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Abstract

Evidential clustering is an approach to clustering based on the use of Dempster-Shafer mass func-
tions to represent cluster-membership uncertainty. In this paper, we introduce a neural-network
based evidential clustering algorithm, called NN-EVCLUS, which learns a mapping from attribute
vectors to mass functions, in such a way that more similar inputs are mapped to output mass func-
tions with a lower degree of conflict. The neural network can be paired with a one-class support
vector machine to make it robust to outliers and capable of detecting previously unseen clusters
when applied to new data. The network is trained to minimize the discrepancy between dissimilar-
ities and degrees of conflict for all or some object pairs. Additional terms can be added to the loss
function to account for pairwise constraints or labeled data, which can also be used to adapt the
metric. Comparative experiments show the superiority of NN-EVCLUS over state-of-the-art evi-
dential clustering algorithms for a range of unsupervised and constrained clustering tasks involving
both attribute and dissimilarity data.

Keywords: Dempster-Shafer theory, evidence theory, belief functions, unsupervised learning,
semi-supervised learning, constrained clustering

1. Introduction1

One of the most important tasks in machine learning and exploratory data analysis is finding2

groups of similar objects in a dataset, in such a way that the dissimilarity between groups is3

maximized. This problem, referred to as clustering, has been addressed using a wide range of4

techniques and from a variety of perspectives (see, e.g. [25, 29, 55]). While the earlier methods5

such as the hard c-means algorithm do not consider group-membership uncertainty, quantifying6

this uncertainty has been a major issue in the last 40 years [42, 15]. Among the most widely-7

used formalisms, we can mention fuzzy sets [3, 16], possibility theory [31, 39], and rough sets8

[41, 17, 52]. These approaches are, to some extent, subsumed by a relatively new approach,9

referred to as evidential clustering, which is based on the Dempster-Shafer (DS) theory of belief10

functions [12, 36, 10]. Evidential clustering algorithms quantify clustering uncertainty using DS11

mass functions assigning masses to sets of clusters, called focal sets, in such a way that the masses12

sum to one. The collection of mass functions related to the n objects is called an evidential (or13

credal) partition. An evidential partition boils down to a fuzzy partition when the focal sets are14
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singletons, and it is equivalent to a rough partition when each mass function has a single focal set15

[10].16

Among the earliest evidential clustering procedures are the evidential c-means (ECM) algorithm17

[36] and its relational version [37]. The ECM algorithm maximizes an objective function based18

on distances to prototypes associated not only to individual clusters but also to sets of clusters19

or“meta-clusters”. The prototype representing a meta-cluster is the barycenter of the prototypes20

representing the clusters it contains. The method was shown to provide meaningful evidential21

partitions, but it can provide undesirable results when the prototype of a meta-cluster is close to22

that of an individual cluster. The Belief c-means [34] and Credal c-means (CCM) [35] algorithms23

are alternative procedures designed to address this problem. The Belief Peak Evidential Clustering24

(BPEC) method [49] combines ideas from density peak clustering [44, 56, 21] and ECM. The Median25

Evidential c-means (MECM) [62] is an evidential version of the median c-means for relational26

data, while the Evidential c-medoid (ECMdd) with either a single prototype per class or multiple27

weighted prototypes [61] are inspired by the c-medoids algorithm.28

In this paper, we revisit an earlier approach to evidential clustering that is not based on29

prototypes, but that takes inspiration from multidimensional scaling (MDS) [4]. The EVCLUS30

algorithm [12] constructs an evidential partition in such a way that the degree of conflict between31

mass functions related to any two objects match the similarity between these two objects. The32

method has been shown to outperform most other algorithms for handling nonmetric dissimilarity33

data [12], but it can obviously also be applied to attribute data after a distance matrix has been34

computed. Whereas the initial algorithm was initially only applicable to small datasets of a few35

hundred objects, algorithmic improvements introduced in [13] have made it applicable to much36

larger datasets containing tens of thousands of objects.37

Whereas the EVCLUS has good performances in clustering tasks, it has some limitations. First,38

as it directly constructs mass functions describing the cluster membership of each object as the39

solution of an optimization problem, it does not allow us to classify new objects, other than by40

including these objects in the dataset and solving the new optimization problem globally, which may41

be time-consuming. Also, as EVCLUS does not represent clusters by parametric models such as42

prototypes, the number of parameters grows linearly with the number of objects, which becomes43

problematic when the number of objects is very large (say, hundreds of thousands). Finally, a44

third limitation of EVCLUS is that it does not easily incorporate side information in the clustering45

process. Semi-supervised versions of EVCLUS using pairwise constraints have been proposed46

[2, 32], but the performances of these algorithms are limited because constraints imposed on some47

pairs of objects do not naturally propagate to neighboring objects, which is another consequence48

of the absence of a parametric model of clusters.49

In this paper, we address the above limitations by proposing a new version of EVCLUS, called50

NN-EVCLUS, in which attributes are mapped to mass functions using a feedforward neural net-51

work. Continuing the analogy with MDS, this approach bears some resemblance with the SAMANN52

model for Sammon’s mapping [27] or Webb’s radial basis function network implementation of MDS53

[53]. It is also related to “Siamese” networks for distance learning [5, 58]. In NN-EVCLUS, the54

network weights are learnt by minimizing the discrepancy between degrees of conflict and dissimi-55

larities over all pairs of objects, as in EVCLUS. However, the number of model parameters, equal56

to the number of weights in the network, is usually much less than that of EVCLUS. The model57

can be used to predict the class of new objects, and it can be trained from very large datasets by58

stochastic gradient descent. It can also easily incorporate side information in the form of labeled59
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data or pairwise constraints.60

The rest of this paper is organized as follows. Background knowledge on DS theory and evi-61

dential clustering is first recalled in Section 2. The new model is then described in Section 3 and62

numerical experiments are reported in Section 4. Finally, conclusions are presented in Section 5.63

2. Background64

The purpose of this section is to make this paper self-contained. Necessary definitions and65

results related to DS mass functions will first be recalled in Section 2.1. The notion of evidential66

partition and its relation with other notions of hard and “soft” partition will then be exposed in67

Section 2.2. Finally the EVCLUS algorithm will be summarized in Section 2.3.68

2.1. Mass functions69

Let Ω = {ω1, . . . , ωc} be a finite set. A mass function on Ω is a mapping from the power set 2Ω
70

to the interval [0,1], such that71

∑
A⊆Ω

m(A) = 1.

Each subset A of Ω such that m(A) > 0 is called a focal set of m. In DS theory [46, 9], Ω is the72

set of possible answers to some question (called the frame of discernment), and a mass function m73

describes a piece of evidence pertaining to that question. Each mass m(A) represents a share of a74

unit mass of belief allocated to focal set A, and which cannot be allocated to any strict subset of75

A. A mass function m is said to be logical if it has only one focal set, consonant of its focal sets are76

nested (i.e., for any two focal sets A and B, we have either A ⊆ B or B ⊆ A), and Bayesian if its77

focal sets are singletons. A mass function that is both logical and Bayesian has only one singleton78

focal set: it is said to be certain.79

Just as a probability mass function induces a probability measure, a DS mass function induces80

two nonadditive measures: a belief function, defined as81

Bel(A) = ∑
∅≠B⊆A

m(B) (1)

for all A ⊆ Ω and a plausibility function defined as82

Pl(A) = ∑
B∩A≠∅

m(B). (2)

These two functions are linked by the relation Pl(A) = Bel(Ω) − Bel(A), for all A ⊆ Ω. The83

quantity Bel(A) is a measure of how much subset A is supported by the available evidence, while84

Bel(Ω)−Pl(A) = Bel(A) is a measure of how much the complement A is supported, so that Pl(A)85

can be seen as a measure of lack of support for A. When m is consonant, the following equality86

holds for all subsets A and B of Ω:87

Pl(A ∩B) = max(Pl(A), P l(B)).

Function Pl is, thus, a possibility measure [60]. The function pl ∶ Ω→ [0,1] that maps each element88

ω of Ω to its plausibility pl(ω) = Pl({ω}) is called the contour function associated to m. When m89

is consonant, it is a possibility distribution.90
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Given two mass functions m1 and m2 on the same frame of discernment Ω, their conjunctive91

sum [48] is the following mass function:92

(m1 ∩m2)(C) = ∑
A∩B=C

m1(A)m2(B)

for all C ⊆ Ω. The degree of conflict between m1 and m2 is then defined as the mass assigned to93

the empty set,94

κ= (m1 ∩m2)(∅) = ∑
A∩B=∅

m1(A)m2(B). (3)

It ranges in the interval [0,1]. When m1 and m2 represent two independent pieces of evidence95

pertaining to the same question, κ can be interpreted as a measure of conflict between these two96

pieces of evidence [46]. In contrast, when m1 and m2 represent independent pieces of evidence97

about two distinct questions Q1 and Q2 with the same frame of discernment Ω, κ can be given98

a different interpretation as one minus the plausibility that the true answers to Q1 and Q2 are99

identical [12].100

Example 1. Consider a population of objects partitioned in three classes, and let Ω = {ω1, ω2, ω3}101

denote the set of classes. Assume that a sensor provides information about the class of three objects102

o1, o2 and o3 as the following three mass functions on Ω:103

m1({ω1}) = 0.6, m1({ω1, ω2}) = 0.3, m1(Ω) = 0.1
104

m2({ω1, ω2}) = 0.5, m2({ω3}) = 0.2, m2(Ω) = 0.3
105

m3({ω1}) = 0.1, m3({ω2}) = 0.1, m3({ω3}) = 0.8

The degree of conflict between m1 and m2 is106

κ12 = 0.6 × 0.2 + 0.3 × 0.2 = 0.18,

while the degree of conflict between m1 and m3 is107

κ13 = 0.6 × 0.1 + 0.6 × 0.8 + 0.3 × 0.8 = 0.06 + 0.54 = 0.78,

Consequently, the plausibility that objects o1 and o2 belong to the same class is 1 − κ12 = 0.82,108

whereas this plausibility is only 0.22 for objects o1 and o3.109

2.2. Evidential clustering110

Let O = {o1, . . . , on} be a set of n objects, such that each object is assumed to belong to at111

most one cluster in a set Ω = {ω1, . . . , ωc}. Using the formalism recalled in Section 2.1, partial112

knowledge about the cluster membership of object oi can be described by a mass function mi on113

