground plane (m) (b) Median distance to ground plane (m)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Probability of the ground class (d) Amount of ignorance

Fig. 6 Stereo-based ground classification. (a) Distance to the ground plane for each pixel. (b) Median distance of segments

to the ground plane. (c) Probability of the ground class PΩg

d . (d) Amount of ignorance mΩg

d,d
(Ωg).

pixel can be estimated using a stereo camera. We used
the ELAS algorithm [16] which is designed for fast high-
resolution image processing.

A Euclidean 3D point cloud is first generated from

the disparity map and used to estimate the ground sur-
face. We used a robust plane estimator (RANSAC) to
detect the ground plane. The assumption of a planar

ground turns out to be reasonable in practice. For more
robustness, the use of more complex models such as B-
splines [32] could also be considered.

The estimated ground plane Π is used to build a
ground detector. Each segment is seen as a set of 3D
points: x = {p1, . . . , pk, p∗k+1, . . . , p

∗
n}, where the points

denoted by p∗i are those for which no disparity has been
estimated. A segment is classified as ground or non-
ground depending on its distance to the ground plane.

The distance d between the observation x and the plane
Π is defined as the median distance of the valid points
pi to Π, while forgetting the invalid ones p∗j :

d(x, Π) = med
i=1,...,k

δ(pi, Π), (25)

where δ(pi, Π) is the Euclidean distance from pi to Π.
Fig. 6(a) illustrates the distance to the ground obtained
for each pixel. Fig. 6(b) shows the median distance com-

puted for each segment.

To get a probability measure from the distance d, a
logistic regression is used by assuming that:

PΩg

d (ground) =
1

1 + exp(ad+ b)
, (26)

where the sigmoid parameters a, b ∈ R can be opti-
mized given some training data. Let {(di, yi)}1≤i≤N be
some training data where yi ∈ {0, 1} is equal to one
if the distance di ∈ R is associated to the ground and
zero otherwise. Parameters a and b are determined by

maximizing the log-likelihood function:

max
a,b∈R

N∑
i=1

yi log(Pi) + (1− yi) log(1− Pi), (27)

where Pi = PΩg

di
(ground). The maximization of (27)

is done using Newton’s method [22], which only takes

O(N) time per iteration. As only k out of n points are
visible, the reliability of the observation is modeled by
PR(r = 1) = k/n. When no disparity estimates are
available, i.e., PR(r = 1) = 0, we get the uniform dis-

tribution PΩg

d,0 (ground) = PΩg

d,0 (ground) = 1/2. Fig. 6(c)
shows the probability obtained from the distance to the
ground plane.

With belief functions, a more cautious model can
be used. Instead of using the median distance, two dis-
tances d and d were considered. They correspond, re-

spectively, to the minimum and maximum distance from
the segment to the ground plane and are defined as fol-
lows:

d = min
i=1,...,k

δ(pi, Π) , d = max
i=1,...,k

δ(pi, Π). (28)

The minimum distance d is used to build a mass func-
tion mΩG

d that only supports the non-ground class. If
the minimum distance is large, then we are confident

about the non-ground class. However, if the minimum
distance is small, nothing can actually be said. The
mass function mΩg

d is defined in a way similar to (26):

mΩg

d ({ground}) =
1

1 + exp(ad+ b)
, (29a)

mΩg

d ({ground}) = 0, (29b)

mΩg

d (Ωg) = 1−mΩg

d ({ground}), (29c)

where the parameters a and b are determined by max-
imizing:

max
a,b∈R

N∑
i=1

yi log(mi) + (1− yi) log(1−mi), (30)
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Fig. 7 (a) Probability, belief and plausibility of the ground
class with respect to the distance to the ground plane. The
belief and plausibility are defined as: BelΩg

d
({ground}) =

mΩg

d
({ground}) and PlΩg

d ({ground}) = 1 −mΩg

d ({ground}).
(b) Amount of ignorance mΩg

d,d
(Ωg) given the minimum and

maximum distances of a segment to the ground plane.

with mi = mΩg

di
({ground}). In a similar way, the max-

imum distance d is used to build a mass function mΩg

d
that only supports the ground class. A combined mass
function mΩg

d,d
= mΩg

d ⊕m
Ωg

d
is then obtained by Demp-

ster’s rule. Finally, the mass function is discounted by
a factor α = 1−k/n, which results in the vacuous mass
function when no disparity is estimated.

