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Abstract

We propose a new classifier based on Dempster-Shafer (DS) theory and a convolutional
neural network (CNN) architecture for set-valued classification. In this classifier, called
the evidential deep-learning classifier, convolutional and pooling layers first extract high-
dimensional features from input data. The features are then converted into mass functions
and aggregated by Dempster’s rule in a DS layer. Finally, an expected utility layer performs
set-valued classification based on mass functions. We propose an end-to-end learning strat-
egy for jointly updating the network parameters. Additionally, an approach for selecting
partial multi-class acts is proposed. Experiments on image recognition, signal processing,
and semantic-relationship classification tasks demonstrate that the proposed combination of
deep CNN, DS layer, and expected utility layer makes it possible to improve classification
accuracy and to make cautious decisions by assigning confusing patterns to multi-class sets.

Keywords: Evidence theory, belief function, convolutional neural network, decision
analysis, classification

1. Introduction

In machine learning, classification refers to the task of predicting the class of a new sam-
ple based on a learning set of labeled instances. The most common classification problem
is precise classification, in which a sample is classified into one and only one of the possible
classes. Unfortunately, such a hard assignment often leads to misclassification in case of5

high uncertainty. For example, ambiguity occurs when the feature vector does not contain
sufficient information to identify a precise class, and multiple classes have similar probabil-
ities. Also, a classifier with only precise classification may fail to identify outliers belonging
to class that is not represented in the learning set.
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Set-valued classification [20, 45, 38] is a potential way to solve this problem; it is defined as10

the assignment of a new observation into a non-empty subset of classes when the uncertainty
is too high to make a precise classification. For instance, given a class set Ω = {ω1, ω2, ω3}, we
may not be able to reliably classify a sample x into a single class, but it may be almost sure
that it does not belong to ω3. In this case, it is more cautious to assign x to the set {ω1, ω2}.
Classification with a reject option in [4, 62] can be regarded as a special case of set-valued15

classification, rejection being equivalent to assigning a sample to the entire set of possible
classes. A related problem concerns the treatment of outliers, which cannot be classified
into any of the known classes, a problem referred to as “novelty detection” or “distance
rejection” [16]. Depending on the method, such samples may be assigned to the empty set,
or to the whole set Ω, reflecting maximum uncertainty [9]. Set-valued classification makes20

it possible to better reflect classification uncertainty, increase the cautiousness of classifiers
and ultimately reduce the error rate. Precise classification can be considered as a special
case of set-valued classification, in which only the sets with one class are considered.

In this study, we propose a new classifier based on Dempster-Shafer (DS) theory and deep
convolutional neural networks (CNN) for set-valued classification, called the evidential deep-25

learning classifier 1. In this classifier, a deep CNN is used to extract high-order features from
raw data. Then, the features are imported into a distance-based DS layer [9] for constructing
mass functions. Finally, mass functions are used to compute the utilities of acts assigning to
a set of classes for set-valued classification. The whole network is trained using an end-to-end
learning procedure. Additionally, we provide a strategy for considering only some subsets of30

classes instead of considering all of them. The effectiveness of the classifier and its decision
strategy are demonstrated and discussed using three types of datasets (image, signal, and
semantic relationship). The main contribution of this study is the demonstration that CNNs
can be enhanced with set-valued classification and novelty detection capabilities thanks to
the addition of an additional DS layer, while maintaining their very good performance in35

precise classification tasks.

Related work

In recent years, with the explosive development of deep learning [29], several models
have been developed for precise classification, such as convolutional neural networks (CNNs)
[25, 31, 65], recurrent neural networks [33, 39, 40], graph neural networks [53, 54], and deep40

autoencoders [63, 64]. Deep learning is a class of machine learning methods that uses multiple
layers to progressively extract higher-level features from raw data as object representation.
For example, when processing images using a CNN, lower layers may identify edges, while
higher layers may identify more abstract concepts relevant to humans such as digits, letters
or faces. Object representation based on deep learning is generally robust and reliable. In45

particular, the representation has a strong tolerance to translation and distortion of raw
data. However, despite the power of the deep learning-based models in precise classification,
we still face the problem of making them more cautious by allowing them to assign highly
uncertain samples to sets of classes.

1A short preliminary version of this paper was presented at the SUM 2019 conference [62].
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The Dempster-Shafer (DS) theory of belief functions [7, 55], also referred to as evidence50

theory, can be harnessed to provide a solution to the problem. DS theory is a well-established
formalism for reasoning and making decisions with uncertainty [70]. It is based on repre-
senting independent pieces of evidence by completely monotone capacities and combining
them using a generic operator called Dempster’s rule [55]. In the last two decades, DS
theory has been increasingly applied to pattern recognition and supervised classification,55

following three main directions. The first one is classifier fusion, in which the outputs of
several classifiers are transformed into belief functions and aggregated by a suitable combi-
nation rule (e.g., [1, 35, 48, 74]). Another direction is evidential calibration: the decisions of
classifiers are converted into mass functions with some frequency calibration property (e.g.,
[37, 41, 42, 67, 72]). The last approach is to design evidential classifiers (e.g., [9, 13]), which60

break down the evidence of input features into elementary mass functions and combine them
by Dempster’s rule. The outputs of an evidential classifier can be used for decision-making
[3, 18]. Thanks to the generality and expressiveness of the DS formalism, the outputs of an
evidential classifier provide more information than those of conventional classifiers (e.g., a
neural network with a softmax layer) that convert an input feature vector into a probabil-65

ity distribution or any other distribution. For example, the expressiveness of an evidential
classifier can be used for uncertainty quantification and ambiguity rejection [8, 38]. Over
the years, two main principles for designing an evidential classifier have been proposed: the
model-based and distance-based approaches. The former uses estimated class-conditional
distributions [57], while the latter constructs mass functions based on distances to proto-70

types [9, 13]. In practice, the performance of an evidential classifier mainly depends on two
factors: the training data set and the reliability of object representation.