Ω. The n-tuple M = (m1, . . . ,mn) is called an evidential (or credal) partition of O.114

The notion of evidential partition encompasses several classical clustering structures [10]:115

• When all mass functions mi are certain, then M is equivalent to a hard partition; this case116

corresponds to full certainty about the group of each object.117
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• When mass functions are Bayesian, then M boils down to a fuzzy partition; the degree of118

membership uik of object i to group k is then119

uik = Beli({ωk}) = Pli({ωk}) ∈ [0,1]

and we have ∑ck=1 uik = 1.120

• When all mass functions mi are consonant, the corresponding contour functions pli are pos-121

sibility distributions and they define a possibilistic partition.122

• When each mass function mi is logical with focal set Ai ⊆ Ω, M is equivalent to a rough123

partition [40]. The lower and upper approximations of cluster ωk are then defined, respec-124

tively, as the set of objects that surely belong to group ωk, and the set of objects that possibly125

belong to group ωk [36]; they are formally given by126

ωlk ∶= {i ∈ O ∣ Ai = {ωk}} and ωuk ∶= {i ∈ O ∣ ωk ∈ Ai}. (4)

We then have Beli({ωk}) = I(i ∈ ωlk) and Pli({ωk}) = I(i ∈ ωuk), where I(⋅) denotes the127

indicator function.128

Example 2. Consider the Butterfly data displayed in Figure 1a, consisting in 12 objects described129

by two attributes. Table 1 shows an evidential partition of these data obtained by EVCLUS, with130

c = 2 clusters. This evidential partition is represented graphically in Figure 1b. We can see that131

object 6, which is located between clusters ω1 and ω2, has the largest mass assigned to Ω = {ω1, ω2}.132

In contrast, object 12, which is an outlier, has the largest mass assigned to the empty set. A133

convenient way to summarize an evidential partition is to approximate each mass function mi134

by a logical mass function m̂i such that m̂i(Ai) = 1 with Ai = arg maxAmi(A). We can then135

compute the lower and approximations of each cluster using (4). Here, we have ωl1 = {7,8,9,10,11},136

ωu1 = {6,7,8,9,10,11}, ωl2 = {1,2,3,4,5} and ωu2 = {1,2,3,4,5,6}. The objects that do not belong to137

the upper approximation of any cluster are outliers, which is the case for object 12 in this example.138

2.3. EVCLUS algorithm139

Evidential clustering aims at generating an optimal evidential partition from attribute or dis-140

similarity data, based on some optimality criterion. The earliest such procedure is EVCLUS1,141

which was introduced in [12] and later improved in [13]. EVCLUS transposes some ideas from142

MDS [4] to clustering. Let D = (δij) be a symmetric n × n dissimilarity matrix, where δij de-143

notes the dissimilarity between objects oi and oj . Dissimilarities may be computed from attribute144

data, or they may be directly available. They need not satisfy the axioms of distances such as the145

triangular inequality, i.e., we may have δik > δij + δk,j for some triple of objects (i, j, k).146

The fundamental assumption underlying EVCLUS is that the more similar are two objects, the147

more plausible it is that they belong to the same cluster. As recalled in Section 2.1, the plausibility148

plij that two objects oi and oj belong to the same cluster is equal to 1−κij , where κij is the degree149

of conflict between mi and mj . The credal partition M should thus be determined in such a way150

that similar objects have mass functions mi and mj with low degree of conflict, whereas highly151

1EVCLUS is implemented with other evidential clustering algorithms in the R package evclust [8] available at
https://cran.r-project.org.
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Figure 1: Butterfly dataset (a) and evidential partition with c = 2 obtained by ECM (b).

Table 1: Evidential partition of the Butterfly data. The largest mass for each object is printed in bold.

object # m(∅) m({ω1}) m({ω2}) m(Ω)
1 0.11 ⋅ 0.89 ⋅
2 0.082 ⋅ 0.75 0.17
3 0.000 ⋅ 0.83 0.17
4 0.082 ⋅ 0.75 0.17
5 ⋅ 0.077 0.56 0.36
6 ⋅ 0.29 0.30 0.42
7 ⋅ 0.55 0.079 0.37
8 0.082 0.73 ⋅ 0.18
9 0.000 0.81 ⋅ 0.19
10 0.082 0.73 ⋅ 0.18
11 0.11 0.87 ⋅ 0.02
12 0.97 0.030 ⋅ ⋅
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dissimilar objects are assigned highly conflicting mass functions. To derive an evidential partition152

M = (m1, . . . ,mn) from D, we can thus minimize the discrepancy between the pairwise degrees153

of conflict and the dissimilarities, up to some increasing transformation. This problem bears some154

resemblance with the one addressed by MDS, which aims to represent objects in some Euclidean155

space, in such a way that the distances in that space match the observed dissimilarities [4]. Here,156

we want to find an evidential partition M that minimizes the following loss function,157

L(M) = 2

n(n − 1)∑i<j
(κij − ϕ(δij))2 , (5)

where ϕ is a fixed nondecreasing mapping from [0,+∞) to [0,1], such as158

ϕ(δ) = 1 − exp(−γδ2), (6)

for some user-defined coefficient γ. In [13], we proposed to set γ = − log 0.05/δ2
0 , where δ0 is some159

quantile of the dissimilarities δij . This parametrization ensures that ϕ(δ) ≥ 0.95 whenever δ ≥ δ0,160

i.e., δ0 is the threshold such that two objects oi and oj with dissimilarity larger than δ0 have a161

plausibility at least 0.95 of belonging to different clusters. In [13], we recommended to set δ0 to162

the 0.9-quantile as the default value, but this parameter sometimes needs to be fine-tuned to get163

optimal results.164

Computing the loss function (5) requires to store the whole dissimilarity matrix, which may165

not be feasible for large datasets. In [13], it was shown that it is often sufficient to minimize the166

sum of squared errors for a subset of object pairs. We can thus replace (5) by167

L(M;J) = 1

np

n

∑
i=1
∑

j∈J(i)
(κij − ϕ(δij))2 , (7)

where J(i) is a randomly selected subset of p < n − 1 indices in {1, . . . , i − 1, i + 1, . . . , n}. The168

calculation of L(M;J) thus requires to store only np dissimilarities δij instead of n(n − 1)/2 for169

the calculation of L(M) in (5). Experiments reported in [13] show that, for a number n of objects170

between 1000 and 10,000, optimal results are obtained with p in the range 100-500.171

In [12], it was originally proposed to minimize a loss function similar to (5) using a gradient-172

based algorithm. A much more efficient cyclic coordinate descent procedure, called Iterative Row-173

wise Quadratic Programming (IRQP) [51] was proposed in [13]. This procedure consists in min-174

imizing the loss with respect to one mass function mi at a time while keeping the other mass175

functions fixed, which can be shown to be a linearly constrained least-squares problem. The IRQP176

algorithm together with the loss function (7) allow EVCLUS to cluster datasets containing up to177

a few tens of thousands of objects.178

Example 3. The fourclass dataset2 is composed of 400 two-dimensional vectors generated from179

four two-dimensional Student distributions. Figure 2 displays the lower and upper approximations180

of each of the four clusters computed from an evidential partition obtained by EVCLUS, with loss181

function (7) and p = 100. The focal sets were restricted to subsets of cardinality less than or equal to182

two, and Ω. As shown in Figure 3a, the algorithm converges in a few dozens of iterations. Figure183

3b shows the Shepard diagram, which displays the degrees of conflict κij versus the transformed184

dissimilarities ϕ(dij).185

2This dataset is part of the R package evclust.
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Figure 3: EVCLUS algorithm applied to the fourclass dataset: (a): loss vs. number of epochs (iterations thorugh
the whole learning set); (b): plot of the degrees of conflict κij vs. the transformed dissimilarities δ∗ij .

3. NN-EVCLUS186

As opposed to prototype-based evidential clustering algorithms such as ECM [36] or CCM [35],187

the EVCLUS algorithm summarized in Section 2.3 does not build a compact representation of188

clusters as a collection of prototypes, but it learns an evidential partition of the n objects directly.189

If each mass function is constrained to have f focal sets, the number of free parameters is, thus,190

n(f − 1), i.e., it grows linearly with the number of objects. This characteristic makes EVCLUS191

impractical for clustering very large datasets. Also, the algorithm learns an evidential partition192

of a given dataset, but it does not allow us to extrapolate beyond the learning set and make193

predictions for new objects. In this section, we describe a neural network version of EVCLUS that194

addresses these issues. This new model will also be shown to outperform EVCLUS and ECM in195

semi-supervised clustering tasks. The model will first be introduced in Section 3.1, and learning196

algorithms will be described in Section 3.2. Finally, semi-supervised learning will be addressed in197

Section 3.3.198

3.1. Model199

Learning data. We assume the learning data to consist in200

• A dissimilarity matrix D = (δij);201

• A collection of n vectors X = (x1, . . . ,xn), each vector xi being composed of d attributes202

describing object oi.203

Most of the time, we get the n attribute vectors first and compute D as, for instance, the matrix204

of Euclidean distances between vectors xi:205

δij = ∥xi −xj∥.

