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Abstract

This paper introduces a new approach to regression analysis based on a fuzzy ex-

tension of belief function theory. For a given input vector x, the method provides

a prediction regarding the value of the output variable y, in the form of a fuzzy be-

lief assignment (FBA), defined as a collection of fuzzy sets of values with associated

masses of belief. The output FBA is computed using a nonparametric, instance-based

approach: training samples in the neighborhood of x are considered as sources of

partial information on the response variable; the pieces of evidence are discounted as

a function of their distance to x, and pooled using Dempster’s rule of combination.

The method can cope with heterogenous training data, including numbers, intervals,

fuzzy numbers, and, more generally, fuzzy belief assignments, a convenient formalism

for modeling unreliable and imprecise information provided by experts or multi-sensor

systems. The performances of the method are compared to those of standard regres-

sion techniques using several simulated data sets.

Keywords: Dempster-Shafer Theory, Evidence Theory, Transferable Belief Model,

Fuzzy data, Imprecise data, Uncertainty, Regression analysis, function approximation,

supervised learning.



1 Introduction

Learning plays a central role in many fields such as Statistics, Artificial Intelligence,

and Pattern Recognition [13]. In particular, supervised learning is concerned with the

prediction of a response (or output) variable y, based on a vector x = (x1, . . . , xd) of d

observed input variables, or predictors. This problem is also referred to as classification

when the output y is qualitative, and regression when it is a quantitative measurement.

Classically, the available information resides in a learning set L = {(xi, yi)}N
i=1 of

N observations of the input and output variables. It is customary to consider these

observations as being drawn independently from a joint probability measure F (x, y).

A general principle consists in determining, among all the measurable functions g,

the function of the input x which best explains the output y, according to a given

criterion, such as the mean squared error:

R(g) =
∫

(y − g(x))2dF (x, y). (1)

According to this criterion, the best predictions are achieved by the regression func-

tion, defined as the conditional expectation of y given x. Many techniques have been

proposed in the literature to estimate the regression function, such as kernel or nearest-

neighbor methods, smoothing splines, multi-layer perceptrons, radial basis function

networks, projection pursuit methods, etc. (see, e.g. [13] for a recent overview of these

methods). These techniques have proved very efficient in a wide range of situations.

However, they suffer from certain limitations.

In particular, classical regression techniques assume perfect knowledge of the value

of the response variable y for the learning examples. That is to say, the observations

are supposed to be both precise (point-valued) and certain. There are, however,

situations in which this assumption is not realistic. Quite often, information about y is

obtained through measuring devices, or sensors, with limited precision and reliability.

Imprecise observations of the responses may then be better modeled by real intervals

[y−i , y+
i ] or fuzzy numbers ỹi. Several approaches have been proposed for processing

such learning data, such as interval or fuzzy linear regression [8], and fuzzy [25, 28]

or neuro-fuzzy inference systems [15]. However, the uncertainty of observations due,

e.g., to poor sensor reliability, is not easily taken into account in these approaches.
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An observation may be imprecise, uncertain, or both, and these situations must be

properly represented in a learning system (see [9][22] for discussions concerning the

notions of imprecision and uncertainty). Occasionally, the situation is even more

complex, and the quantity y of interest is observed by several sensors, with different

degrees of accuracy. We then need a formalism to handle such imprecise and partially

conflicting data.

Additionally, a learning system processing such information should reflect in its

outputs not only the quality of the training data, but also the relevance of this data

to the current prediction task at hand. In particular, if the current input vector x is

very dissimilar from all training input vectors xi, some doubt should be cast on the

validity on the prediction, and this should be reflected in the system output. This

property is rarely verified in conventional statistical methods, which are essentially

based on asymptotic assumptions (the learning set is assumed to be large enough to

cover the whole observation space).

To address the above issues, we propose a new approach to regression analysis

based on a fuzzy extension of belief function theory (also called Dempster-Shafer, or

Evidence theory). Whereas a basic belief assignment in “standard” or “crisp” evidence

theory assigns belief masses to crisp subsets of the possibility space (or “frame of dis-

cernment”) Ω, a fuzzy belief assignment (FBA) allocates parts of a unit mass of belief

to fuzzy subsets of Ω. The concept of FBA thus subsumes those of crisp and fuzzy

sets, as well as crisp belief assignments. Our FBA-based regression method, called

EVREG (Evidential Regression) generalizes an instance-based approach introduced

in classification by one of the authors [2, 31, 5, 7]. Basically, the method considers

each training sample in the neighborhood of the input vector x as a piece of evidence

regarding the value of the output y. The pieces of evidence are discounted as a func-

tion of their distance to x, and pooled using Dempster’s rule of combination. The

result is a FBA that quantifies one’s beliefs concerning the value of y, based on the

learning set information. A probability density function and a point prediction can

be computed from this FBA, providing the user with information at several levels of

detail.

This article is organized as follows. The background on belief function theory and
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its fuzzy extension is first recalled in Section 2. The EVREG method is then intro-

duced in Section 3, and a parameter optimization procedure is described in Section 4.

Finally, experimental results are presented in Section 5, and Section 6 concludes the

paper.