In the last twenty years we have seen an increase in the size of benchmark datasets for
supervised learning at an unprecedented rate from 102 to 105 [27] and even 109 instances [49].
However, little has been done to hybridize recent techniques for object representation, such75

as deep learning, with evidential classifiers for decision-making. Some studies combining
DS theory and deep learning has been reported, but most of these studies address the
problem of deep-learning classifier fusion, where the outputs of several deep-learning models
are regarded as pieces of evidence and aggregated by Dempster’s rule of combination. For
example, Soua et al. [58] use deep belief networks to independently predict traffic flow80

using streams of data and event-based data, and then update the beliefs from the networks
by Dempster’s conditional rule to achieve enhanced prediction. Tian et al. [61] also use
Dempster’s rule to fuse the beliefs from several deep-learning models with different types of
data to detect anomalous network behavior patterns. Das et al. [5] use CNNs to perform
superpixel semantic segmentation with three levels; DS theory is then utilized to combine85

the segmentation results of the three levels into reliable ones. Besides, Guo et al. [19]
propose an “iFusion” framework, which uses Dempster’s rule to combine different deep-
learning discrimination models taking real-time or heterogeneous data as input. Similar
works using DS theory for deep-learning classifier fusion can also be found in the field of
posture recognition [32], remote-sensing images processing [15], and emotion classification90

[68]. In [11], the author shows that the operations performed in a multilayer perceptron
classifier can be analyzed from the point of view of DS theory as the application of Dempster’s
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rule; however, he does not propose a new model. Though Yuan et al. [71] propose a
method using DS theory to measure the uncertainty of outputs from deep neural networks
for decision-making, it still appears that little has been done to use features from a deep-95

learning model as inputs of an evidential classifier to generate informative mass-function
outputs for decision-making allowing set-valued classification, a gap that we aim to fill in
this work.

The rest of the paper is organized as follows. Section 2 starts with a brief reminder of
DS theory, the DS layer for constructing mass functions, and feature representation via deep100

CNN. The new classifier is then introduced in Section 3. Section 4 reports numerical exper-
iments, which demonstrate the advantages of the proposed classifier. Finally, we conclude
the paper in Section 5.

2. Background

This section first recalls some necessary definitions regarding DS theory (Section 2.1)105

and the evidential neural network introduced in [9] (Section 2.2). Then, a brief description
of feature representation via deep CNN is provided in Section 2.3.

2.1. Dempster-Shafer theory

The main concepts regarding DS theory are briefly presented in this section, and some
basic notations are introduced. Detailed information can be found in Shafer’s original work110

[55] and in the recent review [12].
Let Ω = {ω1, . . . , ωM} be a finite set of states, called the frame of discernment. A mass

function on Ω is a mapping m from 2Ω to [0,1] such that m(∅) = 0 and∑
A⊆Ω

m(A) = 1. (1)

For any A ⊆ Ω, each mass m(A) is interpreted as a share of a unit mass of belief allocated
to the hypothesis that the truth is in A, and which cannot be allocated to any strict subset115

of A based on the available evidence. Set A is called a focal element of m if m(A) > 0.
Two mass functions m1 and m2 representing independent items of evidence can be com-

bined conjunctively by Dempster’s rule ⊕ [55] as

(m1 ⊕m2) (A) =
(m1 ∩m2)(A)

1− (m1 ∩m2)(∅)
(2a)

for all A 6= ∅, with

(m1 ∩m2)(A) =
∑

B∩C=A

m1 (B)m2 (C) (2b)

and120

(m1 ∩m2)(∅) =
∑

B∩C=∅

m1 (B)m2 (C) . (2c)
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Mass functions m1 and m2 can be combined if and only if the denominator on the right-hand
side of Eq. (2a) is strictly positive. The operator ⊕ is commutative and associative.

For decision-making with belief functions, we define the lower and upper expected utilities
[10] of selecting ωi as, respectively,

Em(fωi
) =

∑
B⊆Ω

m(B) min
ωj∈B

uij, (3a)

and125

Em(fωi
) =

∑
B⊆Ω

m(B) max
ωj∈B

uij, (3b)

where uij ∈ [0, 1] is the utility of selecting ωi when the true state is ωj, and fωi
denotes

the act of selecting ωi. A pessimistic decision-maker (DM) typically selects the act with the
largest lower expected utility, while an optimistic DM maximizes the upper expected utility.
The generalized Hurwicz decision criterion [23, 24, 60, 10] models the DM’s attitude to
ambiguity by a pessimism index ν and defines the expected utility of act fωi

as the weighted130

sum
Em,ν(fωi

) = νE(fωi
) + (1− ν)E(fωi

). (4)

It is clear that the pessimistic and optimistic attitudes correspond, respectively, to ν = 1
and ν = 0.

2.2. Evidential neural network

Based on DS theory, Denœux [9] proposed a distance-based neural-network layer for135

constructing mass functions, also known as the evidential neural network (ENN) classifier.
In the ENN classifier, the proximity of an input vector to prototypes is considered as evi-
dence about its class. This evidence is converted into mass functions and combined using
Dempster’s rule. This section provides a short description of the ENN classifier.

We consider a training set X = {x1, x2, . . . ,xN} ⊂ RP of N examples represented with140

P -dimensional feature vectors, and an ENN classifier composed of n prototypes {p1, . . . ,pn}
in RP . For a test sample x, the ENN classifier constructs mass functions that quantify
the uncertainty about its class in Ω = {ω1, . . . , ωM}, using a three-step procedure. This
procedure can be implemented in a neural-network layer, which will be plugged into a deep
CNN in Section 3.1. The three-step procedure is defined as follows.145

Step 1: The distance-based support between x and each reference pattern pi is computed
as

si = αi exp(−
(
ηidi

)2
) i = 1, . . . , n, (5)

where di = ‖x− pi‖ is the Euclidean distance between x and prototype pi, and
αi ∈ (0, 1) and ηi ∈ R are parameters associated with prototype pi. Prototype vectors
p1, . . . ,pn can be considered as vectors of connection weights between the input layer150

and a hidden layer of n Radial basis Function (RBF) units.
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Step 2: The mass function mi associated to reference pattern pi is computed as

mi({ωj}) = hijs
i, j = 1, . . . ,M (6a)

mi(Ω) = 1− si, (6b)

where hij is the degree of membership of prototype pi to class ωj with
∑M

j=1 h
i
j = 1.

We denote the vector of masses induced by prototype pi as

mi = (mi({ω1}), . . . ,mi({ωM}),mi(Ω))T .

Eq. (6) can be regarded as computing the activation of units in a second hidden layer
of the ENN classifier, composed of n modules of M + 1 units each. The result of155

module i corresponds to the belief masses assigned by mi.