Sometimes, it may be advantageous to compute the dissimilarities using not only the attribute206

vectors, but also side information such as must-link and cannot-link constraints. This case will207
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be investigated in Section 3.3. The most delicate situation is that of pure dissimilarity data, i.e.208

data consisting only in the dissimilarity matrix D. Even then, we may still be able to construct209

a collection of attribute vectors (x1, . . . ,xn) by applying Principal Component Analysis (PCA) to210

the dissimilarity matrix. Examples of this approach will be presented in Section 4.2.211

Basic principle. Any mass function m on Ω with f focal sets F1, . . . , Ff can be represented by a212

mass vector m ∈ [0,1]f . The basic idea behind our approach is to learn a mapping from attribute213

vectors to mass vectors, so as to minimize a loss function such as (5) or (7). For this, we can define214

a parametrized family of mappings215

G = {g(⋅;θ) ∶ Rd → [0,1]f ∣ θ ∈ Θ}.

For each choice of θ, we then have an evidential partition M(θ) = (m1(θ), . . . ,mn(θ)), with216

mi(θ) = g(xi;θ). Let κij(θ) be the conflict between mi(θ) and mj(θ); it can be written using217

matrix notations as218

κij(θ) =mi(θ)TCmj(θ), (8)

where C is the symmetric f × f matrix with general term Cqr = I(Fq ∩Fr = ∅). We can determine219

θ so as to minimize a loss function such as220

L(θ) = 2

n(n − 1)∑i<j
(κij(θ) − δ∗ij)

2
, (9)

where δ∗ij = ϕ(δij) denotes the transformed dissimilarities. Let221

θ̂ = arg min
θ
L(θ)

be the solution to this optimization problem. This approach allows us to predict the cluster222

membership of a new object with attribute vector x by the mass vector m = g(x; θ̂).223

Neural network model. A common choice for a parametrized family of function G is a multi-layer224

feedforward neural network (NN) model [19]. Without loss of generality, let us consider a network225

with one hidden layer of nH neurons with rectified linear units and a softmax output layer. The226

activation ah and the output zh of hidden unit h ∈ {1, . . . , nH} in such a network are defined,227

respectively, as228

ah = vh0 +
d

∑
k=1

vhkxk (10a)

and229

zh = max(0, ah), (10b)

where vhk is the weight of the connection between input k and hidden unit h and vh0 is a bias230

term. Similarly, the activation of output unit q ∈ {1, . . . , f} is231

µq = wq0 +
nH

∑
h=1

wqhzh, (11a)

where wqh is the weight of the connection between hidden unit h and output unit q and wq0 is a232

bias term. The corresponding output of unit q is finally233

mq =
exp(µq)

∑fr=1 exp(µr)
. (11b)
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Outlier detection. NN models such as described above usually have very good performances, but234

they provide arbitrary predictions for inputs that lie in regions with no training data. A trained235

NN might thus not be able to detect outliers in a test set of previously unseen input vectors. (We236

recall that, in EVCLUS, outliers are identified by a large mass assigned to the empty set). To237

address this issue, we propose to optionally couple a feedforward NN with a one-class support238

vector machine (SVM) [45]. A one-class SVM is an unsupervised learning method that constructs239

a “simple” region R of the input space containing a large fraction of the data. This region is240

described by a function f that returns a value f(x) > 0 when x belongs to R, and f(x) < 0 when241

x belongs to the complement of R. Function f has the following expression242

f(x) = α0 + ∑
i∈SV

αiK(x,xi),

where K(⋅, ⋅) is a kernel function fixed a priori, SV ⊂ {1, . . . , n} is the set of indices of the support243

vectors, and the αi are coefficients. The coefficients α0 and αi as well as the support vectors are244

learnt by minimizing a loss function. Thanks to the kernel trick, one-class SVMs can adapt to245

arbitrarily complex input vector distributions and make it possible to detect new input vectors246

generated from a different distribution (a problem often referred to as “novelty detection” [45]).247

Let m = g(x) be the mass vector computed by the NN for input x, and f(x) the output of the248

one-class SVM. We define a transformed mass function m∗ as249

m∗ = γm + (1 − γ)m∅, (12)

where m∅ is the mass vector corresponding to the mass function m∅ such that m∅(∅) = 1, and250

γ ∈ [0,1] is a coefficient defined as an increasing function of f(x) such that γ → 1 when f(x)→ +∞251

and γ → 0 when f(x)→ −∞ . For instance, we can define γ as252

γ = η

1 + η
(13a)

where η is related to an affine function of f(x) by the “softplus” mapping [19]253

η = log [1 + exp(β0 + β1f(x))] . (13b)

The complete model is illustrated in Figure 4.254

3.2. Learning255

The one-class SVM in the above model can be trained separately using standard algorithms256

described in [45]. Here, we focus on the training of the NN component, which can be done by257

minimizing a loss function such as (9), which is the average over all objet pairs (i, j) of the error258

Lij(θ) = (κij(θ) − δ∗ij)
2
. (14)

We can remark that the error is not computed for every instance as in standard NN training,259

but for every pair of instances. We can view the learning process as two identical (or “Siamese”260

[5]) networks operating in parallel, as illustrated in Figure 5. For each (xi,xj), one input xi is261

presented to the first network and xj is presented to the second one. The degree of conflict κij262

between output mass functions m∗
i and m∗

j is then computed using (8), and the error is defined as263

the squared difference between κij and the transformed dissimilarity δ∗ij .264

11



x

f(x)

m

g

m*

V W

aSV

m⌀

One-class SVM

Feed-forward NN

b0

b1

1
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Figure 5: The learning process of EVCLUS seen as two identical “Siamese” networks operating in parallel.

12



Subset 1

Subset 2

Subset 3

Subset 4

Randomly
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Figure 6: Illustration of the sampling procedure. The objects are randomly ordered and partitioned into s subset
(s = 4 in the figure). Distances within each subsets are computed. This procedure gives us s mini-batches of
approximately (n/s)[(n/s) − 1]/2 pairs. (Only half of the distance sub-matrices need to be computed as they are
assumed to be symmetric).

The calculation of the error derivatives is detailed in Appendix A. The learning can be done265

in batch mode for small or medium-size datasets or using mini-batch stochastic gradient descent266

(SGD) for large datasets. In batch mode, we can directly minimize the average loss (9) over the267

whole distance matrix, or over a subset of distances as done in EVCLUS (see Eq. (7)). In the268

latter case, the average loss is269

L(θ) = 1

np

n

∑
i=1
∑

j∈J(i)
Lij(θ), (15)

where J(i) is a subset of {1, . . . , n} of cardinality p, randomly selected before the learning process.270

Minimizing (15) instead of (9) allows us to store only np distances instead of n(n − 1)/2 and271

to accelerate the calculations. To implement mini-batch SGD, we need to randomly sample q272

pairs (xi,xj) and average the gradient of Lij over these q pairs before each weight update. This273

sampling can be done in several ways. One approach is to randomly order the objects, partition274

them in s subsets of approximately equal size n/s, and compute all the pairwise distances within275

each subset. This gives us s mini-batches of approximately (n/s)[(n/s) − 1]/2 pairs (i, j). This276

sampling procedure is illustrated in Figure 6.277

Architecture design and regularization. To implement the NN-EVCLUS method, we need to select278

the number c of clusters, the focal sets and the NN architecture (number of layers and number of279

units per layer).280

To determine the number of clusters, we can use automatic selection criteria such as the non-281

specificity measure proposed in [36], or an interactive approach based on visualization techniques,282

such as the δ −Bel graph proposed in [49]. The latter approach is less computationally intensive283

and often more reliable than the former; it will be adopted in this paper.284

The choice of the set F of focal sets depends on the number c of clusters. For small values285

of c (say, c ≤ 5), all 2c focal sets can be considered. For small and medium values of c (typically,286

c ≤ 10), we can consider only the subsets of cardinality less than or equal to 2, and the frame Ω.287

For large c, a common choice is to keep only the empty set, the singletons, and Ω. Alternatively,288

we can adopt the two-step strategy proposed in [13], in which we first fit the model with singletons289

(as well as ∅ and Ω), and then include selected pairs of neighboring clusters in a second step.290
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As far as the network architecture is concerned, we have found one hidden layer to be sufficient291

for most datasets. However, it is possible that very complex datasets would require two hidden292

layers or more. Assuming one hidden layer, the next decision to make is on the number nH of293

hidden units. If the emphasis is on clustering a single data set, we need not concern ourselves with294

generalization and we can choose nH large enough to reach a small enough discrepancy between295

degrees of conflict and transformed distances. If we can run EVCLUS, then the loss reached296

by EVCLUS can be considered as a lower bound of the loss achievable by NN-EVCLUS (as the297

latter model has fewer free parameters). If we intend to use the model for prediction, then some298

complexity control technique should be used. A common approach of regularization: for instance,299

`2 regularization combined with (15) gives us the following regularized loss function:300