2 Fuzzy Evidence Theory

2.1 Belief Function Theory

In this section, we briefly introduce the necessary notions of belief function theory

[1, 19, 24]. The interested reader is referred to, e.g., [19, 24, 20] for mathematical

developments and in-depth discussion on possible interpretations of the theory. In this

paper, we shall adopt the subjectivist, non probabilistic view of Smets’ Transferable

Belief Model (TBM) [24, 20]. The aim of this model is to represent the belief of an

agent concerning the value of a given variable y, based on available information, and

to propose rules whereby the agent’s beliefs can be updated when new evidence is

gathered.

Let Ω be a finite set, and let 2Ω be the set of all subsets of Ω. The fundamental

concept for representing uncertainty about y, given an evidential corpus EC, is that

of basic belief assignment (BBA), also called belief structure or mass function, defined

as a function my[EC] from 2Ω to [0, 1] verifying:∑
A⊆Ω

my[EC](A) = 1.

The quantity my[EC](A) represents the belief alloted to the proposition y ∈ A, and

that cannot be assigned to any more restrictive proposition, given the available knowl-

edge. When the context makes clear what the reference variable and the evidential

corpus are, the notation my, or even m will be used instead of my[EC]. A BBA m

such that m(∅) = 0 is said to be normal (this condition is not imposed in the TBM).

Any subset of Ω such as m(A) > 0 is called a focal element of m. We will denote

by F(m) the set of focal elements of m. The information provided by a BBA can be

represented by a belief function or by a plausibility function defined, respectively, as:

bel(A) =
∑

∅�=B⊆A

m(B)
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and

pl(A) =
∑

B∩A �=∅
m(B) = bel(Ω) − bel(A).

The quantity bel(A) is interpreted as the total belief committed to A and pl(A) as the

belief that might be committed to A, if further information became available. One can

show that the three functions, m, bel and pl, are in one-to-one correspondence and

that bel and pl are monotonous functions of infinite order [19]. Belief and plausibility

measures boil down to probability measures in the special case where all the focal

elements are singletons of Ω. Another special case is the vacuous BBA verifying

m(Ω) = 1. This represents complete ignorance regarding the value of y.

One of the most important operations in the theory is the procedure for aggregat-

ing multiple BBA’s on the same variable. Let us suppose that two distinct sources

separately induce two BBA’s m1 and m2. For any binary set operation ∇, the fusion

of these BA’s, noted m = m1 ∇©m2, may be defined as [28]:

m(A) =
∑

B∇C=A

m1(B)m2(C), ∀A ∈ Ω. (2)

The conjunctive rule is obtained by choosing ∇ = ∩, and the disjunctive rule by

setting ∇ = ∪. Note that the conjunctive rule ∩© may produce a subnormal BA, i.e.

one may have m(∅) > 0. The Dempster normalization procedure converts a subnormal

BBA m into a normal one m∗ defined as follows:

m∗(A) =
m(A)

1 − m(∅) (3)

for A �= ∅ and m∗(∅) = 0. The so-called Dempster’s rule of combination [1, 19], noted

⊕ corresponds to the conjunctive sum followed by Dempster’s normalization. The

conjunctive and Dempster’s rules of combination are relevant when all the sources to

be combined are distinct and reliable. These operations are associative, commutative

and have the vacuous BBA as neutral element.

It sometimes occurs that a source of information induces a bba m, but we have

some doubt regarding the reliability of that source. Such metaknowledge may be

represented by discounting [19] m by some factor α ∈ [0, 1], which leads to a bba mα
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defined as:

mα(A) = (1 − α)m(A) ∀ A ⊆ Ω, A �= Ω (4)

mα(Ω) = α + (1 − α)m(Ω) (5)

A discount rate α = 1 means that one is sure that the source cannot be trusted:

the resulting BBA is then vacuous. On the contrary, a null discount rate leaves m

unchanged: this corresponds to the situation in which the source is known to be fully

reliable.

Any one of the functions m, bel and pl describes a belief state. In the TBM,

this “credal level” is distinct from the “decision level” where decision making takes

place [23]. As remarked by Smets [23], the use of probabilities in a decision context

is strongly supported by rationality arguments. A belief function thus has to be

transformed into a probability function for decision making. The only transformation

satisfying certain axiomatic requirements was shown by Smets to be the pignistic

transformation [23], in which each mass of belief m(A) is distributed equally among

the elements of A for all A ⊆ Ω. This leads to the pignistic probability distribution

defined as:

pbet(ω) =
∑

{A⊆Ω,A �=∅}
m∗(A)

A(ω)
|A| (6)

where A(·) denotes the characteristic function of A and |A| its cardinality.

BF theory can easily be generalized to continuous spaces provided the number of

focal elements |F(m)| remains finite1. In this case, all the expressions defined above

are unchanged, except that the cardinality of a given set A is replaced by its Lebesgue

measure:

|A| =
∫

A(ω)dω.