Step 3: The n mass functions mi, i = 1, . . . , n, are aggregated by Dempster’s rule (2). The
combined mass function is computed iteratively as µ1 = m1 and µi = µi−1 ∩ mi for
i = 2, . . . , n. We have

µi({ωj}) = µi−1({ωj})mi({ωj}) + µi−1({ωj})mi({Ω}) + µi−1(Ω)mi({ωj}) (7a)

for i = 2, . . . , n and j = 1, . . . ,M , and160

µi(Ω) = µi−1(Ω)mi(Ω) i = 2, . . . , n. (7b)

The vector of outputs from the ENN classifier m = (m({ω1}), . . . ,m({ωM}),m(Ω))T

is finally obtained as

m({ωj}) =
µn({ωj})∑M

j′=1 µ
n({ωj′}) + µn(Ω)

and

m(Ω) =
µn(Ω)∑M

j′=1 µ
n({ωj′}) + µn(Ω)

.

2.3. Feature representation via deep CNN

In practice, the effectiveness of an ENN classifier heavily depends on the information con-165

tained in its input features. Feature representation, an essential part of the machine learning
workflow, consists in discovering the predictors needed for classification from raw data. In
recent years, deep learning models [29] have become very popular because of their ability
to construct rich deep feature representations, allowing them to achieve exceptional perfor-
mance in such tasks as pattern recognition and segmentation [17, 36, 73], signal processing170

[47, 50], and even material discovery [44, 59].
Deep CNNs, one of the most widely used deep learning architectures, are a special type

of multi-layered neural network and the main focus of this paper. The most common CNNs
consist of convolutional layers, pooling layers, and fully connected layers. Convolutional and
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pooling layers are defined as stages. A stage converts its input data into an intermediate175

representation, working as a feature extractor. In general, a deep CNN is composed of
several stacked stages that process raw data and repeatedly converts them into higher-level
feature maps. Then, fully connected layers, serving as a decision maker, assign the input
to one of the classes based on the feature maps. Therefore, the final output of the stacked
stages in a deep CNN can be considered as a feature representation of the input data. In180

the study, these high-level features are used as input to a DS layer capable of set-valued
classification, as will be shown in Section 3.1.

To understand the feature representation of deep CNNs, we briefly recall the processes
of convolutional and pooling layers. Consider a stage with input z = (z1, . . . , zD) consisting
of D input maps or input channels zi (i = 1, . . . , D) with size H×W . A convolutional layer185

consists of several convolution kernels that extract feature maps from z. A convolution
kernel is a small matrix used to apply a convolution operation to each input map by sliding
over the map, performing an element-wise multiplication with the part of the input map
where the kernel is currently on, summing up the multiplied results into a single value,
and then adding the bias of the kernel to the summed value. Thus, the processes in a190

convolutional layer, consisting of e convolution kernels with size a× b, are expressed as

cj = f(bj +
∑
i

wi,j ∗ zi), (8)

where wi,j is the convolution kernel between the i-th input map and the j-th output map;
bj is the bias of kernel wi,j; ∗ denotes the convolution operation; zi is the i-th input map
with size H ×W , i = 1, . . . , D; cj is the j-th output feature map, with size H−a+1

r
× W−b+1

r
,

j = 1, . . . , e; r is the stride with which the kernel slides over input map zi; f is the activation195

function, such as the rectified linear unit ReLU(x) = max(0, x) [28]. A pooling operation
with an s× s non-overlapping local region is formulated as

poka,b =
(
β1, . . . , βs×s

)T · Or(ckas,bs, . . . , ckas+s,bs, . . . , ckas+s,bs+s), (9)

where poka,b is the element (a, b) from the k-th output map, which is in the a-th row and
the b-th column; Or is a sort function from maximum to minimum; · denotes dot prod-
uct; (β1, . . . , βs×s) is the pooling weight vector, such as max pooling (β1, β2, . . . , βs×s) =200

(1, 0, . . . , 0) and mean pooling(
β1, . . . , βs×s

)
=

(
1

s× s
, . . . ,

1

s× s

)
.

3. Proposed classifier

In this section, we describe the proposed classifier. Section 3.1 presents the overall
architecture composed of several stages from a deep CNN for feature representation, a DS
layer to construct mass functions, and an expected utility layer for decision-making. The205

details of the expected utility layer are described in Section 3.2, and the learning strategy for
the proposed classifier is exposed in Section 3.3. Finally, an approach for selecting partial
multi-class acts is introduced in Section 3.4.
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Figure 1: Architecture of an evidential deep-learning classifier.

3.1. Network architecture

The main idea of this work is to hybridize the ENN classifier presented in Section 2.2 and210

the CNN architecture recalled in Section 2.3 by “plugging” a DS layer followed by a utility
layer at the output of a CNN. The architecture of the proposed method, called the evidential
deep-learning classifier, is illustrated in Figure 1. An evidential deep-learning classifier has
the ability to perform set-valued classification and quantify the uncertainty about the class
of the sample on Ω = {ω1, . . . , ωM} by a belief function. Propagation of information through215

this network can be described by the following three-step procedure:

Step 1: An input sample is propagated into several stages of a CNN architecture to extract
latent features relevant for classification, as done in a probabilistic CNN. In the final
stage, the P -dimensional output vector is a feature representation of the sample, ready
to be fed as input to the DS layer. This architecture provides a robust and reliable220

representation of the input sample. Thanks to this representation, the evidential deep-
learning classifier yields similar or even better performance for precise classification
than does a probabilistic classifier with the same stages. This superiority will be
demonstrated by performance comparisons between the evidential and probabilistic
deep-learning classifiers in precise classification tasks (Section 4).225

Step 2: The feature vector computed in Step 1 is fed into the DS layer, in which it is
converted into mass functions aggregated by Dempster’s rule, as explained in Section
2.2. The output of the DS layer is an (M + 1) mass vector

m = (m({ω1}), . . . ,m({ωM}),m(Ω))T ,

which characterizes the classifier’s belief about the probability of the sample class
and quantifies the uncertainty in the object representation. The mass m({ωi}) is a230

degree of belief that the sample belongs to class ωi. The DS layer tends to allocate
masses uniformly across classes when the feature representation contains confusing
and conflicting information. The additional degree of freedom m(Ω) makes it possible
to quantify the lack of evidence and verify whether the model is well trained [62]. The
advantages of the DS layer will be verified in the performance evaluation of set-valued235

classification using evidential deep-learning classifiers reported in Section 4.
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Step 3: The output mass vector m is fed into an expected utility layer for decision-making,
where it is used to compute the expected utilities of acts. Each act is defined as the
assignment of the sample to a non-empty subset A of Ω. Thus, the output of the
expected utility layer is an expected-utility vector of size at most equal to 2M − 1 if240

all of the possible acts are considered. The expected utility layer allows the proposed
classifier to perform set-valued classification. This capability will be demonstrated by
the performance comparison between the evidential and probabilistic deep-learning
classifiers in set-valued classification and novelty detection tasks reported in Section
4. The details of the expected utility layer for set-valued classification are introduced245

in the next section.