Figure 7(a) shows the measures PΩg

d , mΩg

d and mΩg

d
obtained from logistic regression. Figure 7(b) illustrates
the amount of ignorance mΩg

d,d
(Ωg) for different values of

d and d. We can see that when d is small and d is large
(top right corner), the amount of ignorance is high. In
contrast, when d is large (bottom right) or d is small
(top left), the information is more certain. Fig. 6(d)
displays the amount of ignorance in a typical case.

4.3 LiDAR-based classification

A LiDAR sensor provides a set of 3D points that are
the impacts of laser beams (Fig. 4(c)). Similarly to the
stereo camera case, a segment S hit by some laser beams
is perceived as a set of k 3D points. By using the ground
plane estimated from the disparity map, the same form
of mass function as in the stereo case can be used for
S. Additionally, the space between the projections on
the ground plane of the laser impacts and the LiDAR’s
origin is considered to be obstacle free.

The data from the LiDAR sensor are illustrated
in Fig. 8(a). The red dots represent the impacts re-
turned by the LiDAR. The segments hit by these im-
pacts are modeled and classified in the same way as in
the stereo case. The green dots correspond to the pro-
jections of the impacts on the ground plane estimated
by the stereo module. The green lines represent the laser
rays from the green dots to the LiDAR’s origin. The
segments crossed by at least one green line are assimi-
lated to the “ground” class. A categorical mass function

mΩg

L ({ground}) = 1 is assigned to these segments. In
the probabilistic case, the probability PΩg

L (ground) = 1
is used. Furthermore, a discounting factor or reliability
measure PR(r = 0) = α = k/n is considered for the

segments hit or crossed by at least one laser beam. The
quantity n is defined as the maximum number of beams
that could have hit or crossed the segment. Finally, the

segments between the red and green dots, represented
by the blue lines, are ambiguous and are modeled by
a vacuous mass function or uniform probability distri-
bution. It is also the case for all the segments that are

neither hit nor crossed by some laser beams. The re-
sult obtained from the LiDAR module is displayed in
Fig. 8(b).

4.4 Surface layout from monocular images

Geometric structures in the scene can also be estimated
directly from a single image. We used the method pro-

posed by Hoiem et al. [17], whose code and pre-trained
models are publicly available1. They used a set of mul-
tiple features including location, color, texture and per-
spective cues such as line intersections or vanishing
points. Boosted decision trees were used to learn a multi-
class classifier. The logistic regression version of Ad-
aboost was used in order to get well-calibrated proba-
bilities as output.

Hoiem et al. [17] considered three classes: “support”,
“vertical” and “sky”. In our case, the “support” class

1 http://www.cs.uiuc.edu/~dhoiem
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(a) Impacts and beams from the LiDAR sensor (b) Mass functions from the LiDAR module

(c) Results from the monocular surface layout estimation (d) Vegetation detection using texture information

(e) Stereo-based ground detection at time t− 1 (f) Temporal propagation of the stereo module

Fig. 8 Classification from different modules. For (b), (e) and (f), the RGB colors represent the mass assigned to {ground},
{ground} and Ωg respectively. For (c), the RGB colors represent the probability of the vertical, ground and sky classes,
respectively. For (d), the RGB colors represent the mass assigned to {vegetation}, {vegetation} and Ωv, respectively.

corresponds to the ground. Hoiem et al. further decom-

posed the “vertical” class into five subclasses: “left”,
“center”, “right”, “porous” and “solid”. These five sub-
classes are, however, of limited meaning in our case,

so they were not considered. Additionally, the over-
segmentation algorithm from Felzenszwald and Hutten-
locher [13], which was originally used, was replaced by
the SLIC over-segmentation [1].

As the output is a probability distribution, it can
be directly used for probabilistic fusion. It can also be
considered as a Bayesian mass function in an eviden-
tial context. However, the use of a Bayesian mass func-

tion will constrain the results of the combination to
be Bayesian. To avoid such situations, the probabilistic
output is considered as the pignistic probability gener-
ated by a non-Bayesian mass function.