LR(θ) =
1

np

n

∑
i=1
∑

j∈J(i)
Lij(θ) +

λ

2

⎛
⎝

1

nH(d + 1)∑h,k
v2
hk +

1

f(nH + 1)∑q,h
w2
qh

⎞
⎠
,

where hyperparameter λ can be tuned by cross-validation or using the hold-out method. When us-301

ing mini-batch SGD, regularization can, alternatively, be obtained by the early stopping technique302

(interrupting the learning process when the loss computed on a validation set starts increasing).303

Complexity. From Eqs. (8) and (14)-(15), the complexity of computing the loss function in batch304

mode is O(nkf2), and from Eqs (A.1)-(A.10), the gradient of the loss function with respect to the305

weights (for a network with one hidden layer) can be computed in O(nknHf(f + d)) operations.306

The complexity is, thus, proportional to the number n of objects and to f2, which confirms the307

necessity of limiting the number f of focal sets when the number c of clusters is large. Keeping308

only the singletons, the empty set and Ω, we have f = c + 2, and the number of operations for the309

gradient calculation becomes proportional to c2.310

Example 4. As an example, we consider again the fourclass dataset of Example 3. As this dataset311

has only two features it is easy to determine the number of clusters by just displaying the data.312

The four clusters are also very clearly visible in the δ−Bel graph shown in Figure 7. In this graph,313

Bel denotes the degree of belief that an attribute vector is a cluster center, and δ is the minimum314

distance to vectors with a higher value of Bel [49]. Cluster centers are typically located in the315

upper-right corner of the graph.316

For the one-class SVM part we used the ν-SVM algorithm in R package kernlab [28] with a317

Gaussian kernel. This method has two hyperparameters: ν, which is an upper bound on the fraction318

of outliers, and the kernel width σ. We set ν = 0.2 and σ = 0.2. Contours of the SVM output f(x)319

are shown in Figure 8a.320

For the NN part, we set nH = 20 and λ = 0. The focal sets were restricted to the subsets of321

cardinality less than or equal to 2, and the frame Ω. The network was trained in batch mode using a322

gradient-based procedure quite similar to the method described in [47]. We minimized loss function323

(15) with p = 100. We started the algorithm from five independent random conditions and we kept324

the best result. The learning curve is shown in Figure 9a with the loss of EVCLUS as a comparison,325

and the Shepard diagram is displayed in Figure 9b. Comparing Figures 3b and 9b, we can see that326

the quality of the approximation is similar for EVCLUS and NN-EVCLUS. The former algorithm327

reaches a loss of 4.75 × 10−3, while the latter yields 5.64 × 10−3.328

The obtained evidential partition, shown in Figure 10, is similar to that obtained by EVCLUS,329

which is displayed in Figure 2. However, NN-EVCLUS also allows us to predict the cluster mem-330

bership of new objects. Figure 11 shows the predicted evidential partition of a data set of 1000331
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Figure 9: (a): Learning curve of a NN trained in batch mode on the fourclass dataset (solid line), and value of
the loss reached by EVCLUS (horizontal broken line); (b): plot of the degrees of conflict κij vs. the transformed
dissimilarities δ∗ij .

vectors drawn from the same distribution as fourclass (a mixture of four multidimensional Student332

distributions). We can see that the four clusters and the outliers are correctly identified. Figure333

12 shows contours of the masses assigned to the singletons (Figures 12a-12d) and some pairs of334

clusters (Figures 12e-12h) as functions of x, and Figure 13 displays contour plots of the plausibility335

of each of the four clusters as functions of x. A contour plot of the mass on the empty set is shown336

in Figure 8b.337

Figure 14 shows the influence on the training and test performance of the number nH of hidden338

units (Figure 14a) and of the regularization coefficient λ (Figure 14b) with nH = 50. The test loss339

was computed using a dataset represented in Figure 11. As expected, the training error decreases340

slowly with nH while the generalization reaches a plateau at nH = 45. Similarly, the training error341

increases with λ for fixed nH , but the generalization error reaches a minimum for λ = 10−5.342

3.3. Using side information343

In many cases, additional knowledge about some objects can guide the learning process. In344

clustering, such knowledge may take the form of pairwise constraints specifying that some objects345

belong to the same class (must-link constraints), or belong to different classes (cannot-link con-346

straints). In evidential clustering, a variant of ECM (called CECM) dealing with such constraints347

was first introduced in [1]. The constrained version of EVCLUS (called CEVCLUS) was then348

introduced in [2], and improved in [32].349

CEVCLUS minimizes a loss function that is the sum of the squared error loss and a penalization
term defined as follows. Let Sij denote the event that objects i and j belong to the same cluster,
and Sij the complementary event. Given mass functions mi and mj about the cluster membership
of objects i and j, the plausibility of Sij and Sij can be computed as follows [1]:

Plij(Sij) = 1 − κij (16a)

Plij(Sij) = 1 −mi(∅) −mj(∅) +mi(∅)mj(∅) −
c

∑
k=1

mi({ωk})mj({ωk}). (16b)
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Figure 10: Lower and upper approximations of the four clusters for the fourclass dataset found by NN-EVCLUS. The
true classes are displayed with different colors. The identified clusters are plotted with different symbols. The convex
hulls of the cluster lower and upper approximations are displayed using solid and interrupted lines, respectively. The
outliers are indicated by circles.
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Figure 11: Lower and upper approximations of the four clusters for a test dataset of size 1000 drawn from the same
distribution as the fourclass dataset. The true classes are displayed with different colors. The identified clusters are
plotted with different symbols. The convex hulls of the cluster lower and upper approximations are displayed using
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Figure 12: Contour plot of the masses assigned to singletons (a-d) and pairs of contiguous clusters (e-h) by NN-
EVCLUS for the fourclass dataset.

19



0 5 10

−
4

−
2

0
2

4
6

8

pl(ω1)

(a)

0 5 10

−
4

−
2

0
2

4
6

8

pl(ω2)

(b)

0 5 10

−
4

−
2

0
2

4
6

8

pl(ω3)

(c)

0 5 10

−
4

−
2

0
2

4
6

8

pl(ω4)

(d)

Figure 13: Contour plot of plausibilities of each of the four clusters obtained by NN-EVCLUS for the fourclass
dataset.
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Figure 14: Training (solid lines) and test (broken lines) loss of NN-EVCLUS on the fourclass dataset vs. number nH
of hidden units (a) and vs. regularization coefficient λ (b) with 50 hidden units.

We note that the pair (Plij(Sij), P lij(Sij)) can take any value in [0,1]2; for instance, if mi(∅) =350

mj(∅) = 1, then Plij(Sij) = Plij(Sij) = 0, and if mi(Ω) =mj(Ω) = 1, then Plij(Sij) = Plij(Sij) = 1.351

For objects i and j known to belong to the same cluster, Plij(Sij) should be high and Plij(Sij)352

should be low, and the converse holds if objects i and j are known to belong to different clusters.353

The loss function of CEVCLUS is thus defined as354

Lc(M) = L(M) + ξ

2(∣ML∣ + ∣CL∣)
(PML +PCL), (17)

with

PML = ∑
(i,j)∈ML

(Plij(Sij) + 1 − Plij(Sij)) , (18a)

PCL = ∑
(i,j)∈CL

(Plij(Sij) + 1 − Plij(Sij)) , (18b)

where L(M) is the squared error loss defined by (5) or (7), ξ is a hyperparameter that controls355

the trade-off between the stress and the constraints, and ML and CL are the sets of must-link and356

cannot-link constraints, respectively. The constrained loss (17)-(18) was minimized by gradient357

descent in the original version of CEVCLUS [2]; a more efficient cyclic coordinate descent algorithm358

was proposed in [32].359

Another form of prior information may come as a subset of labeled objects. This is the point360

of view of semi-supervised learning [6]. This approach is relevant when classes are already defined,361

but only a subset of objects can be labeled because of time or cost constraints. Given a subset362

of labeled data, it is possible to derive must-link and cannot-link contraints, but the converse is363

false in general: the pairwise constraint formalism is thus more general. Semi-supervised learning364

is rather seen as an extension of supervised classification, whereas constrained clustering is seen as365

an extension of fully unsupervised learning. Both types of side information can easily be exploited366

by NN-EVCLUS, as will be explained below.367
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Integration of pairwise constraints. Pairwise constraints can be easily integrated in NN-EVCLUS368

using a penalized loss such as (17). From (8), we have369

Plij(Sij) = 1 −m∗T
i Cm

∗
j =m∗T

1 (11T −C)m∗
j ,

where 1 is a column vector of length f whose components are all equal to 1. Similarly, we can370

write371

Plij(Sij) = 1 −m∗T
i Em

∗
j −m∗T

i Sm
∗
j =m∗T

1 (11T −E −S)m∗
j ,

where E is a square matrix of size f defined as

E =
⎛
⎜⎜⎜
⎝

1 1 ⋯ 1
1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
1 0 ⋯ 0

⎞
⎟⎟⎟
⎠

and S is the square matrix of size f with general term

(S)k` =
⎧⎪⎪⎨⎪⎪⎩

1 k = `, ∣Fk∣ = 1

0 otherwise.