When |A| < ∞ for all A ∈ F(m), the pignistic probability function still exists but

becomes a probability density function. In particular, if Ω ⊂ R, and the focal ele-

ments A of m are bounded intervals, pbet is a finite mixture of continuous uniform

distributions.
1A more general extension is possible, requiring more complex measure-theoretic concepts. This

extension will not be considered in this paper.
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2.2 Fuzzy Extension

The above formalism can be generalized in order to represent belief in fuzzy propo-

sitions, such as “y is high”. Fuzzy extensions of evidence theory have been proposed

by different authors [30, 21, 26, 29, 4]. The basic idea is to allow the focal elements

of a BBA to be fuzzy sets. If A is a fuzzy subset of Ω, we will denote by A(·) its

membership function and by h(A) its height. Let [0, 1]Ω denote the set of fuzzy sets of

Ω. A fuzzy belief assignment (FBA), also called a fuzzy belief structure, is a function

m from [0, 1]Ω to [0, 1] such that, for some finite collection F(m) of fuzzy subsets of

Ω,

m(A) > 0 ∀A ∈ F(m) (7)

m(A) = 0 ∀A �∈ F(m) (8)∑
A∈F(m)

m(A) = 1 . (9)

Here again, the elements of F(m) are called the focal elements of m. If all the focal

elements are normalized (i.e. h(A) = 1 for each A ∈ F(m)), m is said to be normal.

Yager [27] proposed a “smooth normalization procedure” (SNP) for converting a sub-

normal FBA into a normal one. This method generalizes both fuzzy set normalization

and Dempster’s normalization of crisp BA’s (3). It is defined as:

m∗(A) =
∑

B∗=A h(B)m(B)∑
C∈F(m) h(C)m(C)

(10)

where B∗ is the normal fuzzy set defined by B∗(ω) = B(ω)/h(B), ∀ω ∈ Ω.

Since the belief and plausibility functions are based on set-theoretic operations

(inclusion and intersection), their expression can be generalized as follows [26]:

pl(A) =
∑

B∈F(m)

m(B)Int(A,B), (11)

bel(A) =
∑

B∈F(m)

m(B)IncA(B), (12)

where Int(A,B) and IncA(B) are, respectively, a measure of intersection between A

and B, and an inclusion measure of B in A. Using the standard fuzzy union and

intersection operators, these measures can be defined as follows:

Int(A,B) = sup
ω∈Ω

min (A(ω), B(ω))
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IncA(B) = inf
ω∈Ω

max (A(ω), (1 − B(ω)) .

Combination operations can also be generalized, by using an appropriate fuzzy set

operator in (2). In particular, a fuzzy version of the conjunctive sum is obtained by

using the standard fuzzy intersection.

Finally, the pignistic probability function may be defined as:

pbet(ω) =
∑

A∈F(m∗)

m∗(A)
|A| A(ω), ∀ω ∈ Ω, (13)

where |A| is the sigma-count cardinality of A:

|A| =


∑

ω∈Ω A(ω) if Ω is finite∫
A(ω)dω if Ω is continuous.

3 Application to Regression

3.1 The Data

In this section, we show how to use the above concepts of fuzzy evidence theory in

the regression analysis framework [16]. This approach extends that introduced by

Denœux [2, 5] in the context of supervised classification.

We assume the training data to be of the form:

L = {ei = (xi,mi)}N
i=1 (14)

where xi is the input vector for example ei, and mi is a FBA on an ordered or

continuous frame Y, which quantifies one’s partial knowledge of the value taken by

the response variable yi for example ei (a more rigorous, but cumbersome notation

would be myi [EC], where EC is the evidential corpus on which the available knowledge

on yi is based). Using this very general formalism, it is possible to model various types

of training data. In particular, a classical learning set is recovered when all BA’s mi

are focused on a unique singleton yi. The interval and fuzzy regression situations

correspond to the case where each mi has, respectively, an interval or a fuzzy number

as a unique focal element. The most general situation is that of general FBA’s, with

focal elements F(mi) = {Fij}J(i)
j=1, where the Fij are fuzzy subsets of R, and J(i) is

the number of focal elements of mi.
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3.2 The EVREG model

Let x be an arbitrary vector, and y the corresponding unknown output. The problem

is now to deduce some information on y from the training set L. Since the learning

set information is potentially imprecise and uncertain, the output will take the form

of a FBA on Y denoted my[x,L]. As proposed in [2, 5] in the context of classification,

this FBA can be constructed in two steps: discounting of the FBA’s mi, i = 1, . . . , N

according to a measure of dissimilarity between input vectors, and combination of the

discounted FBA’s.

Each element ei = (xi,mi) of the training set is a piece of evidence concerning

the possible value of yi, which can be represented by a FBA my[x, ei]. The relevance

of that information regarding the variable of interest y can reasonably be assumed

to depend on the dissimilarity, measured by a suitable distance function, between

input vectors x and xi. If x is “close” to xi according to a given metric ‖.‖, y can

be expected to be close to yi, which makes example ei quite relevant to predict the

value of y. On the contrary, if x and xi are very dissimilar, example ei provides only

marginal information regarding the value of y. More formally, we propose to define

my[x, ei] as a discounting of mi:

my[x, ei](A) =


mi(A)φ(‖x − xi‖) if A ∈ F(mi) \ {Y}
1 − φ(‖x − xi‖) if A = Y
0 otherwise,

(15)

where φ is a decreasing function from R
+ to [0, 1] verifying φ(0) ∈]0, 1[ and

lim
d→∞

φ(d) = 0. (16)

In (15), the discount rate αi = 1 − φ(‖x − xi‖) determines the influence of xi on x.

If x is close to xi, αi is close to 0 and the mass functions my[x, ei] and mi are very

similar. When x is very far from xi, αi tends to 1 and my[x, ei] tends to the vacuous

belief assignment (my[x, ei](Y) ≈ 1). In the following, function φ will be referred to

as a discounting function. As shown in [3], when the metric is defined as:

‖x − xi‖ =
[
(x − xi)TΣ−1(x − xi)

]1/2
, (17)
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where Σ is a symmetric positive definite matrix, a natural choice for φ is:

φ(d) = γ exp(−d2), (18)

where γ ∈]0, 1] is a real parameter.