The pignistic transformation (17) returns a proba-
bility from a mass function by distributing the mass of
any subset to its singletons uniformly. This transfor-
mation is not invertible: different mass functions can
lead to the same pignistic probability. A pseudo-inverse
can however be defined by using the least commitment
principle, which states that the least informative belief

function, from a given ordering, should be selected from
the set of possible candidates. Dubois et al. [10] showed
that the least informative belief function with respect
to the q-ordering is unique and consonant, i.e., its focal
elements are nested. It can be constructed as follows:

– The probability measure is first transformed into a

possibility measure:

poss (ωi) =
∑
ωj∈Ω

min(P (ωi), P (ωj)), ∀ωi ∈ Ω. (31)

– The possibilities πj = poss(ωij ) are sorted so that:

π1 ≥ π2 ≥ . . . ≥ πC . (32)

– The associated consonant mass function is then de-
fined as:

m(A) =


πj − πj+1 if A = {ωi1 , . . . , ωij},
πC if A = Ω,
0 otherwise.

(33)

The ignorance m(Ω) resulting from this transformation
is equal to the minimum possibility of the singletons.
In particular, a uniform probability distribution leads
to the vacuous mass function. Finally, the accuracy of
the algorithm of Hoiem et al. [17] on our training data
is used as a discounting factor.

4.5 Texture-based classification

The textural appearance of a segment is an impor-
tant cue about its class. We used the Walsh-Hadamard
transform to encode the texture, as proposed by Wojek
and Schiele [34]. For each segment, the Walsh-Hadamard
coefficients were computed over 8× 8 and 16× 16 pixel
patches centered at the centroid of the segment. The
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three color channels were processed individually in the
L*a*b* color space resulting in a feature vector of di-
mension 960.

This texture information was then used to build a
vegetation detection module. A linear binary classifier
was trained from a L1-regularized logistic regression as
implemented in the Liblinear library [12]. This library
was designed to efficiently learn linear classifiers from
very large datasets. The probabilistic classifier output
was handled as described in Sec. 4.4. No discounting or
reliability estimation was used for this module as the
classifier was directly trained on the KITTI dataset and
can be assumed to be well-calibrated. Fig. 8(d) displays
results obtained with this vegetation detector.

4.6 Temporal propagation

Given two consecutive images at times t and t− 1, the

optical flow (Fig. 4(d)) can be used to propagate the in-
formation. We used the OpenCV implementation of the
TV-L1 formulation as proposed by Zach et al. [36]. To
each segment St at time t was associated a previous seg-

ment St−1 at time t−1, defined as the segment pointed
by the mean flow of the pixels in St. The mass function
or probability associated to St−1 was simply propagated

to St. A discounting factor corresponding to the ratio
of pixels in St whose flow actually points to St−1 was
then used as reliability measure. This temporal propa-

gation can be used with any frame of discernment. The
propagation of the results from the stereo-based ground
detector is illustrated in Fig. 8(e-f).

5 Experimental results

The KITTI dataset [15] was used to validate our ap-
proach, considering the stereo color camera and Velo-
dyne 64-beam LiDAR. However, only one layer of the
Velodyne LiDAR was used in order to simulate a single
layer LiDAR, commonly employed in mobile robotics.
A total of 110 images were manually annotated, 70 for
training and 40 for testing. These images were selected
to depict a high variety of scenes. The ground truth
annotations are provided online2. Details about the an-
notated frames are given in Table 1.

The training data were used to learn the proba-
bilities and mass functions for the stereo, LiDAR and

texture-based modules. They were also used to get the
discounting factor of the monocular surface layout es-
timation. No training was needed for the pixel-based
and temporal propagation modules. Each classification

2 https://www.hds.utc.fr/~xuphilip/dokuwiki/en/data

Table 1 Annotated frames from the KITTI dataset. The
highlighted rows correspond to the data used for testing.