Consequently, we can rewrite (18) as

PML = ∑
(i,j)∈ML

m∗T
i Qm

∗
j (19a)

PCL = ∑
(i,j)∈CL

(2 −m∗T
i Qm

∗
j ) , (19b)

with Q = 11T +C −E −S. The gradients of PML and PCL with respect to the network parameters372

are given in Appendix B.373

Integration of labeled data. Let us assume that we have ns labeled attribute vectors {(xi, yi), i ∈ Is},374

where Is ⊆ {1, . . . , n}, and yi ∈ Ω is the class label of object i. We can use this information by375

minimizing a penalized loss of the form376

LS(θ) = (1 − ν)L(θ) + νPs, (20)

where ν is a coefficient and Ps is a penalization term defined as377

Ps =
1

ns
∑
i∈Is

c

∑
l=1

(pl∗il − yil)
2. (21)

In (21), yil = I(yi = ωl), pl∗il = pl
∗
i (ωl), and pl∗i is the contour function corresponding to m∗

i . The378

rationale behind (21) is that, when object i is known to belong to class l, the plausibility of that379

class should be high, while the plausibility of the other classes should be low. We can notice than,380

when ns = n, the learning task becomes fully supervised. The gradient of Ps with respect to the381

model parameters is given in Appendix C382
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Metric adaptation. Although it has been shown that CEVCLUS has the ability to use of pairwise383

constraints to improve clustering results [2, 32], it can fail to do so effectively when the constraints384

are inconsistent with the distance matrix. As recalled in Section 2.3, EVCLUS is based on the385

assumption that similar objects are likely to belong to the same cluster and, conversely, dissimilar386

objects plausibly belong to different clusters. If pairwise constraints are provided, which force387

similar objects to belong to different clusters, or dissimilar objects to belong to the same cluster,388

then the two terms in loss function (17) may become strongly inconsistent and CEVCLUS may389

fail to find a suitable evidential partition.390

An approach to solve this problem is to use the additional information (pairwise constraints391

or labeled data) to learn a metric such that objects that are known to belong to different clusters392

become further apart, while objects in a given cluster are as similar as possible. When labeled393

data are provided, we can extract discriminant features using classical Fisher Discriminant Analy-394

sis (FDA) or a nonlinear version such as Local Fisher Discriminant Analysis (FDA) [50] or Kernel395

Fisher Discriminant Analysis (KFDA) [57], and compute the distance matrix in the new feature396

space. When pairwise constraints are available, we can use feature extraction techniques such as397

Learning with Side Information (LSI) [54], Distance Metric Learning with Eigenvalue Optimiza-398

tion (DML-eig) [59], Pairwise Constrained Component Analysis (PCCA) or its kernelized version399

KPCCA [38].400

Example 5. The circles dataset shown in Figure 15 is composed of 500 two-dimensional vectors401

distributed in a spherical cluster surrounded by a circular-shaped cluster. The proportions of the two402

clusters are, respectively, 2/5 and 3/5. NN-EVCLUS cannot find this partition without additional403

knowledge, because it violates the fundamental assumption that two dissimilar objects are unlikely404

to belong to the same cluster: maximally distant points on the circle at the extremities of a diameter405

actually belong to the same cluster. We can, however, use additional information in the form of406

pairwise constrained or labeled data and modify the distance matrix accordingly.407

To illustrate this approach, we randomly generated 50 object pairs, which gave us 22 must-408

link constraints and 28 cannot-link constraints as shown, respectively, in Figure 15a and 15b.409

These constraints represent a tiny fraction of the 500 × 499/2 = 124750 object pairs. We used410

this information to extract a discriminant feature by KPCCA[38] using a Gaussian kernel with411

inverse kernel width σ = 0.3. As shown in Figure 16, the data are linearly separable in this new412

one-dimensional feature space. The Euclidean distance matrix in the original space and in the413

transformed space are shown, respectively, in Figure 17a and 17b.414

We trained NN-EVCLUS with the original features x and the Euclidean matrix in the KPCCA415

feature space, with nH = 30 hidden units, λ = 0.01, and the loss function (17) with ξ = 0.1. (The416

results are not sensitive to ξ in this example, and even setting ξ = 0, i.e., ignoring the constraints417

gives good results thanks to the very good separation in the transformed feature space). The results418

are shown as contour plots of the masses assigned to each of the four focal sets in Figure 18, and419

as contour plots of the plausibilities of the two classes in Figure 19. We can see that a meaningful420

evidential partition has been found and the two clusters are perfectly separated (as shown by the421

decision boundary plotted in red in Figure 19).422

Similar results were obtained with 50 randomly selected labeled instances as shown in Figure423

20a, using KFDA instead of KPCCA, and penalized loss function (20). The distributions of the424

discriminant feature extracted by KFDA in each of the two classes are shown in Figure 20b, and425

contour plots of the plausibilities of the two classes computed by NN-EVCLUS trained in semi-426

supervised mode with the 50 labeled data are displayed in Figure 21. By comparing Figures 19 and427
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Figure 15: The circles dataset with must-link (a) and cannot-link (b) constraints.

21, we can see that the results are almost identical.428

4. Comparative experiments429

In this section, we compare the performances of NN-EVCLUS with those of alternative evi-430

dential clustering algorithms on a sample of publicly available datasets. All the simulations were431

performed using an implementation of our algorithm in R publicly available in package evclust432

[8]. Fully unsupervised clustering of attribute and dissimilarity data will first be addressed, respec-433

tively, in Sections 4.1 and 4.2. Clustering with pairwise constraints will then be studied in Section434

4.3.435

4.1. Unsupervised clustering of attribute data436

Data sets. We considered the 14 publicly available real and artificial datasets summarized in Table437

2. These datasets all contain attribute data and have a wide range of characteristics in terms438

of input dimension and number of clusters. For the Ecoli dataset, we used only the quantitative439

attributes (2, 3, 6, 7, and 8) and the four most frequent classes: ‘im’, ‘pp’, ‘imU’ and ‘cp’; we then440

merged the classes ‘im’ and ‘imU’, resulting in a dataset with 307 objects described by five attributes441

and partitioned into three clusters. The Letters4p1 is a subset of the “Letter Recognition” dataset442

from the UCI machine learning repository [14] containing six clusters. The Mice dataset is a part of443

the data analyzed in [22]; it contains the expression levels of 22 proteins for the trisomic mice: we444

considered the 26 proteins listed in columns 4 and 5 of Table 3 in [22], and we retained only the 22445

of them without missing values. The three classes are: “t-SC-m” (shock-context with memantine),446

“t-SC-s” (shock-context with saline) and “t-CS” (context-shock with either memantine or saline).447

The DryBean dataset is a subset of the data analyzed in [30], with 200 randomly selected objects448

in each class. The Leaves5p1 dataset [18] is a subset of the “One-hundred plant species leaves” in449

the UCI database [14] containing 320 objects from 20 classes. All datasets contain only numerical450

attributes; the dissimilarities were computed as Euclidean distances between attribute vectors.451
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Figure 16: Boxplots of the feature extracted by KPCCA for the circles data with the pairwise constraints shown in
Figure 15.
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Figure 17: Image representations of the distances matrices of the circles data in the original space (a) and in the
transformed space generated by KPCCA (b). (This figure is better viewed in color).
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Figure 18: Contour plots of the masses assigned to each of the four focal set by NN-EVCLUS trained on the circles
dataset with the pairwise constraints shown in Figure 15.
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Figure 19: Contour plot of plausibilities of each of the two clusters obtained by NN-EVCLUS for the circles dataset
with the pairwise constraints shown in Figure 15. The red thick line represents the decision boundary between the
two clusters defined as the curve with equation pl(ω1) = pl(ω2).
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Figure 20: The circles dataset with 50 randomly selected labeled instances (a), and boxplot of the discriminant
feature extracted by KFDA (b) using the labeled data.
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Figure 21: Contour plot of plausibilities of each of the two clusters obtained by NN-EVCLUS for the circles dataset
with the 50 labeled instances shown in Figure 20a. The red thick line represents the decision boundary between the
two clusters defined as the curve with equation pl(ω1) = pl(ω2).

Table 2: Number n of objects, number d of attributes and number c of clusters for each of the 14 attribute datasets
used in this study.

Name n d c Source

Wine 178 13 3 [14]
Iris 150 4 3 [43]
Ecoli 307 5 3 [14]
Heart 270 13 2 [14]
Seeds 210 7 3 [14]

Letters4p1 4634 16 6 [18]
Glass 214 10 6 [14]

Segment 2310 16 7 [14]
S2 5000 2 15 [18]
S4 5000 2 15 [18]
D31 3100 2 31 [18]
Mice 507 22 3 [14][22]

DryBean 1400 16 7 [14][30]
Leaves5p1 320 64 20 [18]
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Algorithms. As alternative evidential clustering algorithms, we considered EVCLUS [13], ECM452

[36], CCM3 [35], sECMdd, wECMdd4 [61], BPEC [49] and Bootclus [7]. The number of clusters453

was assumed to be known. For EVCLUS and NN-EVCLUS, we restricted the focal sets to the454

empty set, singletons, pairs and Ω, except when the number c of clusters was equal to or larger455

than 5, in which case the pairs were not included in the focal sets. Parameter δ0 was set to the456

0.9-quantile of distances for c ≤ 4 and to a smaller value (0.5, 0.2 or 0.1 quantile) for datasets457

with a larger number of clusters (as a heuristic, δ0 should be smaller when the number of clusters458

is larger). For NN-EVCLUS, the number of hidden units was set to 1.5 times the number of459

focal sets. We used batch learning for small datasets (n ≤ 1000) and minibatch learning with460

the RMSprop algorithm [19, page 300] for larger datasets. For ECM, we used as focal sets the461

empty set, singletons and pairs. When the number of clusters was strictly greater that 3, we462

used the two-step strategy described in [13]: we first trained the model with the empty set and463

singletons; we then identified pairs of clusters that are mutual nearest neighbors according to a464

similarity measure, and we re-trained the model after including these pairs as focal sets. The same465

strategy was applied with BPEC, for which we used the version of ECM with an adaptive metric466