3.2. Expected utility layer

Let Ω = {ω1, . . . , ωM} be the set of classes. For classification problems with only precise
prediction, an act is defined as the assignment of an example to one and only one of the M
classes. The set of acts is F = {fω1 , . . . , fωM

}, where fωi
denotes assignment to class ωi.250

To make decisions, we define a utility matrix UM×M , whose general term uij ∈ [0, 1] is the
utility of assigning an example to class ωi when the true class is ωj. Here, UM×M is called
the original utility matrix. For decision-making with belief functions, each act fωi

induces
expected utilities, such as the lower and upper expected utilities defined by (3).

For classification problems with imprecise prediction, Ma and Denœux [38] proposed255

an approach to conduct set-valued classification under uncertainty by generalizing the set
of acts as partially assigning a sample to a non-empty subset A of Ω. Thus, the set of
acts becomes F = {fA, A ∈ 2Ω\∅}, in which 2Ω is the power set of Ω and fA denotes the
assignment to a subset A. In this study, subset A is defined as a multi-class set if |A| ≥ 2.
For decision-making with F , the original utility matrix UM×M is extended to U(2Ω−1)×M ,260

where each element ûA,j denotes the utility of assigning a sample to set A of classes when
the true label is ωj.

When the true class is ωj, the utility of assigning a sample to set A is defined as an
Ordered Weighted Average (OWA) aggregation [69] of the utilities of each precise assignment
in A as265

ûA,j =

|A|∑
k=1

gk · uA(k)j, (10)

where uA(k)j is the k-th largest element in the set {uAij, ωi ∈ A} made up of the elements in

the original utility matrix UM×M , and weights g = (g1, . . . , g|A|) represent the preference to
choose uA(k)j when a classifier has to make a precise decision among a set of possible choices.
The elements in weight vector g represent the DM’s tolerance to imprecision. For example,
full tolerance to imprecision is achieved when the assignment act fA has utility 1 once set A270

contains the true label, no matter how imprecise A is. In the case, only the maximum utility
of elements in set {uAij, ωi ∈ A} is considered: (g1, g2, . . . , g|A|) = (1, 0, . . . , 0). At the other
extreme, a DM attaching no value to imprecision would consider the act fA as equivalent to
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Table 1: Utility matrix extended by an OWA operator with γ = 0.8.

Classes
ω1 ω2 ω3

f{ω1} 1 0 0
f{ω2} 0 1 0
f{ω3} 0 0 1
f{ω1,ω2} 0.8 0.8 0
f{ω1,ω3} 0.8 0 0.8
f{ω2,ω3} 0 0.8 0.8
f{Ω} 0.6819 0.6819 0.6819

selecting one class uniformly at random from A: this is achieved when

(g1, g2, . . . , g|A|) =

(
1

|A|
,

1

|A|
, . . . ,

1

|A|

)
.

In this study, following [38], we determine the weight vector g of the OWA operators by275

adapting O’Hagan’s method [46]. We define the imprecision tolerance degree as

TDI(g) =

|A|∑
k=1

|A| − k
|A| − 1

gk = γ, (11)

which equals to 1 for the maximum, 0 for the minimum, and 0.5 for the average. In practice,
we only need to consider values of γ between 0.5 and 1 as a precise assignment is preferable
to an imprecise one when γ<0.5 [38]. Given a value of γ, we can compute the weights of
the OWA operator by maximizing the entropy280

ENT (g) = −
|A|∑
k=1

gk log gk (12)

subject to the constraints TDI(g) = γ,
∑|A|

k=1 gk = 1, and gk ≥ 0.

Example 1. Table 1 shows an example of the extended utility matrix generated by an OWA
operator with γ = 0.8 for a classification problem. The first three rows constitute the original
utility matrix, indicating that the utility equals 1 when assigning a sample to its true class,
otherwise it equals 0. The remaining rows are the matrix of the aggregated utilities. For285

example, we get a utility of 0.8 when assigning a sample to set {ω1, ω2} if the true label is
ω1.

Based on an extended utility matrix U(2Ω−1)×M and the outputs of a DS layer m, we can
compute the expected utility of an act assigning a sample to set A using the generalized
Hurwicz criterion (4) as290

Em,ν(fA) = νEm(fA) + (1− ν)Em(fA), (13a)
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Figure 2: Architecture of the expected utility layer.

where Em(fA) and Em(fA) are, respectively, the lower and upper expected utilities

Em(fA) =
∑
B⊆Ω

m(B) min
ωk∈B

ûA,j, (13b)

Em(fA) =
∑
B⊆Ω

m(B) max
ωk∈B

ûA,j, (13c)

and ν is the pessimism index, which is considered as a hyperparameter of the proposed
classifier. The sample is finally assigned to set A such that

A = arg max
∅6=B⊆Ω

Em,ν(fB). (14)

Similar to the DS layer, the procedure of assigning a sample to a set in F using utility295

theory can be summarized as a layer of the neural network, called an expected utility layer,
as shown in Figure 2. In this layer, the inputs and outputs are, respectively, the mass
vector m from the preceding DS layer and the expected utilities of all acts in F . The
connection weight between unit j of the DS layer and output unit A ⊆ Ω corresponding to
the assignment to set A is the utility value ûA,j. As coefficient γ describing the imprecision300

tolerance degree is fixed, the connection weights of the expected utility layer do not need to
be updated during training.