Category Date Seq. Annotated frames
Campus 2011-09-28 016 13, 144
Campus 2011-09-28 021 153
Campus 2011-09-28 038 29
City 2011-09-26 001 59, 107
City 2011-09-26 002 16, 56
City 2011-09-26 005 16, 56, 104, 153
City 2011-09-26 009 13, 58, 158, 265, 360, 370,

380, 390, 400, 412, 417
City 2011-09-26 011 10, 30, 50, 75, 100,

126, 150, 175, 190, 200
City 2011-09-26 013 14, 100, 143
City 2011-09-26 014 157, 200, 209
City 2011-09-26 017 32
City 2011-09-26 048 0, 21
City 2011-09-26 051 67, 86
City 2011-09-26 056 80, 158, 201
City 2011-09-26 057 41, 112
City 2011-09-26 059 26
City 2011-09-26 060 7
City 2011-09-26 084 248
City 2011-09-26 091 12, 85
City 2011-09-26 093 30, 303, 404
City 2011-09-26 095 126
City 2011-09-26 096 0, 92, 362
City 2011-09-26 104 16, 43, 239, 285
City 2011-09-26 106 1
City 2011-09-26 113 0
City 2011-09-26 117 103, 230, 384, 461, 594
City 2011-09-28 002 40, 50, 60, 70, 93, 317
City 2011-09-29 026 0
City 2011-09-29 071 11, 103, 318, 665, 906, 940

Residential 2011-09-26 019 329, 371
Residential 2011-09-26 020 0
Residential 2011-09-30 018 80, 192, 277, 329, 357, 496,

600, 650, 700, 750, 800, 850
Road 2011-09-26 015 167, 184, 220, 280
Road 2011-09-26 027 56
Road 2011-09-26 028 184, 231

Table 2 Frames of discernment of the different modules.

Module Frame of discernment
#1 Pixel Ωs = {sky, sky}
#2 Pixel Ωg = {ground, ground}
#3 Stereo Ωg = {ground, ground}
#4 LiDAR Ωg = {ground, ground}
#5 Surface Λ = {ground, vertical, sky}
#6 Texture Ωv = {vegetation, vegetation}
#7 Optical flow multiple

context introduced in Section 4 was considered as an
individual module. Table 2 summarizes the frames of

discernment of these different modules.

5.1 Ground detection

A first task was to evaluate ground detection. Modules
2, 3, 4 and 7 were first considered. Table 3 shows the

results of the ground detection task. Some detection ex-
amples are shown in Fig. 10. By considering the stereo
module alone, about 10% of the segments were ignored
due to lack of disparity estimation. The blue regions
in the images in Fig. 10(b) are the segments with high
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uncertainty. Typically, the disparities could not be es-
timated in some textureless regions such as the sky or
on white building facades.

After adding the LiDAR module, the recall rate of
the ground class was increased by more than 5%. For
example, we can see in Fig. 10(c-ii) that the bottom
right part of the ground was detected by the LiDAR
module but not by the stereo one. The LiDAR module
also slightly increased the recall rate of the non-ground
class (≈ +0.2%). In Fig. 10(c-iii), we can see in the left
part some laser impacts corresponding to some non-
ground segments that were not detected by the stereo
module. Finally, we can also observe a slight increase
of the misclassification rate for the non-ground class
(≈ +0.2%). In the KITTI platform setup, the Velodyne
LiDAR was installed on top of the car. This may explain
that, in some particular cases, some small objects below
the laser beam may be misdetected. In Fig. 10(c-i), we
can see that the pole in the foreground was missed by
the LiDAR sensor and thus classified as ground. Such
minor issues may be dealt with by considering addi-

tional LiDAR layers.

The third considered module was the pixel-based
one, for which all the segments above the horizon line
upper bound were assigned to the non-ground class.

As this module did not provide any information about
the ground class, the results for this class remained un-
changed. However, an increase of more than 5% was

observed for the recall rate of the non-ground class. In
particular, additional information was provided by this
module in the parts of the sky and the buildings that
were not classified by the stereo or LiDAR module (see

Fig 10(d)).

Finally, the temporal propagation increased the re-
call rate or both the ground and non-ground classes

by about 2%. Less than 2% of the segments were left
without decision. In this ground detection module case,
all the modules were correctly defined in their initial
frames of discernment. The use of upper and lower
bounds for the distance to the ground plane in the ev-
idential method yielded slightly better results than the
probabilistic model. But overall, the results from the
probabilistic and evidential approaches were very simi-
lar.

5.2 Addition of the sky class

The sky class was added to the system with the monoc-
ular surface layout estimation module. The pixel-based
module applied to the sky class was also included. The
classification results are detailed in Table 4 and some
examples are shown in Fig. 11.