[1]. The Bootclus method is based on the bootstrap and Gaussian mixture models (GMMs); we467

used the default settings of function bootclus in package evclus: B = 500 bootstrap samples and468

bootstrap percentile confidence intervals at level 1 − α = 0.9. Function bootclus calls function469

Mclust of package mclust, which selects the best GMM according to the Bayesian information470

criterion (BIC).471

The δ −Bel method was used to identify cluster centers. When these centers were clearly dis-472

cernible in the δ −Bel graph, they were used with BPEC. We also considered ways of exploiting473

this information with other methods. For ECM and CCM, the cluster centers were used as initial474

prototypes (the corresponding methods will be denoted, respectively, as ECM-bp and CCM-bp).475

For NN-EVCLUS, we treated these centers as labeled data and optimized loss function (20) with476

ν = 0.5; the corresponding method will be denoted as NN-EVCLUS-bp. For the Leaves5p1 dataset,477

as the belief peaks did not identify all clusters, we used the attribute vectors with maximum plau-478

sibility in each class (one vector per class) obtained with EVCLUS instead. The CCM algorithm479

was used with the empty set, the singletons, the pairs and Ω as focal sets; the parameters were set480

to the default parameters as recommended by the authors [35], i.e., γ = 1, β = 2 and Tc = 2. As in481

ECM and BPEC, parameter δ, which controls the number of outliers was set to 5. Similarly, we482

used the default values recommended in [61] for sECMdd (β = 2, α = 2, η = 1, γ = 1) and wECMdd483

(β = 2, α = 2, ξ = 5, ψ = 2). All algorithms were run five times and we kept the best solution in484

terms of loss or objective function.485

Performance criteria. Measuring the quality of evidential partitions is a difficult problem. One486

approach is to convert the evidential partition into a hard partition by assigning each object to487

the cluster with the highest plausibility, and compare the resulting hard partition to the ground-488

truth partition using, e.g., the adjusted Rand index (ARI) [24]. This approach provides easily489

interpretable results and makes it possible to rank evidential clustering algorithms according to490

the similarity between the evidential partition and the true partition. However, it does not account491

for the specific characteristics of evidential partitions. In [11], we proposed evidential extensions492

of the Rand index, and we argued that the quality of an evidential partition could be described493

3Our R code for CCM was translated from Matlab code provided by Prof. Zhunga Liu.
4The R code for sECMdd and wECMdd was provided by Dr. Kuang Zhou.
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Figure 22: Partial order induced by consistency and nonspecificity: evidential partition M′ dominates M (denoted
as M′ ⪰M) if it has higher consistency and lower nonspecificity, and it is dominated by M (denoted as M ⪰M′) if
it has lower consistency and higher nonspecificity.

by two numbers: a consistency index (CI) measuring its agreement with the true partition, and a494

nonspecificity index (NS) measuring its imprecision. We generally aim at high consistency and low495

nonspecificity, so that the pair of indices (CI,NS) induces a partial order: an evidential partition496

M′ is better than an evidential partition M if it has a higher consistency index and a lower497

nonspecificity (see Figure 22) [11]. Here, we computed the three indices (ARI, CI and NS) for each498

of the methods applied to each dataset.499

Results and discussion. The ARI values obtained by the 11 methods on the 14 datasets are shown500

in Table 3. For each dataset, the best result is printed in bold, and the values within 5% of the501

best result are underlined. The δ −Bel method failed to identify the centers of all clusters for the502

Letters4p1, Glass, Segment and Leaves5p1 datasets; for this reason, the methods using cluster centers503

identified by this method (NN-EVCLUS-bp, ECM-bp, CCM-bp and BPEC) are not given for these504

datasets. Also, our implementations of sECMdd, wECMdd and Bootclus failed to converge in a505

reasonable amount of time for the S2, S4 and D31 characterized by large numbers of objects and506

clusters; no results are thus reported for these methods on these datasets.507

We can see from Table 3 that NN-EVCLUS yielded either the best results in terms of ARI,508

or results close to the best ones for all datasets, except Iris and Segment, for which Bootclus gave509

better results, which can be explained by the presence of nonspherical clusters; even for these two510

datasets, NN-EVCLUS yielded the second best results in terms of ARI. Using the cluster centers511

identified by the δ − Bel method makes it possible to improve the results of NN-EVCLUS most512

of the time, particular when the number of clusters is large (as in the S2, S4 and D31 datasets).513

Whereas the methods based on prototypes (ECM, CCM and BPEC) work well on artificial datasets514

with well-separated clusters, they are outperformed by EVCLUS and NN-EVCLUS on real datasets515

characterized by highly overlapping clusters. The sECMdd and wECMdd were outperformed by516

other methods on all datasets. NN-EVCLUS with random initialization performs equally well as,517

or better than EVCLUS on most datasets, except when the number of clusters is large (as in the518

S2, S4 and D31 datasets), in which case NN-EVCLUS may fail to find a deep minimum of the loss519

function; in these cases, using prior information provided by the δ −Bel method is crucial. When520

the δ −Bel fails, using maximum plausibility attribute vectors provided by EVCLUS seems to be521

a good strategy for training NN-EVCLUS when the number of clusters is large, as shown by the522
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Figure 23: Consistency index (vertical axis) vs. nonspecificity (horizontal axis) for the Wine (a), Iris (b), Ecoli (c),
Heart (d), Seeds (e) and Letters4p1 (f) datasets.

good results obtained on the Leaves5p1 dataset.523

Figures 23-25 display the consistency indices and nonspecificities of the evidential partitions524

generated for the 14 datasets. These graphs allow us to visualize the dominance relations between525

evidential partitions. For instance, in Figure 23d related to the Heart data, we can see that the526

evidential partitions generated by Bootclus and EVCLUS dominate that generated by EMMdd,527

and that the evidential partition generated by CCM is dominated by that generated by EVCLUS-528

bp; the evidential partitions generated by Bootclus, EVCLUS, NN-EVCLUS, NN-EVCLUS-bp,529

and CCM-bp are not dominated. From Figures 23-25, we can see that the evidential partitions530

generated by NN-EVCLUS and NN-EVCLUS-bp are generally not dominated by those obtained531

by any of the others algorithms, except Bootclus on the Wine (Figure 23a), Ecoli (Figure 23c),532

Seeds (Figure 23e), and Leaves5p1 (Figure 25c) datasets. In contrast, NN-EVCLUS dominates533

Bootclus on the Letters4p1 data (Figure 23f). These results confirm the very good performance of534

NN-EVCLUS, which is only outperformed by Bootclus on a minority of datasets.535

Computing time. Computing time is an important issue when clustering large datasets. It is not so536

easy to measure intrinsically because it depends on the implementation of the algorithms. Table 4537
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Figure 24: Consistency index (vertical axis) vs. nonspecificity (horizontal axis) for the Glass (a), Segment (b), S2
(c), S4 (d) and D31 (e) datasets.
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Figure 25: Consistency index (vertical axis) vs. nonspecificity (horizontal axis) for the Mice (a), DryBean (b), and
Leaves5p1 (c) datasets.
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Table 4: Means and standard deviations (in parentheses) of CPU times (in seconds) over five runs of EVCLUS,
NN-EVCLUS, ECM and CCM applied to the S4 and D31 datasets (see implementation details in the text).

EVCLUS NN-EVCLUS ECM CCM

S4 55.75 (11.2) 430.02 (21.5) 10.51 (3.3) 248.09 (64.7)
D31 94.88 (19.8) 400.60 (82.7) 46.08 (10.6) 1728.82 ( 430.5)

reports the mean and standard deviations of the CPU times (in seconds) over five runs of EVCLUS,538

NN-EVCLUS, ECM and CCM applied to two of the largest datasets studied in this section: S4 and539

D31. The algorithms were coded in R and executed on a 2019 16” MacBook Pro with a 2.4 GHz540

8-core Intel i9 processor. EVCLUS was run with p = 500 and with the empty set, the singletons541

and Ω as focal sets. For NN-EVCLUS, we used the same focal sets as with EVCLUS and 30 hidden542

units; the neural network was randomly initialized and trained using the RMSprop algorithm with543

s = 30 mini-batches and coefficients ε = 0.001, ρ = 0.9 and δ = 10−8. For ECM, we used the two-544

step procedure recalled above (the model was first trained with the empty set and singletons, and545

was then re-trained after including selected pairs of clusters as focal sets). For CCM, we used546

the empty set, the singletons, the pairs and Ω as focal sets, but the coefficient Tc limiting the547

cardinality of the focal set was set to 2. We note that we included neither sECMdd nor wECMdd548

in this comparison as these algorithms require to store the whole dissimilarity matrix and they are549

extremely slow when applied to dataset of more than 1000 objects. We can see that NN-EVCLUS550

consumes significantly more time than EVCLUS and, to an even greater extent, ECM. The CCM551

algorithm was very slow on the D31 dataset because our implementation requires to use all pairs552

of clusters as focal sets. We can remark that the execution of NN-EVCLUS could be dramatically553

accelerated by running the code on GPU, which is left for further development.554

4.2. Unsupervised clustering of dissimilarity data555

Whereas the EVCLUS algorithm was initially introduced for clustering dissimilarity data [12,556