3.3. Learning

The evidential deep-learning classifier can be trained by a stochastic gradient descent
algorithm. Given a sample x with class label ω∗, we define the prediction loss as305

Lν (x) =−
M∑
k=1

yk logEν(fωk
) + (1− yk) log(1− Eν(fωk

)) (15a)
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Table 2: Examples of DS layer outputs

Examples Outputs of a DS layer
m({ω1}) m({ω2}) m({ω3}) m(Ω)

#1 0.70 0.10 0.10 0.10
#2 0.97 0.01 0.01 0.01
#3 0.50 0.50 0 0
#4 0.40 0.40 0 0.2

Table 3: Example of utilities and losses

Examples
Expected utility

Loss (ω∗ = ω1)E1({ω1}) E1({ω2}) E1({ω3})
#1 0.70 0.10 0.10 0.303
#2 0.97 0.01 0.01 0.026
#3 0.50 0.50 0 0.602
#4 0.40 0.40 0 0.796

with

yk =

{
1 if ωk = ω∗
0 if ωk 6= ω∗

. (15b)

The loss Lν (x) is minimized when Eν(fωk
) = 1 for ωk = ω∗ and Eν(fωl

) = 0 for ωl 6= ω∗.

Example 2. Table 2 shows several examples, whose utilities of single-valued assignments
and losses are shown in Table 3. The extended utility matrix is shown in Table 1, and ν
equals 1. We assume that Ω = {ω1, ω2, ω3} and ω∗ = ω1. Eq. (15) yields different losses310

given a set of DS layer outputs.

The derivatives of Lν (x) of the error w.r.t m in the expected utility layer are

∂Lν (x)

∂m({ωk})
= − yk

Eν(fωk
)

[
û{ωk},k + (1− ν) max

i=1,...,M
û{ωk},i

]
, (16a)

∂Lν (x)

∂m(Ω)
=−

M∑
k=1

yk
Eν({fωk

})
(1− ν) max

i=1,...,M
û{ωk},i. (16b)

The derivatives of Lν (x) w.r.t pik, η
i, and ξi in a DS layer are the same as the original

work of Denœux [9]:315

∂Lν (x)

∂pik
=
∂Lν (x)

∂si
2(ηi)2si(xk − pik), k = 1, . . . , P, i = 1, . . . , n, (17)

∂Lν (x)

∂ηi
=
Lν (x)

∂si
(−2ηi(di)2si), i = 1, . . . , n, (18)
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and
∂Lν (x)

∂ξi
=
Lν (x)

∂si
exp(−(ηidi)2)(1− αi)αi, i = 1, . . . , n, (19)

where P is the dimension of the reference patterns and the input feature vector and n is the
number of prototypes.

In the proposed classifier, the DS layer is connected to the pooling layer of the last320

convolutional stage, as shown in Figure 1. Thus, we can compute the derivatives of the
error w.r.t. xk and pok as

∂Lν (x)

∂xk
=
Lν (x)

∂pok
= −2

Lν (x)

∂si
(ηi)2si

n∑
i=1

(xk − pik), k = 1, . . . , P, (20)

where pok is the k-th output map in the final pooling layer, which is a 1 × 1 tensor. Error
propagation in the remaining stages is performed as in a probabilistic CNN.

3.4. Act selection325

As explained in Section 3.2, the set of acts when considering multi-class assignment is
F = {fA, A ∈ 2Ω\∅}, as instances can be assigned to any non-empty subset A of Ω. However,
the cardinality of F increases exponentially with the number of classes, which could preclude
the application of this approach when the number M of classes is large.

In [62], we showed that a neural network with convolutional layers and a DS layer tends330

to assign samples to multi-class sets when candidate classes are similar, such as, e.g., “cat”
and “dog”, or “horse” and “deer”. Thus, it may be advantageous to only consider partial
multi-class acts assigning samples to subsets containing two or more similar classes.

In this study, we propose a strategy to determine similar classes in the frame of dis-
cernment and select partial multi-class acts from F based on class similarity. Using the335

selected partial multi-class acts, rather than all acts in F , we can reduce the compute cost
in set-valued assignments. This strategy can be described as follows.

Step 1: A confusion matrix with only precise assignments is generated by a trained evi-
dential deep-learning classifier using the training set. In the confusion matrix, each
column represents the predicted sample distribution in one class.340

Step 2: Each column in the confusion matrix is normalized using its total number. Each
normalized column is regarded as the feature of its corresponding class.

Step 3: The Euclidean distance between every two features is computed, and a dendrogram
is generated by a hierarchical agglomerative clustering (HAC) algorithm [6, 56]. The
distance between every two features represents the similarity of the two classes. The345

distance is close to 0 if two classes are similar.

Step 4: The distance can be drawn versus the number of clusters based on the dendrogram,
as shown in Figure 3d. A point of inflection in the curve can then be used to determine
the threshold for cutting the dendrogram. In this study, we used the Calinski-Harabasz
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index (CHI) [2] to determine this point. The point of inflection is the one in the curve350

with the maximum CHI, as illustrated in Figure 3d of Example 3. The right of the
point has a small number of highly similar classes. This can be explained by the nature
of the HAC algorithm [6]. Very similar classes are consolidated first as the algorithm
proceeds. Toward the end of the HAC run, we reach a stage where dissimilar classes
are left to be merged but the distance between them is large; these classes are not355

similar and do not need to be clustered in the act-selection strategy.

Step 5: The distance corresponding to the inflection point is used as the threshold to
cut the dendrogram. Similar patterns are the classes in the clustered groups with the
distance lower than the threshold. Finally, we select the multi-class acts corresponding
to similar classes.360

Example 3. Figure 3 shows an example of act selection, in which a HAC algorithm with
Ward linkage is used to generate a dendrogram. Figure 3d display a point of inflection whose
CHI is 1.91 and corresponding distance is 0.927 . The distance is used as the threshold of the
Euclidean distance to cut the dendrogram. There are two pairs of similar patterns: {ω1, ω2}
and {ω3, ω4}. Thus, the selected partial multi-class acts are f{ω1,ω2} and f{ω3,ω4}.365

Labels
ω1 ω2 ω3 ω4

Acts

fω1 557 115 24 13
fω2 107 679 32 14
fω3 13 16 663 128
fω4 25 32 145 627

(a)

Labels
ω1 ω2 ω3 ω4

Acts

fω1 0.793 0.136 0.027 0.017
fω2 0.152 0.806 0.037 0.018
fω3 0.018 0.019 0.767 0.167
fω4 0.035 0.038 0.168 0.802

(b)

(c) (d)

Figure 3: An example of act selection: confusion matrix (a), normalized confusion matrix
(b), dendrogram (c), and a curve of distance vs. cluster number (d).
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4. Experiments