In order to combine the information provided by each element of the training set,

we can use the conjunctive rule of combination for FBA’s. The choice of a conjunctive

operator is justified by the neutral property of the vacuous BA: it is essential that

a vector xi which is far from x has very little influence on the estimation of the

corresponding y. The final BA is then:

my[x,L] = ∩©N
i=1my[x, ei]. (19)

We denote by m∗
y[x,L] the FBA obtained by normalizing my[x,L] using the SNP (10).

Example 1 Let us consider as an example an output BA my[x, e1, e2] computed

from two elements e1 = (x1,m1) and e2 = (x2,m2) of a training set. The frame of

discernment Y is the interval [0, 10]. The belief assignments m1 and m2 are focused

on triangular fuzzy numbers (Figure 1). A triangular fuzzy number with support [a, c]

and core b will be noted (a, b, c)T . Let A = (0, 2, 4)T , B = (2, 4, 6)T , and C = (3, 6, 8)T

be three triangular fuzzy numbers, and let m1 and m2 be defined as:

m1(A) = 0.4 m1(B) = 0.6

m2(C) = 1.

We assume that vector x is closer to x1 than to x2 and, more precisely, that the

discount rates are α1 = 0.2 and α2 = 0.6. Consequently, the influence of x2 will be

weaker than that of x1. The calculation of my[x, e1, e2] is divided in 2 steps:

1. Discounting of mi, i = 1, 2: We have

my[x, e1](A) = 0.4 × (1 − 0.2) = 0.32,

my[x, e1](B) = 0.6 × (1 − 0.2) = 0.48,

my[x, e1](Y) = 1 − 0.32 − 0.48 = 0.2,
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and

my[x, e2](C) = 1 × (1 − 0.6) = 0.4,

my[x, e2](Y) = 1 − 0.4 = 0.6

2. Combination:

my[x, e1, e2](A) = 0.192 my[x, e1, e2](B) = 0.288,

my[x, e1, e2](C) = 0.08 my[x, e1, e2](Y) = 0.12,

my[x, e1, e2](A ∩ C) = 0.128 my[x, e1, e2](B ∩ C) = 0.192.

Remark 1 The number of focal elements of my[x,L] can, in the worst case, increase

exponentially with the number of BA’s combined, making the computation very heavy

for large N . A simple but efficient way to avoid this problem is to compute the belief

assignments provided only by the k nearest neighbors {x(i)}k
i=1 of x in the training

set:

my[x,L] = ∩©k
i=1my[x, e(i)] (20)

An additional way to speed up the computations is to simplify BA’s by aggregating

similar, or unimportant focal elements, thus reducing the number of focal elements to

take into account in the combination. This method has been introduced for regression

problems in [17, 18], and extended in [6].

Remark 2 In the case of a classical training set, each BBA mi has a single focal

element {yi}. Consequently, my[x,L] is then a crisp BBA with N + 1 focal elements.

Its normalized version has the following expression (assuming the yi to be all different)

as:

m∗
y[x,L](A) =



1
K

φ(‖x − xi‖)
∏
j �=i

(1 − φ(‖x − xj‖)) if A = yi,

1
K

N∏
i=1

(1 − φ(‖x − xi‖)) if A = Y

0 otherwise,

where

K =
N∏

i=1

(1 − φ(‖x − xi‖) +
N∑

i=1

φ(‖x − xi‖)
∏
j �=i

(1 − φ(‖x − xj‖)
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is the normalization factor. Note that all strict subsets of Y that do not contain any

of the yi’s do not receive any belief. This may seem somewhat paradoxical, as an

observation yi or the response variable in a neighborhood of x may be argued to make

values close to yi more likely at x, provided the underlying input-output function is

assumed to be continuous. In fact, the BBA my[x,L] merely encodes the available

evidence, without introducing any additional assumption (not even continuity). As

we shall see in the sequel, interpolation is performed at a later stage, when computing

the pignitic expectation of y given x, where our method bares some resemblance with

classical nonparametric smoothing techniques.

3.3 Point and Interval Prediction

3.3.1 Pignistic Expectation and Quantiles

Assuming the domain Y of y to be a bounded interval [yinf , ysup], the probabilistic

density function pbet[x,L] associated to m[x,L] exists. It is defined by (6) for the crisp

case, and by (13) for the fuzzy case, and has the following expression:

pbet[x,L](y) =
∑

A∈F(m∗
y [x,L])

m∗
y[x,L](A)

A(y)
|A| . (21)

It is therefore a mixture of the probability densities defined by the normalized member-

ship functions of the focal elements of m∗
y[x,L]. Note that, when x is very dissimilar

from all the xi, m∗
y[x,L] is close to the vacuous BA. In that case, pbet[x,L] is close to

the uniform probability distribution on Y.

The pignistic probability function allows to define some summary statistics, such

as the median, quantiles, or the expectation defined as:

ŷ(x) =
∑

A∈F(m∗
y [x,L])

m∗
y[x,L](A)

|A|
∫
Y

uA(u)du.

Let y∗A be the center of gravity of A:

y∗A =

∫
Y uA(u)du∫
Y A(u)du

.