As explained in Sec. 3, the outputs of the ground
detection modules had to be transformed onto the new
frame of discernment. In the probabilistic case, several
effects could be noted. First, all the probabilities as-
signed to the non-ground class were divided by two
and distributed to the vertical and sky classes. This
resulted in over-confidence about the ground class. We
can see from Table 4 that, after combining the monoc-
ular module with the ground detection ones, the recall
rate of the ground class was increased by more than
10%. However, this came at the expense of a higher
error rate (≈ +5%) and a lower recall rate of the non-
ground class (≈ −5%). We can see in Fig. 11(c) that
many non-ground regions were misclassified as ground.

A large increase of recall for the sky class (≈ +10%)
was also observed. This resulted from the combination
of the two pixel based modules. The probability dis-
tribution resulting from their combination (23) always
assigned more confidence to the sky class when a seg-
ment was not under the horizon line lower bound. We
can see in Fig. 11(c-ii) that a large part of the buildings

was classified as sky.
The over-confidence in both the ground and sky

classes led to a large decrease of the vertical class re-
call rate (≈ −10%). This also led to a very low error

rate for the vertical class. We can see that the per-
centage of ground and sky segments being misclassified
as vertical structures became both very low. For the

ground class, this can be justified by the combination
with an additional ground detector. However, for the
sky, the decrease of the error rate was actually artifi-

cial. The ground detection modules did not provide any
information about the sky and the pixel-based module
only corrected some misclassifications occurring at the
lower part of the image. In the upper part of the im-

age, the originally misclassified sky segments were cor-
rected only because the probability of the vertical class
was artificial decreased. Overall, the accuracy was still
increased (+1.7%) but the error distribution became
completely different.

In the evidential case, the recall rates of all three
classes were increased and their error rates were de-
creased. Moreover, the performance of the combined
system remained coherent with respect to the perfor-
mances of the individual modules. We can see that the
percentage of sky segments being misclassified as verti-
cal structures only decreased slightly (−2.2%). Overall,
the accuracy was increased by about 4%.

5.3 Addition of the vegetation class

Finally, the vegetation detector was added. The results
are shown in Table 5. The probabilistic combination led
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Table 3 Classification results of the ground detection modules 2, 3, 4 and 7. The lines correspond to the decisions made by
the system and the column to the actual classes. The figures represent the recall rates in percentage.

Stereo Stereo+LiDAR
Stereo+LiDAR Stereo+LiDAR

+Pixel +Pixel+Flow
ground ground ground ground ground ground ground ground

Prob
ground 87.4 4.1 93.1 4.3 93.1 4.3 95.2 4.5
ground 4.2 85.2 4.2 85.4 4.2 91.3 3.9 93.8
ignore 8.4 10.7 2.7 10.3 2.7 4.4 0.9 1.7

Belief
ground 87.6 3.9 93.5 4.2 93.5 4.2 95.4 4.2
ground 4.0 85.4 3.9 85.5 3.9 91.4 3.7 94.1
ignore 8.4 10.7 2.6 10.3 2.6 4.4 0.9 1.7

Table 4 Classification results of the combination of the surface layout estimation module with the ground detection ones.
The figures represent the recall and error rates in percentage. The numbers in brackets correspond to the overall accuracy.

Surface layout (90.5%) Probabilistic fusion (92.2%) Evidential fusion (94.3%)
ground vert. sky error ground vert. sky error ground vert. sky error

ground 85.0 4.0 0.0 4.5 98.5 10.8 0.0 9.9 94.4 3.7 0.0 3.8
vert. 15.0 95.0 12.8 22.6 1.5 86.8 2.6 4.5 5.6 95.3 10.6 14.5
sky 0.0 1.0 87.2 1.1 0.0 2.5 97.4 2.5 0.0 1.0 89.4 1.1

96.6 91.0 96.9
ground ground ground

Table 5 Results of the combination of all the modules. The figures represent the recall and error rates in percentage. The
numbers in brackets correspond to the overall accuracy.