In this section, we present numerical experiments demonstrating the advantages of the
proposed classifier. In section 4.1, we provide three metrics for performance evaluation.
Experimental results on image recognition, signal processing and semantic-relationship clas-
sification tasks are then reported and discussed, respectively, in Sections 4.2, 4.3 and 4.4.370

4.1. Evaluation of set-valued classification

In the applications of evidential deep-learning classifiers, we use the extended utility
matrix U(2Ω−1)×M for performance evaluation. For a dataset T , the classification performance
is evaluated by the averaged utility as

AU(T ) =
1

|T |

|T |∑
i=1

ûA(i),yi , (21)

where yi is the true class of learning example i, A(i) is the selected subset for example i375

using (14) and, using the notation introduced in Section 3.2, ûA,yi is the utility of assigning
sample i to subset A ⊆ Ω when its true class is yi. When only considering precise acts, the
AU criterion defined by (21) boils down to classification accuracy. The averaged cardinality
is also computed as

AC(T ) =
1

|T |

|T |∑
i=1

|A(i)|. (22)

Additionally, we also consider the case where a dataset T ′ = {T ′O, T ′I} is composed of380

a subset T ′O of outliers whose class does not belong to the frame of discernment Ω, and a
subset T ′I of inliers whose class belongs to Ω. We compare the rate of fΩ in T ′I and T ′O to
evaluate the capacity of a classifier to reject outliers together with ambiguous samples. This
capacity is called novelty detection in [9]. Generally, a well-trained classifier is expected to
have a low rate of fΩ in T ′I but a high rate in T ′O.385

In this study, we compare the proposed classifiers with probabilistic CNNs. To ensure a
fair comparison, we adopt the following strategy for probability-based set-valued classifica-
tion in CNNs: fA �∗ fA′ if and only if E(fA) ≤ E(fA′), with E(fA) =

∑
ωk∈A p(ωk) · ûA,k.

4.2. Image classification experiment

We used the CIFAR-10 dataset to evaluate the performance of the proposed classifier390

in image classification. The CIFAR-10 dataset [26] consists of 60,000 RGB images of size
32 × 32 partitioned in 10 classes. There are 50,000 training examples and 10,000 testing
examples. During training, we randomly selected 10,000 images as validation data. We
used two datasets (CIFAR-100 [26] and MNIST [30]) for novelty detection. The CIFAR-100
dataset is just like the CIFAR-10 except it has 100 classes containing 600 images each, while395

the MNIST dataset of handwritten digits has 70,000 examples. All examples in the two
datasets are used for novelty detection except some images whose classes are included in the
CIFAR-10 dataset.
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Table 4: The three baseline stages used on CIFAR-10 data.

NIN [34] FitNet-4 [43] ViT-L/16 [14]
Input: 32 × 32 × 3

16 × 16 × 3 × 4 patches with positional encoding
5 × 5 Conv. NIN 64 ReLU 3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU

3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU
3 × 3 Conv. 32 ReLU 3 × 3 Conv. 32 ReLU
3 × 3 Conv. 48 ReLU 3 × 3 Conv. 48 ReLU
3 × 3 Conv. 48 ReLU 3 × 3 Conv. 48 ReLU

2 × 2 max-pooling with 2 strides
5 × 5 Conv. NIN 64 ReLU 3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU

2 × 2 mean-pooling with 2 strides 3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU
3 × 3 Conv. 80 ReLU 3 × 3 Conv. 80 ReLU

2 × 2 max-pooling with 2 strides
5 × 5 Conv. NIN 128 ReLU 3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU

2 × 2 mean-pooling with 2 strides 3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU
3 × 3 Conv. 128 ReLU 3 × 3 Conv. 128 ReLU

8 × 8 max-pooling with 2 strides 4 × 4 max-pooling with 2 strides+positional encoding
Average global pooling Transformer decoder

Table 5: Test average utilities in precise classification on CIFAR-10 data.

Models
NIN [34] FitNet-4 [43] ViT-L/16 [14]

Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier
Utility 0.8959 0.8978 0.9353 0.9361 0.9921 0.9908
p-value

(McNemar’s test)
0.0489 0.0492 0.0452

Precise classification. In this experiment, the convolutional stages of three probabilistic
CNNs were combined with the DS and expected utility layers, as shown in Table 4. The400

three probabilistic CNNs have the same number of output feature maps but different con-
volutional and pooling layers. As shown in Table 5, the proposed classifiers slightly outper-
form the probabilistic ones in precise classification, except with ViT-L/16 feature extraction.
McNemar’s test results indicate a small but statistically significant effect of the proposed
combination on the image classification task with p-values below 5%. These results suggest405

that the utility of an evidential classifier is larger than that of a probabilistic CNN classifier
with the same stage as the evidential one. They also demonstrate that the use of the con-
volutional and pooling layers in Step 1 of Section 3.1 allows for good precise-classification
performance of the evidential deep-learning classifier.

Table 6: Test average utilities for precise classification of the CIFAR-100 data after transfer
learning.

Models
NIN [34] FitNet-4 [43] ViT-L/16 [14]

CNN classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier
Utility 0.3442 0.3461 0.6688 0.6714 0.8251 0.8217
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Transfer learning. The feasibility of transfer learning on the proposed classifier was also410

verified in this study. The three evidential deep-learning classifiers trained on the CIFAR-10
classification task, as well as the three probabilistic CNNs, were fine-tuned using the training
set of the CIFAR-100 dataset as a new task. Table 6 shows the testing utilities of fine-tuned
classifiers on the CIFAR-100 dataset. The evidential and probabilistic classifiers achieve
close results for precise classification after fine-tuning. Besides, the average utilities of the415

evidential deep-learning classifiers are close to those already reported in [34, 43, 14]. This
demonstrates the feasibility of transfer learning with the proposed classifiers.