Then ŷ can be expressed as:

ŷ(x) =
∑

A∈F(m∗
y [x,L])

m∗
y[x,L](A) y∗A. (22)
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Remark 3 In the particular case where the outputs are real numbers, the pignistic

probability becomes:

pbet[x,L](y) =
N∑

i=1

m∗
y[x,L]({yi})δ{yi}(y) +

m∗
y[x,L](Y)

ysup − yinf
. (23)

It is a mixture of Dirac distributions and a continuous uniform distribution. The

expectation of pbet[x,L] is then:

ŷ(x) =
N∑

i=1

m∗
y[x,L]({yi})yi + m∗

y[x,L](Y)y, (24)

with y = (yinf + ysup)/2. Considering y as an additional observation yN+1, the

resulting regression function is then a linear function of the yi and can be written:

ŷ(x) =
N+1∑
i=1

Siyi (25)

where Si is a weight depending on x and all the xj , j = 1, . . . , N . The sequence

of weights (Si)N+1
i=1 defines the equivalent kernel at x [14, page 20]. In the case of

“classical” training data, our method can therefore by compared on common grounds

with other nonparametric regression techniques such as spline or kernel smoothers.

3.3.2 Upper and Lower Expectations

Let us first assume that the BA’s are crisp. Beside the pignistic expectation, other

definitions of expectation have been proposed for belief functions. In particular, in

the crisp case, the lower and upper expectations are defined, respectively, as follows

[21]:

ŷ∗(x) =
∑

A∈F(m∗
y [x,L])

m∗
y[x,L](A) sup

y∈A
y, (26)

ŷ∗(x) =
∑

A∈F(m∗
y [x,L])

m∗
y[x,L](A) inf

y∈A
y. (27)

We observe that the interval [ŷ∗(x), ŷ∗(x)] contains the pignistic expectation ŷ(x). Its

width may be interpreted as reflecting the uncertainty of the prediction.

In the particular case where the outputs are real numbers, the upper and lower

expectation become:

ŷ∗(x) =
N∑

i=1

m∗
y[x,L]({yi})yi + m∗

y[x,L](Y)ysup, (28)
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ŷ∗(x) =
N∑

i=1

m∗
y[x,L]({yi})yi + m∗

y[x,L](Y)yinf . (29)

If the belief assignments are fuzzy and their focal elements are fuzzy numbers,

Dubois and Prade [10] have proposed to generalize the lower-upper expectation inter-

val as the fuzzy number:

ỹ(x) =
∑

Ã∈F(m∗
y [x,L])

m∗
y[x,L](A) · Ã (30)

where
∑

denotes the addition of fuzzy numbers [9]. A more general approach can be

based on the decomposition of fuzzy focal elements A in α-cuts Aα. For each α ∈ [0, 1],

each α-cut of the lower expectation is computed as in (27):

ŷα
∗ (x) =

∑
A∈F(my [x,L])

m[x,L](A) inf
y∈Aα

y. (31)

The upper expectation is obtained in the same manner.

4 Learning

4.1 Performance Assessment

In Section 3, we have seen that the proposed model depends on a discounting function

φ and a dissimilarity measure ‖.‖. The choice of φ and ‖.‖ is important for optimizing

the performances of the method. To simplify this problem, we suppose that these

functions are chosen among a set Φ of functions φθ indexed by a scalar or vector

parameter θ ∈ Θ. For example, if ‖.‖ and φ are defined using (17) and (18), then

θ = (γ,Σ).

Once the set Φ of functions and an error criterion have been defined, it is possible

to optimize parameter θ. However, we have only assumed partial knowledge of the

response variable yi for each learning example. Consequently, we need to define an

error criterion allowing to compare an output FBA my[x,L] with partial training

information also represented by a FBA m. In the case of numerical output ŷ and a

desired value y, a classical criterion is the squared error (ŷ−y)2. This criterion may be

extended in several ways, starting from fuzzy sets of the real line, and finally FBA’s.
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Among the numerous distance measures between fuzzy sets defined in the literature

[32], we propose to use a generalization of the quadratic version of the Hausdorff

measure. In order to extend the mean squared error criterion, we slightly modify the

Hausdorff distance as follows. Let I1 = [I−1 , I+
1 ] and I2 = [I−2 , I+

2 ] be two real intervals.

The distance between I1 and I2 can be defined as:

h2(I1, I2) = max{(I−1 − I−2 )2, (I+
1 − I+

2 )2}.

The distance between two fuzzy intervals F1 and F2 can then be defined as:

d̃(F1, F2) =
∫ 1

0
h2(Fα

1 , Fα
2 )dα, (32)

where Fα is the α-cut of F . If F1 and F2 are normal, but not necessarily convex, we

can use (32), with

h2(Fα
1 , Fα

2 ) = max{(Fα−
1 − Fα−

2 )2, (Fα+
1 − Fα+

2 )2}, (33)

where Fα− = infy∈Y Fα(y) and Fα+ = supy∈Y Fα(y).

Finally, we define the error between two normal FBA’s m1 and m2 as:

C(m1,m2) =
∑

F1∈F(m1)

∑
F2∈F(m2)

m1(F1)m2(F2)d̃(F1, F2). (34)

4.2 Parameter Estimation

Once a performance measure has been defined, classical model selection methods can

be used for optimizing parameter θ, including re-sampling techniques such as cross-

validation, jackknife, bootstrap and their variants [13]. In the following, we use a well

known version of cross-validation: the leave-one-out method.