13], it may seem that this possibility is lost with NN-EVCLUS, which uses attributes as input, in557

addition to a distance of dissimilarity matrix. However, it is still possible to cluster dissimilarity558

data with NN-EVCLUS by using dissimilarities as attributes. More precisely, let D = (δij) be559

the n × n dissimilarity matrix. Each object i can be described by the n-dimensional vector δi =560

(δi,1, . . . , δi,n) of its distances to the n objects (including itself), which corresponds to a row of561

matrix D and can be regarded as a vector of n attributes. To reduce the dimensionality of the562

representation, we can apply Principal Component Analysis (PCA) to these vectors and project563

the data on the subspace spanned by the p first principal components, resulting in the description564

of each object i by a p-dimensional attribute vector xi. We note that the attributes of any new565

object can be obtained from its dissimilarities to the n objects in the learning set by multiplying566

the centered vector of dissimilarities by the projection matrix.567

Datasets. To study the application of NN-EVCLUS to nonmetric dissimilarity data, we considered568

four datasets:569

1. The Protein dataset5 [23, 20, 12] consists of a dissimilarity matrix derived from the struc-570

tural comparison of 213 protein sequences. Each of these proteins is known to belong to571

5This dataset is part of the evclust R package [8].
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one of four classes of globins: hemoglobin-α (HA), hemoglobin-β (HB), myoglobin (M) and572

heterogeneous globins (G).573

2. The ChickenPieces dataset6 is composed of dissimilarities between 446 binary images repre-574

sents the silhouettes of five parts of chickens. There are thus c = 5 clusters. The dataset575

is composed of 44 dissimilarity matrices corresponding to different ways of computing the576

dissimilarities. As in [1], we used matrix chickenpieces-20-90 in our experiments. Since577

the data are slightly asymmetric, we computed a new matrix D = (δij) by the transformation578

δij ← (δij + δji)/2.579

3. The Zongker dataset contains similarities between 2000 handwritten digits in 10 classes, based580

on deformable template matching. The dissimilarity measure is the result of an iterative581

optimization of the non-linear deformation of the grid [26]. Again, we made the dissimilarity582

matrix symmetric by the transformation δij ← (δij + δji)/2.583

4. The Gestures dataset consists of the dissimilarities computed from a set of gestures in a sign-584

language study [33]. They were measured by two video cameras observing the positions the585

two hands in 75 repetitions of creating 20 different signs. There are thus 1500 objects grouped586

in 20 clusters. The dissimilarities were computed by a dynamic time warping procedure.587

Algorithms. As alternative evidential relational clustering algorithms, we considered EVCLUS [13],588

RECM [37], sECMdd and wECMdd [61]. We used the same focal sets for EVCLUS, NN-EVCLUS589

and RECM (the empty set, the singletons and Ω). For sECMdd and wECMdd, we used the empty590

set, the singletons, the pairs and Ω. The other parameter values for each of these algorithms591

are summarized in Table 5. For RECM, sECMdd and wECMdd, we used the default settings592

recommended by the authors [37, 61]. The batch version of NN-EVCLUS was run for the Protein593

dataset, and the mini-batch version (with 10 mini-batches and the RMSprop algorithm) was applied594

to the three other datasets. Each algorithm was run five times, and the best solution in terms of595

the loss or objective function was retained.596

Results. The performances of the five methods in terms of ARI are shown in Table 6. As we can597

see, EVCLUS and NN-EVCLUS outperform the other methods for the four datasets, NN-EVCLUS598

reaching slightly higher values of ARI for the ChickenPieces, Zongker and Gestures datasets. As be-599

fore, we also display the nonspecificity and consistency indices of the obtained evidential partitions600

for the four datasets in Figure 26. We can see that sECMdd and wECMdd produce less specific601

evidential partitions, due to the selection of pairs as focal sets. The evidential partitions produced602

by EVCLUS and NN-EVCLUS strictly dominate those obtained by ECMdd and wECMdd for the603

Protein dataset (Figure 26a), and the one produced by RECM for the ChichenPieces dataset (Figure604

26b). The evidential partitions produced by NN-EVCLUS are always nondominated.605

Computing time. The mean and standard deviations of the CPU times (in seconds) over five runs606

of EVCLUS, NN-EVCLUS, RECM, sECMdd and wECMdd applied to the Protein, ChickenPieces,607

Zongker and Gestures datasets are reported in Table 7. Again, the algorithms were coded in R608

and executed on a 2019 16” MacBook Pro with a 2.4 GHz 8-core Intel i9 processor. These times609

are only indicative because they obviously depend on implementation. The settings were those610

described in Table 5. The RECM procedure is the fastest of all four algorithms, but it performs611

poorly on the fours datasets considered in the eperiment. In contrast, the good performances of612

6The ChickenPieces, Zongker and Gestures datasets are available at http://prtools.org/disdatasets.
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Table 6: ARI values for the five methods on the four dissimilarity datasets. The best value for each dataset is printed
in bold, and the values within 5% of the best value are underlined.

EVCLUS NN-EVCLUS RECM sECMdd wECMdd

Protein 0.989 0.989 0.863 0.402 0.246
ChickenPieces 0.308 0.315 0.251 0.073 0.203
Zongker 0.791 0.803 0.217 0.053 0.053
Gestures 0.709 0.710 0.096 0.183 0.095
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Figure 26: Consistency index (vertical axis) vs. nonspecificity (horizontal axis) for the Protein (a), ChichenPieces (b),
Zongker (c) and Gestures (d) datasets.
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Table 7: Means and standard deviations (in parentheses) of CPU times (in seconds) over five runs of EVCLUS,
NN-EVCLUS, RECM, sECMdd and wECMdd applied to the Protein, ChickenPieces, Zongker and Gestures datasets
(see implementation details in the text).

EVCLUS NN-EVCLUS RECM sECMdd wECMdd

Protein 2.48 (0.2) 36.26 (3.4) 0.11 (0.02) 0.30 (0.04) 0.37 (0.07)
ChickenPieces 3.16 (0.3) 16.72 (0.1) 0.18 (0.02) 1.30 (0.2) 1.07 (0.05)
Zongker 15.53 (4.9) 251.54 (5.2) 13.16 (0.3) 47.74 (0.8) 25.06 (0.5)
Gestures 63.61 (21.4) 258.51 (4.7) 5.12 (0.2) 134.60 (5.5) 82.95 (1.7)

NN-EVCLUS come at the price of a higher computing time. However, as already emphasized,613

the NN-EVCLUS lends itself to parallel implementation, which would speed it up by a potentially614

large factor.615

Prediction. Whereas EVCLUS and NN-EVCLUS yield similar results on these datasets, a distinc-616

tive advantage of NN-EVCLUS is that it makes it possible to predict the cluster membership of617

of new objects, without recomputing the evidential partition for the extended dataset. To demon-618

strate this possibility, we randomly split the Zongker dataset into two subsets of 1000 objects. We619

computed the attribute vectors by PCA for the first set of objects as explained above (with p = 20),620

and we trained NN-EVCLUS using the dissimilarity matrix for this first set. We then computed621

the attributes for the other 1000 objects and we computed the evidential partition by propagat-622

ing the attribute values through the NN. The whole process was repeated 10 times. The average623

training and test ARI values were, respectively, 0.73 (standard deviation: 0.03) and 0.72 (standard624

deviation: 0.05). These results show that the relation between attributes and mass functions can625

be successfully learnt by NN-EVCLUS and generalized to test data, making it possible to predict626

the cluster membership of new objects.627

4.3. Constrained clustering628

Finally, we also compared the performance of NN-EVCLUS for exploiting pairwise constraints629

(as described in Section 3.3) to those of alternative constrained evidential clustering methods,630

namely: CEVCLUS [32] and CECM [1]. We considered the attribute dataset (Glass) and the631

dissimilarity dataset (ChickenPieces) with the lowest ARI values in their category (see, respectively,632

Tables 3 and 6). We also included the Iris dataset in the analysis as it is an example of a dataset633

with nonsperical clusters, for which pairwise constraints can significantly improve the clustering634

results.635

Each of the three clustering algorithms was used with and without metric adaptation through636

PCCA [38]. For the Glass and Iris data, we extracted, respectively, five and three features using637

PCCA and we computed the Euclidean matrix in the feature space. The distance matrix was used638

by CEVCLUS and the features by CECM; NN-EVCLUS used both. For the ChickenPieces, we first639

extracted five features from distances using PCA as explained in Section 4.2, and we computed five640

new features using PCCA. For CEVCLUS and NN-EVCLUS, parameter ξ in (17) was set to 0.5.641

For CECM, parameter ξ controling the balance between the constraints and the objective function642

was also set to 0.5. The other parameters were set as in the previous experiments reported in643

Sections 4.1 and 4.2.644

38



C
E
V
C
L
U
S

N
N
-E
V
C
L
U
S

C
E
C
M

C
E
V
C
L
U
S
+
P
C
C
A

N
N
-E
V
+
P
C
C
A

C
E
C
M
+
P
C
C
A

A
R
I

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Glass data, 50 constraints

(a)

C
E
V
C
L
U
S

N
N
-E
V
C
L
U
S

C
E
C
M

C
E
V
C
L
U
S
+
P
C
C
A

N
N
-E
V
+
P
C
C
A

C
E
C
M
+
P
C
C
A

A
R
I

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Glass data, 100 constraints

(b)

C
E
V
C
L
U
S

N
N
-E
V
C
L
U
S

C
E
C
M

C
E
V
C
L
U
S
+
P
C
C
A

N
N
-E
V
+
P
C
C
A

C
E
C
M
+
P
C
C
A

A
R
I

0.0

0.2

0.4

0.6

0.8

Glass data, 150 constraints

(c)

C
E
V
C
L
U
S

N
N
-E
V
C
L
U
S

C
E
C
M

C
E
V
C
L
U
S
+
P
C
C
A

N
N
-E
V
+
P
C
C
A

C
E
C
M
+
P
C
C
A

A
R
I

0.0

0.2

0.4

0.6

0.8

Glass data, 200 constraints

(d)

Figure 27: Mean ARI values (over 10 random draws) for the Glass dataset with 50 (a), 100 (b), 150 (c) and 200 (d)
constraints. The methods are, from left to right: CEVCLUS, NN-EVCLUS, CECM, and the same methods combined
with PCCA.The error bars extend to one standard deviation around the mean.