Set-valued classification. Before evaluating the performance of the proposed classifiers in
set-valued assignments, we need to determine the optimal pessimism index ν in Eq. (13a)
once given a value of imprecision tolerance degree γ. Based on the ν-utility curves on the420

training set (Figure 4), we can determine the optimal ν for any given γ. As we consider
all of the 2|Ω| acts, the three proposed classifiers always achieve average utilities of 1 when
γ equals 1. The value of ν has an apparent effect on the average utilities when γ is higher
than 0.7. These curves show that parameter ν should be carefully tuned to ensure optimal
performance of the proposed classifier in set-valued assignments.425

Figure 5 shows the test average utilities and cardinalities of the evidential deep-learning
classifiers as functions of γ with the optimal ν. When the imprecision tolerance degree
increases, the average cardinalities increase. This indicates that the proposed classifiers tend
to perform set-valued assignments when given a large tolerance degree of imprecision. The
test average utilities decrease slightly and then increase when γ increases. To explain this430

behavior, Table 7 provides four examples with their assignments and corresponding utilities.
For the first example, the utility increases from 0 to 1 as γ becomes larger. However, for
examples correctly classified when γ = 0.5 (#2 and #3), their utilities first decrease and
then increase back to 1. The majority of examples in the CIFAR-10 testing set fall in the
latter category. Therefore, the test average utilities decrease slightly and then increase when435

γ increases from 0.5 to 1.
The use of the DS and expected utility layers has an effect when there is a lack of

evidence in the feature-extraction part. In Figure 5, when γ is increased from 0.5 to 0.9,
the largest gains in average utility are obtained by the evidential classifier with the NIN
stages [34], whose feature extraction was found to be the worst among the three proposed440

classifiers since it achieved the minimum utility in the precise assignments (Table 5). Thus,
the classifier with the NIN stages is more affected by the DS and expected utility layers than
the other two classifiers. Therefore, we can conclude that the effects of DS and expected
utility layers are more significant if there is a lack of evidence in the feature extraction part.

As shown in Figure 5, the proposed model with a DS layer and an expected layer out-445

performs probabilistic CNN classifiers for set-valued classification. The average utilities of
the proposed classifiers increase significantly when γ increases from 0.5 to 0.9. In contrast,
the average utilities of the probabilistic CNN classifiers only increase sharply when γ in-
creases from 0.9 to 1.0. This is evidence that the proposed classifiers make well-distributed
set-valued classification based on the user’s tolerance degree of imprecision, while the prob-450

abilistic CNN classifiers only assign samples to the multi-class sets when the tolerance is
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(a) (b)

(c)

Figure 4: Average utility vs. ν for the proposed classifiers on the CIFAR-10 dataset: NIN
(a), FitNet-4 (b), and ViT-L/16 (c).
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(a) (b)

Figure 5: Average utility (a) and average cardinality (b) vs. γ for the evidential and
probabilistic deep-learning classifiers on the CIFAR-10 dataset.

Table 7: Label classification/utilities with different γ.

#1(ω∗ =cat) #2(ω∗=dog) #3(ω∗ =deer) #4(ω∗ =automobile)
γ=0.5 {dog}/0 {dog}/1 {deer}/1 {airplane}/0
γ=0.6 {cat,dog}/0.6 {cat,dog}/0.6 {deer}/1 {airplane}/0
γ=0.7 {cat,dog}/0.7 {cat,dog}/0.7 {deer,horse}/0.7 {airplane}/0
γ=0.8 {cat,dog}/0.8 {cat,dog}/0.8 {deer,horse}/0.8 {airplane}/0
γ=0.9 {cat,dog}/0.9 {cat,dog}/0.9 {cat,deer,dog,horse}/0.7104 {cat,deer,dog,horse}/0
γ=1.0 Ω/1.0 Ω/1.0 Ω/1.0 Ω/1.0

large. This phenomenon is caused by the use of DS and expected utility layers in the pro-
posed classifiers. The DS layer tends to generate uniformly distributed masses when the
features are not informative. As a result, the expected utility of a set-valued classification is
the maximum among all acts, rather than the utility of a precise classification. This effect455

explains the superiority of the proposed approach for set-valued classification. However, the
average utilities of the evidential classifiers are less than those of the probabilistic CNN clas-
sifiers for γ = 0.7. The reason is that the probabilistic CNN classifiers make few set-valued
assignments for γ = 0.7, and the evidential classifiers are so cautious that they perform
set-valued assignments for some instances that are correctly classified when γ is less than460

0.7, such as #2 and #3 in Table 7.
In [62], we found that some ambiguous patterns always led the incorrect classification.

Thus, we do not need to consider all of the 2Ω acts, as mentioned in Section 3.4. In this ex-
periment, the performances of the classifiers with partial acts are compared to those with all
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(a) (b)

(c) (d)

Figure 6: Dendrograms for the CIFAR-10 dataset: single linkage (a), complete linkage (b),
average linkage (c) , and Ward linkage (d).

2Ω acts. Taking the evidential classifier with a network as in [14] as an example, we used the465

strategy introduced in Section 3.4 to generate the dendrograms, as shown in Figure 6. When
using Ward linkage [66], we get an inflection point to cut the dendrogram, with the CHI
equal to 1.286 and the corresponding distance equal to 1.238. The selected multi-class sets
consist of {cat, dog}, {deer, horse}, {cat, dog, deer, horse}, and {cat, dog, deer, horse, frog}
in the comparison study. Table 8 reports the testing rates of set-valued classification using470

the selected and 2Ω acts. The rates of the classifiers with the selected and 2Ω acts are close
when γ is less than 0.9. Besides, the rates of the samples assigned correctly using 2Ω acts
but incorrectly using the selected acts are small when γ is less than 0.9, as shown in Table
9. A set-valued assignment is regarded as correct if the multi-class set contains the true
label. Thus, the proposed strategy is useful once an evidential classifier has a value of γ in475

the range of 0.5-0.9.

Novelty detection. Figure 7 displays the results of novelty detection using evidential deep-
learning and probabilistic classifiers. The evidential deep-learning classifiers can assign out-
liers and a few of the known-class examples to set Ω when values of γ are between 0.7 and
0.9, while the probabilistic CNN classifiers cannot, which demonstrates that the proposed480

models outperform the probabilistic CNN classifiers for rejecting outliers together with am-
biguous samples. This is due to the fact that, when the feature vector fed into the DS layer
is far from all prototypes, the activations of the RBF units in the DS layer become close to
zero, as shown by Eq. (5). As a consequence, all the mass functions mi computed by Eq.
(6) assign a large mass to set Ω, and so does their orthogonal sum m. The output of the DS485
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Table 8: Set-valued assignment rates using the selected and 2Ω acts (unit:%).