In this method, the response for each vector xi of the training set is estimated

with the N − 1 other examples (xj ,mj), j �= i, by applying (15) and (19) to xi. Let

L−i denote the learning set without example i. For each θ ∈ Θ, we obtain a BA

concerning yi, based on xi and L−i, denoted by: myi [xi,L−i, θ]. The discrepancy with

the true mass function mi can be measured using criterion C defined in (34). The

global selection criterion CV is then defined as the mean value in the training set:

CV (θ) =
1
N

N∑
i=1

C(mi,m
∗
yi

[xi,L−i, θ]). (35)
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The estimator θ̂ of parameter θ is then obtained by minimizing this criterion:

θ̂ = arg min
θ

CV (θ). (36)

5 Experiments

5.1 Motorcycle Data

In this classical regression problem based on a real data set, the scalar input x repre-

sents the time (in milliseconds) after a simulated impact of a motorcycle against an

obstacle. The response variable y is the head acceleration of a post mortem human

test object (in g). This is a classical data set composed of 133 examples of the form

(xi, yi) ∈ R
2. The data set was split into two parts: 66 examples for training and

67 examples for the test. The prediction for each example was computed using (19),

without k-nearest neighbor approximation. Parameter γ in (18) was set at 0.9, and

parameter σ in the expression of the distance:

d2(x, xi) =
(xi − x)2

σ2

was optimized using the cross-validation procedure described in Section 4.2, yielding

σ = 4.21. The domain of the response variable was defined as Y = [−150, 80].

Figure 2 shows the 0.1, 0.25, 0.5, 0.75, and 0.9 quantiles of the output pignistic

distribution of pbet[x,L] (up), as well as the upper, lower and pignistic expectations

defined, respectively, by (26), (27) and (22) (down), as a function of x. The pignistic

probability distribution for each input value x can be seen to reflect the uncertainty on

the corresponding value of the output variable, taking into account both the scatter

and the density of training data (the uncertainty is maximal in the [30, 40] range

in which the output values have high variability, and beyond 60 where no data is

available). In contrast, the width of the lower-upper interval seems to reflect only the

scarcity of training data, since it is essentially related, in the case of precise training

data, to the mass m[x,L](Y) given to the whole domain of y. In particular, the lower,

upper and pignistic expectations are very close to each other in regions of high density,

because the mass assigned to Y is nearly negligible in this area; our approach then

behaves as a classical one.
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In order to ensure that EVREG performs reasonably well on such a classical

task, we compared it to the Nadaraya-Watson (NW) and k-nearest neighbor (k-NN)

smoothers [12]. These two methods were chosen because they appear to be the most

similar to our approch in the conventional non parametric statistical framework. Given

a classical learning set L = {(xi, yi)}n
i=1, and a continuous, bounded and symmetric

real function K called a kernel, the NW estimate of the response y for input x is

defined as:

f̂NW (x) =
∑n

i=1 Kλ(x − yi)yi∑n
i=1 Kλ(x − yi)

,

where Kλ(u) = λ−1K(u/λ) is the kernel scaled with bandwidth λ. In our simulations,

we used a Gaussian kernel given by Kλ(u) = λ−1 exp(−u2/λ).

The kNN estimate of y at x is defined as:

f̂k(x) =
1
k

n∑
i=1

Wki(x)yi,

where {Wki(x)}n
i=1 is a sequence of weights defined by:

Wki(x) =

 1 if xi is one of the k nearest observations of x,

0 otherwise.

The bandwidth λ in the NW method and the number k of neighbors in the k-NN

regression method were determined using the training data by leave-one-out cross-

validation, yielding λ = 0.8 and k = 7. The test mean squared error was 394 using

the k-NN method, 467 using the NW method, and 433 using EVREG (Figure 3). The

three models thus appear to be roughly equivalent in terms of prediction accuracy on

such a classical task.

5.2 Unreliable Sensor

Problem Description and Data Generation

In this second example, we consider the situation in which the value of the response

variable y is given by a sensor, the accuracy and reliability of which varies over time.

Each learning example is thus assumed to be of the form ei = (xi, zi, σi, pi), where

xi is the known input value, zi is the measurement of the true (unknown) output yi,

σi is the standard deviation of the measurement error, and pi is the probability that
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the sensor is in good operating condition. Therefore, σi characterizes the accuracy

of the sensor (with a lower σi corresponding to a more accurate sensor), whereas

pi characterizes the sensor reliability (a higher value of pi indicating a more reliable

measurement value). Data of this kind may be encountered in situations where the

accuracy and reliability of sensors vary with time (e.g., as a function of the time since

the last maintenance operation), or depend on the context of the measurement, which

frequently occurs, for instance, in remote sensing and target tracking applications (see,

e.g., [11] for more discussion on this topic).

Data sets of the form above were generated using the following procedure. First,

N = 21 input values were sampled regularly in the interval Y = [0, 10]:

xi = 0.5(i − 1), i = 1, . . . , N. (37)

The true output values were then computed as a deterministic function of the inputs:

yi = xi sin xi i = 1, . . . , N. (38)

In real applications, the accuracy and reliability of a sensor may depend on several

context factors such as the environment, the time since the last maintenance operation,

etc. To simulate this variability, parameters σi and pi were generated randomly from

uniform distributions:

σi ∼ U[0.2,2.2] i = 1, . . . , N. (39)

pi ∼ U[0,1] i = 1, . . . , N. (40)

Next, the state si of the sensor for each example i was simulated. The sensor was

assumed to be in good operating condition (si = 1) with probability pi, and to be

broken (si = 0) with probability 1 − pi. Thus, si has a Bernouilli distribution B(pi).