Probabilistic fusion (79.0%) Evidential fusion (81.4%)
grass road tree obst. sky error grass road tree obst. sky error

ground 86.4 3.7 4.0 5.3 0.0 13.1 73.3 1.7 1.4 1.7 0.0 6.1
road 7.0 95.0 0.4 7.6 0.0 13.6 11.2 94.5 0.4 4.2 0.0 14.3
tree 6.2 0.5 80.2 27.0 0.0 29.6 12.7 0.6 75.3 21.3 0.0 31.5
obst. 0.4 0.8 14.6 47.2 0.4 25.6 2.8 3.2 22.8 70.7 10.6 35.8
sky 0.0 0.0 0.8 12.9 99.6 12.1 0.0 0.0 0.0 2.0 89.4 2.2

97.8 85.2 94.4 95.3
ground vertical ground vertical

again to over-confidence in the sky class as the prob-
abilities on the ground and vertical classes were both
distributed to two finer classes. We obtained a 99.6%
recall rate of the sky class but with a very large error
rate of 12.1%. Again, the lower error rate of the obstacle
class in the probabilistic case compared to the eviden-
tial one (≈ −10%) is artificial and was induced by this

over-confidence in the sky class. Moreover, the proba-
bility originally assigned to the vegetation class is dis-
tributed among two classes while the probability of the
non-vegetation class is distributed among three classes.
This explains the very low recall rate of the obstacle
class. Again, the evidential fusion was more robust to
refinements and led to better overall accuracy. In par-

ticular, as the vegetation module did not provide any
information about the ground and vertical classes, the
recall rate of these two classes remained unchanged in
the evidential case. On the contrary, in the probabilis-
tic case, the recall rates changed for both the ground
and vertical classes. Some examples of classification are
shown in Fig. 12.

5.4 Discussion

Figure 9 shows a flowchart of the complete system.
Three pre-processing blocks were first used to provide
the over-segmentation, the disparity map and the opti-
cal flow. They can process the data independently and

in parallel. Real time implementations of these tasks
are described in the literature [24,33], but they have
not been applied in this work.

The over-segmentation is needed by all the detection
modules. The complexity of the SLIC over-segmentation

algorithm is O(N), with N the number of segments [1].
By using the C++ code provided by Achanta et al.3,
the computation of 3000 superpixels on 1224× 370 im-
ages takes about 3 seconds. Ren and Reid [24] reported
a speedup of 10x ∼ 20x by implementing the SLIC algo-
rithm using GPU. In there work, the over-segmentation
of a 1280× 960 image is done in 86 ms.

3 http://ivrg.epfl.ch/supplementary_material/RK_

SLICSuperpixels/index.html
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Fig. 9 Flowchart of the complete system.

Table 6 Computation time per image. The computation was
done using some C/C++ and MATLAB R© codes on a machine
running at 2.20 GHz.

Pre-processing
Over-segmentation 3, 200 ms
Disparity 220 ms
Optical flow 4, 100 ms

Detection and mass functions computation
Pixel 20 ms
Stereo 120 ms
LiDAR 17 ms
Surface 35, 930 ms
Texture 220 ms
Propagation 80 ms

All the detection modules can also process data in-
dependently and in parallel, using data from one or mul-

tiple sensors. For most of the modules, simple methods
were used, resulting in low computation time. Table 6
shows the computation time per image for the data pro-

cessing step and the mass functions computation. The
computation of the surface layout was the slowest mod-
ule and required about 30 seconds per image. It was
done using the MATLAB R© code provided by Hoiem

et al. [17]. As only low level features computation are
costly, implementations on dedicated hardware can be
considered to reach real time performance. Finally, the
cost of the mass function combination is linear in both
the number of modules and the number of considered
singletons, as only the plausibilities of singletons are
computed.

One drawback of our approach is that we may not
reach the best performance attainable given all the in-
formation at hand. All the modules are considered in-
dependently and only use a part of the available in-
formation. A global learning, as well as an optimized
combination rule [23], could yield better results. It is,

however, the price to pay if we want the system to be
flexible enough to allow for the inclusion of new modules
and new classes without having to retrain the whole sys-

tem every time. Moreover, the complexity of a global
approach would grow with the increasing number of
modules and classes. The modular structure of the sys-
tem also makes it more robust to the failure of a sensor,

such as the LiDAR.