Pairwise constraints were generated randomly from the set of object pairs. For each number of645

constraints, we drew 10 different sets. The average ARI values for the three datasets are reported646

with the standard deviations in Figures 27-29, and the CPU times with 200 constraints are shown647

in Table 8. We can see that, without PCCA, NN-EVCLUS outperformed both CEVCLUS and648

CECM for the three datasets. PCCA improved the performances of the three clustering methods.649

With distances computed in feature space of PCCA, NN-EVCLUS still yielded strictly better650

results for the Glass and ChickenPieces datasets as shown, respectively, in Figures 27 and 29, and it651

yielded similar results as CEVCLUS for the Iris dataset (Figure 28). NN-EVCLUS has the highest652

computing time of the three methods, but it because slightly faster when PCCA is used, as the653

learning task because simpler. Overall, the combination of NN-EVCLUS and PCCA consistently654

provided the best results for the three datasets.655
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Figure 28: Mean ARI values (over 10 random draws) for the Iris dataset with 50 (a), 100 (b), 150 (c) and 200 (d)
constraints. The methods are, from left to right: CEVCLUS, NN-EVCLUS, CECM, and the same methods combined
with PCCA. The error bars extend to one standard deviation around the mean.

Table 8: Means and standard deviations (in parentheses) of CPU times (in seconds) over five runs of EVCLUS,
NN-EVCLUS, CECM, and the same methods combined with PCCA, applied to the Glass, Iris and ChickenPieces
datasets with 200 constraints.

EVCLUS NN-EVCLUS CECM EVCLUS NN-EVCLUS CECM
+PCCA +PCCA +PCCA

Glass 18.78 (2.1) 76.22 (12.5) 35.27 (24.1) 31.51 (13.7) 53.74 (15.9) 31.07 (12.4)
Iris 1.55 (0.11) 30.05 (3.17) 4.78 (2.86) 1.21 (0.07) 23.59 (4.58) 2.08 (1.02)
Chicken 6.80 (0.5) 197.74 (23.6) 52.85 (44.0) 3.99 (0.6) 127.18 (21.1) 32.13 (20.5)
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Figure 29: Mean ARI values (over 10 random draws) for the ChickenPieces dataset with 100 (a), 200 (b), 300 (c) and
400 (d) constraints. The methods are, from left to right: CEVCLUS, NN-EVCLUS, CECM, and the same methods
combined with PCCA. The error bars extend to one standard deviation around the mean.
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5. Conclusions656

A new neural network-based evidential clustering algorithm, called NN-EVCLUS, has been657

introduced. This algorithm learns a mapping from attribute vectors to mass functions on a frame658

Ω of c clusters, in such a way that more similar inputs are mapped to mass functions with a659

lower degree of conflict. It, thus, requires two inputs: a set of attribute vectors and a dissimilarity660

matrix. In the case of attribute data, dissimilarities are typically computed as distances in the661

attribute space. In the case of proximity data, attributes can be computed by performing PCA on662

the matrix of dissimilarities. When side information is provided in the form of pairwise constraints663

or labeled data, feature extraction methods such as PCCA or FDA can be used to learn a metric664

in such a way that objects that are known to belong to different clusters become further apart,665

while objects in a given cluster are as similar as possible.666

The neural network has a standard multilayer structure but a specific loss function that mea-667

sures the discrepancy between dissimilarities and degrees of conflict for all or some pairs of objects.668

Additional error terms can be added to the loss function to account for pairwise constraints or669

labeled data. The network can be trained in batch mode or using minibatch stochastic gradi-670

ent descent to handle very large datasets. It can be paired with a one-class SVM to make the671

method robust to outliers and allow for novelty detection. As opposed to EVCLUS, NN-EVCLUS672

learns a compact representation of the data in the form of connection weights, which makes it able673

to generalize beyond the learning set and compute an evidential partition for new data without674

retraining.675

NN-EVCLUS has been compared to alternative evidential clustering algorithms on a range676

of clustering tasks with both attribute and dissimilarity data. It was shown to outperform other677

methods for a majority of datasets, by a relatively small margin for EVCLUS and by a larger margin678

for other algorithms (including ECM, CCM, sECMdd, wECMdd for attribute data, and RECM,679

sECMdd, wECMdd for dissimilarity data). NN-EVCLUS was only significantly outperformed by680

Bootclus on a few attribute datasets with elliptical clusters, for which a Gaussian mixture model681

is a good fit. On constrained clustering tasks, NN-EVCLUS was shown to outperform CECM and682

CEVCLUS. While metric adaptation using PCCA improved the performances of all methods, the683

combination of PCCA and EVCLUS yielded the best results overall.684

While we used a standard multilayer perception architecture in this work, more complex archi-685

tectures such as convolutional neural networks could be used with NN-EVCLUS to cluster data686

with a grid-like topology such as time series, images or videos. Also, training time could be dras-687

tically reduced by implementing the learning algorithm on GPUs. These ideas are left for further688

research.689
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Appendix A. Gradient of Lij w.r.t. θ812

We consider a neural network with one hidden layer as described in Section 3.1. The vector813

of parameters is θ = (V,W,β0, β1). Let us first compute the derivatives of Lij w.r.t the last-layer814

weights W = (wqh). From (14) and (11), we have815

∂Lij
∂wqh

=
∂Lij
∂µiq

∂µiq

∂wqh
+
∂Lij
∂µjq

∂µjq

∂wqh
= ∆ijqzih +∆′

ijqzjh, (A.1)

with816

∆ijq =
∂Lij
∂µiq

=
∂Lij
∂κij

∂κij

∂µiq
= 2(κij − δ∗ij)

f

∑
r=1

∂κij

∂m∗
ir

∂m∗
ir

∂mir

∂mir

∂µiq
(A.2)

and817

∆′
ijq =

∂Lij
∂µjq

=
∂Lij
∂κij

∂κij

∂µjq
= 2(κij − δ∗ij)

f

∑
r=1

∂κij

∂m∗
jr

∂m∗
jr

∂mjr

∂mjr

∂µjq
. (A.3)

From (8), we get818

∂κij

∂m∗
ir

= (Cm∗
j )r. (A.4)

From (12),819

∂m∗
ir

∂mir
= γi,

and from (11),820

∂mir

∂µiq
=
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mir(1 −mir) r = q
−mirmiq r ≠ q.

(A.5)

Similarly,821

∂κij

∂m∗
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= (Cm∗
i )r,

∂m∗
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= γj , (A.6)

and822
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mjr(1 −mjr) r = q
−mjrmjq r ≠ q.

(A.7)

Now, from (10) and (11), the derivatives w.r.t the first-layer weights V = (whk) are823

∂Lij
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and825
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Finally, we now compute the derivatives of Lij w.r.t. β0 and β1. We have826

∂Lij
∂βk

=
∂Lij
∂γi

∂γi
∂βk

+
∂Lij
∂γj

∂γj

∂βk
(A.11)

for k ∈ {0,1}. From (13), the first term of the sum in the right-hand side of (A.11) can be computed827

as828
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and
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∂ηi
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f(xi). (A.13b)

The first term of the sum in the right-hand side of (A.11) can be computed in the same way, by830

replacing i with j.831

Appendix B. Gradient of PML and PCL w.r.t. θ832

We have833

PML = ∑
(i,j)∈ML

Pij and PCL = ∑
(i,j)∈CL

(2 −Pij) ,

with834
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∗
j .

We thus only need to compute the gradient of Pij . The derivatives w.r.t. the hidden-to-output835

weights are836

∂Pij
∂wqh

=
∂Pij
∂µiq

∂µiq

∂wqh
+
∂Pij
∂µjq

∂µjq

∂wqh
= ∇ijqzih +∇′

ijqzjh

with837

∇ijq =
∂Pij
∂µiq

=
f

∑
r=1

∂Pij
∂m∗

ir

∂m∗
ir

∂mir
²

1−γi

∂mir

∂µiq
²

see (A.5)

and838

∂Pij
∂mir

= (Qm∗
j )r.

46



Similarly,839

∇′
ijq =

∂Pij
∂µjq

=
f

∑
r=1

∂Pij
∂m∗

jr

∂m∗
jr

∂mjr
²

1−γj

∂mjr

∂µjq
²

see (A.7)

and840

∂Pij
∂mjr

= (Qm∗
i )r.

The derivatives w.r.t. the input-to-hidden weights are,841
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Finally, we have844
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Appendix C. Gradient of Ps w.r.t. θ848

We have849

Ps =
1

ns
∑
i∈Is
Pi

with850
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c

∑
l=1

(pl∗il − yil)
2.

We thus only need to compute the gradient of Pi. The derivatives w.r.t. to the hidden-to-output851

weights are852
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with853
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The derivatives w.r.t the input-to-hidden weights are given by855
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Finally, the derivatives w.r.t β0 and β1 can be computed as857
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