Finally, the sensor output was generated, as a function of its state si, the true output

yi, and the accuracy σi. If si = 1 (the sensor is in good operating condition), zi was

sampled from a Gaussian distribution with mean yi and standard deviation σi:

zi ∼ N (yi, σi)

If however the sensor was broken (si = 0 ), its output zi was sampled from a uniform

distribution on the whole output domain:

zi ∼ U[0,10].
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The overall distribution of zi is thus a mixture of a Gaussian and a uniform distribu-

tion, with proportions pi and 1 − pi, respectively:

zi ∼ piN (yi, σi) + (1 − pi)U[0,10] (41)

In summary, the data generation procedure thus consists of the following steps,

repeated for each example i ∈ {1, . . . , N}:

1. compute the input xi using (37);

2. compute the true output yi using (38);

3. generate the noise standard deviation σi and the reliability parameter pi using

(39) and (40), respectively;

4. generate the measurement value zi using (41).

One hundred data sets L(�), 	 = 1, . . . , 100 were generated using this procedure,

four of which are shown in Figure 4.

Methods and Results

The EVREG method was applied to this data, and compared with the NW and k-NN

methods.

In EVREG, each training example (xi, zi, σi, pi) was encoded as a pair (xi,mi),

with the FBA mi defined as:

mi(Fi) = pi

mi(Y) = 1 − pi,

where Fi is a Gaussian fuzzy number with center zi and standard deviation σi:

Fi(u) = exp
(
−1

2
(u − zi)2

σ2
i

)
, u ∈ R.

Hence, the FBA mi encodes the measurement value zi, together with its imprecision

σi and reliability pi.

The discounting function φ in (15) was defined as:

φ(|x − xi|) = 0.99 exp
(
−(x − xi)2

θ2

)
18



and parameter θ was optimized using the procedure described in Section 4.2. We used

the k nearest neighbor version of the method defined by (20), with k = 5.

For each training set L�, the error was computed as the mean squared differences

between the true output yi and ŷ
(�)
i , the pignistic expectation (22) of myi [xi,L(�)]:

err(�) =
1
N

N∑
i=1

(yi − ŷ
(�)
i )2. (42)

The average error over the L=100 trial was then defined as :

err =
1
L

L∑
�=1

err(�) (43)

The performances of our method were compared to those of the NW and k-NN

methods. The tuning parameters of these methods (Gaussian kernel bandwidth for

the NW method, and k for the k-NN method) were optimized by leave-one-out cross-

validation for each training set. When faced to uncertain data using such classical

techniques, the two options are either to keep all the data, or to discard the most

unreliable data. These two strategies were simulated by applying each of the two

classical methods in three different conditions:

1. using all the training data;

2. using only the training examples i such that pi > 0.2;

3. using only the training examples i such that pi > 0.5.

Figure 5 displays the results obtained for one particular data set. As shown by

this example, the EVREG model is able to take advantage of all the information in

the training set, including the imprecision and reliability values (see Fig. 5(a)). When

applied to the same data, the k-NN and NW smoothers perform poorly, which can

be explained by the fact that they are not able to use the imprecision and reliability

information (Fig. 5(b)). One way to introduce part of this information is to discard

the most unreliable data points, which however only marginally improves the results

in this case (Fig. 5(c) and (d)).

These observations are confirmed by looking at the overall results for the 100 trials.

The average errors (43) for each of the six methods tested are displayed in Figure 6.
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The EVREG method has the least average error, whereas the other six methods are

roughly equivalent. Figure 7 shows boxplots of the differences between the error of

each classical method and the error of the EVREG model, for the 100 trials. As shown

by this graphical representation, the superiority of the FBA-based method is highly

significant.

5.3 Two Unreliable Sensors

Problem Description and Data Generation

This example continues the previous one, assuming that we now have two sensors S1

and S2 of different time-varying accuracy and reliability. As before, the input values

xi are fixed and defined by (37), and the true outputs are computed as a function of

the inputs according to (38). Each sensor Sj (j = 1, 2) provides for each input value

xi a random measurement zj
i from the following distribution:

zj
i ∼ pj

iN (yi, σ
j
i ) + (1 − pj

i )U[0,10],

where pj
i is the probability that sensor Sj is in good operating condition, and σj

i is

the standard deviation of the measurement noise for the same sensor. Parameters

pj
i and σj

i (i = 1, . . . , N , j = 1, 2) are generated randomly using the same uniform

distributions as in the previous section (39-40).

Each learning example is thus of the form

(xi, z
1
i , σ1

i , p
1
i , z

2
i , σ2

i , p
2
i ).

Using the classical regression approach, a learning example can only be of the form

(xi, zi) ∈ R
2. In that case, it is quite natural to define zi as a weighted sum of z1

i and

z2
i , the weights being equal to the reliability parameters:

zi =
p1

i z
1
i + p2

i z
2
i

p1
i + p2

i

.