6 Conclusion and perspectives

We have introduced an original framework for mul-
timodal information fusion based on over-segmented
images and Dempster-Shafer theory. This framework

is very flexible as it makes it possible to include new
classes, new sensors or new object detection algorithms
without having to retrain the whole system. The infor-
mation combination approach lends itself to parallel im-
plementation and can cope with sensor failures. Future
work will consider additional classes such as pedestrian.
We will also adapt methods like sliding windows-based
algorithms to our framework based on segments. New
sources of information such as GPS or digital maps will
also be considered to detect moving objects. Finally,

syntactic-based approaches such the one proposed in [5]
will be further studied in order to merge segments be-
longing to the same object and allow for a deeper un-
derstanding of the scene.
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Fig. 10 Classification from the ground detection modules. The RGB colors represent the mass assigned to {ground}, {ground}
and Ωg, respectively. (a) Raw images. (b) Stereo-based module. (c) LiDAR module. (d) Pixel-based module. (e) Temporal
propagation of the combined mass function from the previous frame. (f) Combined mass functions. (g) Ground truth images.
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Fig. 11 Classification from different modules. The color code for (c), (d) and (e) is defined as follows: ground = green, vertical
= red, sky = blue. (a) Raw image. (b) Output of the monocular surface layout estimation module, the RGB colors represent
the probabilities assigned to the ground, vertical and sky classes, respectively. (c) Decisions resulting from the probabilistic
combination with the ground detection modules. (d) Decision results from the evidential combination. (e) Ground truth images.
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Probabilistic Evidential Ground Truth

Fig. 12 Classification results considering all the modules. The color code is defined as follows: grass = magenta, road = green,
tree = yellow, obstacle = red, sky = blue.
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Appendix A: Decision making

In our case of study, several arguments can be stated
in favor of the optimistic strategy. It is often more
conclusive than the pessimistic strategy, it is coherent
with frame refinement and computationally efficient.
As shown by Barnett [4], given k plausibility functions,
finding the singleton with maximum plausibility of the
combined function only needs O(k|Ω|) operations while
for the belief it is necessary to do O(|Ω|k) operations.

We indeed have the following property:

pl1,2({ω}) =
1

1− κ
pl1({ω})pl2({ω}) (34a)

∝ pl1({ω})pl2({ω}), ∀ω ∈ Ω. (34b)

To compute the pignistic probabilities, the combined
mass functions need to be explicitly computed, which
requires a number of operations exponential in |Ω|.

To show the differences between different decision
making strategies, let us consider the following mass
function defined on Ω = {grass, road, ground}:

mΩ({grass, road}) = 0.2, (35a)

mΩ({grass, ground}) = 0.3, (35b)

mΩ({road, ground}) = 0.5. (35c)

Tab. 7 shows the beliefs, plausibilities and pignistic
probabilities on the singletons. Here, the pessimistic
strategy cannot lead to any decision: actually, in the
worst case scenario, any decision could be wrong given
the current mass function. Choosing {grass} instead
of {ground} would be wrong if the masses mΩ({grass,

ground}) and mΩ({road, ground}) were actually en-
tirely related to {ground}. Inversely, the other decision
would also be wrong if the same masses were now re-
lated respectively to {grass} and {road}. On the other
hand, both plΩ and BetPΩ would lead to {ground},
which seems quite reasonable.

Now, if the singleton {ground} is refined into {tree,
obstacle, sky}, the mass function (35) will simply be

Table 7 belΩ , plΩ and BetPΩ from mass function (35).

{grass} {road} {ground}
belΩ 0 0 0
plΩ 0.5 0.7 0.8

BetPΩ 0.25 0.35 0.4

Table 8 belΘ, plΘ and BetPΘ from mass function (36).

{grass} {road} {tree} {obst.} {sky}
belΘ 0 0 0 0 0
plΘ 0.5 0.7 0.8 0.8 0.8

BetPΘ 0.175 0.225 0.2 0.2 0.2

rewritten as:

mΘ({grass, road}) = 0.2, (36a)

mΘ({grass, tree, obstacle, sky}) = 0.3, (36b)

mΘ({road, tree, obstacle, sky}) = 0.5. (36c)

Tab. 8 shows the measures induced by this new mass

function. Following BetPΘ, the decision is changed and
now leads to {road}. In contrast, the plausibility crite-
rion does not discriminate between {tree}, {obstacle}
and {sky}, which are still more plausible than {grass}
and {road}. The optimistic strategy thus remains co-
herent with its previous decision.