In the EVREG model, a simple way to encode the leaning information is to rep-

resent the output of each sensor Sj for input xi by a FBA mj
i defined as:

mj
i (F

j
i ) = pj

i

mj
i (Y) = 1 − pj

i ,
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where F j
i is a Gaussian fuzzy number with center zj

i and standard deviation σj
i :

F j
i (u) = exp

(
−1

2
(u − zj

i )
2

σj
i

)
, u ∈ R.

The outputs of the two sensors are then combined using the Dempster’s rule (con-

junctive sum followed by smooth normalization) to form a new FBA mi = m1
i ⊕ m2

i .

Results

For this learning task, we have compared the performances of EVREG to those of

the NW method (the NW and k-NN predictors were shown in Section 5.2 to yield

quite similar results). As before, parameter λ in the NW method, and parameter

θ in EVREG were optimized using leave-one-out cross-validation. The experiment

(including random data generation) was repeated 100 times. For both methods, the

error err(�) for training set L(�) was computed using (42), and the average error over

the 100 learning sets was computed using (43). The average error was 5.96 for our

method vs. 8.00 for the NW predictor. The 99% confidence interval for the difference

between the mean errors of the NW and EVREG models is [1.21, 2.86], meaning that

the observed difference is significant at the 0.01 level.

A boxplot of the distribution of error differences between the two methods for the

100 trials is shown in Figure 8, and results for a particular learning set are shown in

Figure 9.

6 Conclusion

A new nonparametric regression technique has been described. This technique, called

EVREG, is rooted in Belief Function Theory, and makes extensive use of two fun-

damental operations in this theory: discounting and Dempster’s rule of combination.

The EVREG model differs from both standard statistical nonparametric regression

models and fuzzy systems in two important respects:

• the response variable yi for learning examples is allowed to be partially known,

and specified in the form of a crisp or fuzzy belief assignment mi; this type

of data thus generalizes both numerical, interval-valued and fuzzy data types

usually considered in conventional statistics or fuzzy data analysis;
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• the model output for an input x is also given in the form of crisp or fuzzy belief

assignment, which quantifies the uncertainty on the response variable, resulting

from both the imperfection of learning data, and the dissimilarity of x to known

examples in the learning set.

Simulations have demonstrated the good performances of EVREG in realistic situ-

ations in which the observations are acquired from one or several sensors with limited

accuracy and reliability.
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Figure 1: Example 1: calculation of my[x,L] from two elements of a training set

{(x1,m1), (x2,m2)}). Upper left: m1, defined by two fuzzy focal elements A and B,

and m2, with a single fuzzy focal element C. Upper right: my[x, e1] and my[x, e2].

Bottom: my[x, e1, e2] with F(my[x, e1, e2]) = {A,B,C,Y,D,E}, where E = A ∩ C

and D = B ∩ C. The thickness of the lines is proportional to the masses.
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Figure 2: Motorcycle data. Up: training data (x) with 0.1, 0.25, 0.5, 0.75 and 0.90

quantiles. Down: training data (x) with pignistic expectation (solid line) and upper

and lower expectations (broken lines).
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Figure 3: Motorcycle data: prediction curves for the EVREG (upper left), Nadaraya-

Watson (upper right) and k-NN (down) methods, together with the training (x) and

test (+) data.
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Figure 4: Four generated data sets for the unreliable sensor experiment. The solid

curve indicates the true output values yi as a function of the inputs xi. The circles

show the simulated measurements zi. The radius of each circle is proportional to the

reliability index pi. A cross inside the circle indicates that the sensor was broken

(si = 0). Each vertical segment represents the interval [zi − σi, zi + σi].
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Figure 5: Unreliable sensor experiment: (a) point prediction (solid line) and first and

ninth deciles of the pignistic distribution (broken lines) obtained by EVREG, with the

data set (plotted as in Figure 4) and the true outputs (dotted line); (b) predictions

obtained using the k-NN (solid line) and NW (broken line) regressors; (c) predictions

obtained using the k-NN (solid line) and NW (broken line) regressors, using only

examples i such that pi > 0.5; (d) predictions obtained using the k-NN (solid line)

and NW (broken line) regressors, using only examples i such that pi > 0.2.

30



0

5

10

15

Method

A
ve

ra
ge

 e
rr

or

EVREG NW NW>0.5 NW>0.2 kNN kNN>0.5 kNN>0.2 

Figure 6: Unreliable sensor experiment: average errors (over the 100 trial) for EVREG,

and six classical approaches: the Nadaraya-Watson (NW) and k-NN regressors, in 3

learning conditions (with all training data, with examples i such that pi > 0.5, with

examples i such that pi > 0.2).
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Figure 7: Unreliable sensor experiment: boxplots of the distributions of error differ-

ences between each of the 6 classical methods, and the EVREG model. The horizontal

line inside each box indicates the median, while the lower and upper lines of the box

are the 25th and 75th percentiles of the sample.
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Figure 8: Two unreliable sensors experiment: boxplot of the distributions of error

differences between the NW and EVREG models.
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Figure 9: Two unreliable sensors experiment: (a) true output (dotted line), point

prediction (solid line) and first and ninth deciles of the pignistic distribution (broken

lines) obtained by EVREG, with the data set (the outputs from sensors S1 and S2

are shown as circles and squares, respectively); (b) true output (dotted line) and

predictions obtained using the NW method (solid line).
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