γ 0.5 0.6 0.7 0.8 0.9 1

CIFAR-10
Selected acts 0 0.52 1.74 13.24 19.62 52.04

2Ω acts 0 0.52 1.76 14.21 22.67 100

UrbanSound 8K
Selected acts 0 2.47 9.10 23.96 49.91 64.43

2Ω acts 0 2.47 9.71 28.74 55.62 100

SemEval-2010 Task 8
Selected acts 0 1.69 8.11 17.62 43.11 66.62

2Ω acts 0 1.69 8.57 27.71 52.77 100

Table 9: Proportions of samples correctly assigned to acts in 2Ω and incorrectly assigned to
selected acts, for different values of γ.

γ 0.5 0.6 0.7 0.8 0.9 1
CIFAR-10 0 0 0 0.18 0.47 2.87

UrbanSound 8K 0 0 0 0.42 0.95 6.62
SemEval-2010 Task 8 0 0 0.11 0.48 0.74 4.43

layer thus reflects ignorance about the class of the input sample (whereas the probabilistic
output of the softmax layer does not), leading to the assignment of the sample to set Ω.

We also applied McNemar’s test with the CIFAR-100 and MNIST datasets, where outliers
assigned to Ω are regarded as positive samples, and the others are negative ones. The results
indicate the use of the DS and expected utility layers has a distinct effect on novelty detection490

since all p-values are smaller than 0.001. However, none of classifiers performs well when γ
is less than 0.7 since these classifiers favor precise decisions. The classifiers tend to reject
outliers whose features are different from the known classes. For example, the proposed
classifiers reject more samples in the MNIST dataset than in the CIFAR-100 dataset since
the hand-written digits are very different from the patterns in the CIFAR-10 dataset.495

4.3. Signal classification experiment

In the application of the proposed classifier on signal processing, we used the UrbanSound
8K dataset [51] composed of 8732 short (less than 4 seconds) excerpts of various urban sound
sources (air conditioner (AI ), car horn (CA), playing children (CH ), dog bark (DO), drilling
(DR), engine idling (EN ), gun shot (GU ), jackhammer (JA), siren (SI ), street music (ST ))500

prearranged into 10 classes. The ratio between the training and testing set is about 3:1.
We randomly selected 25% of the training samples as validation data. Free Spoken Digit
Dataset (FSDD) [52], was used to evaluate the capacity of novelty detection in the signal
classification experiment. FSDD is an audio/speech dataset with 2,000 recordings (50 of
each digit per speaker) in English pronunciations.505

The baseline stages in this experiment are shown in Table 10. The DS and expected
utility layers show a significant difference in the precise classification as 0.01<p<0.05 ac-
cording to McNemar’s test (Table 11). Similarly to CIFAR-10, this demonstrates that the
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(a) (b)

(c)

Figure 7: Rate of fΩ vs. γ for novelty detection in the image-classification experiment: NIN
(a), FitNet-4 (b), and ViT-L/16 (c).
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Table 10: The three baseline stages used for UrbanSound 8K.

Stage 1 [47] Stage 2 Stage 3
Pre-processing: clip, data augmentation, and segmentation

Input: 60 × 41 × 2

57 × 6 Conv. 80 ReLU
57 × 6 Conv. 80 ReLU 29 × 3 Conv. 80 ReLU
1 × 1 Conv. 80 ReLU 29 × 3 Conv. 80 ReLU

4 × 3 max-pooling stride 1 × 3 with 50% dropout

1 × 3 Conv. 80 ReLU
1 × 3 Conv. 80 ReLU 1 × 2 Conv. 80 ReLU
1 × 1 Conv. 80 ReLU 1 × 2 Conv. 80 ReLU

1 × 3 max-pooling stride 1× 3 without dropout

Table 11: Test average utilities in precise classification on UrbanSound 8K.

Models
Stage 1 [47] Stage 2 Stage 3

Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier
Utility 0.7132 0.7261 0.7164 0.7284 0.7210 0.7302
p-value

(McNemar’s test)
0.0234 0.0319 0.0365

performance of the proposed classifiers is better than those of probabilistic CNN classifiers
for precise classification.510

After determining the optimal ν for each value of γ based on the ν-utility curves (Figure
8), we can compute the test average utilities and cardinalities of the evidential deep-learning
and CNN classifiers, as shown in Figure 9. The proposed classifiers outperform the CNN
models for the set-valued classification in the signal processing task. The proposed classifiers
make more cautious decisions than do the probabilistic CNNs since it assigns ambiguous515

samples to multi-class sets. Additionally, the performance of the proposed classifiers exceeds
those of the CNN classifiers in novelty detection (Figure 10). The use of the DS and expected
utility layers has significant effects on novelty detection as the results of p-value are close 0
according to McNemar’s test.

For the testing of act-selection strategy, an inflection point was used to cut off the520

complete-linkage dendrogram [6] in Figure 11, in which CHI is 2.198 and corresponding
distance is 1.036. Thus, we selected partial multi-class sets including {DR, JA}, {AI,EN},
{CH,ST}, {DR, JA,AI,EN}, and {DR, JA,AI,EN,CH, ST}. From Tables 8 and 9, we
can see that the strategy works well if γ is less than 0.9. This demonstrates that the proposed
strategy is acceptable when the classifier has a reasonable γ.525

4.4. Semantic-relationship classification experiment

For the semantic-relationship classification task, we used the SemEval-2010 Task 8
dataset [22]. It contains 10,717 annotated examples, including 8,000 training instances and
2,717 test instances. There are 10 semantic relationships in the dataset as cause-effect (CE ),
instrument-agency (IA), product-producer (PP), content-container (CC ), entity-origin (EO),530

entity-destination (ED), component-whole (CW ), member-collection (MC ), message-topic
(MT ), and other (O). The approach to generate the validation set in this experiment is the
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Figure 8: Average utility vs. in ν for the proposed classifiers on the UrbanSound 8K dataset:
Stage 1 (a), Stage 2 (b), and Stage 3 (c).
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(a) (b)

Figure 9: Average utility (a) and average cardinality (b) vs. γ for the proposed classifiers
and the probabilistic CNN classifiers on the UrbanSound 8K dataset.

same as those used in the experiments on the CIFAR-10 and UrbanSound 8K datasets. The
FewRel dataset [21] with 100 semantic-relationship classes and 70,000 examples was used in
novelty detection, in which the known-class examples were excluded in the experiment.535

We referred to the stages shown in Table 12 to design the evidential deep-learning clas-
sifiers. In the precise classification, the use of DS and expected utility layers improves the
test average utilities of the deep-learning models, as shown in Table 13. Thus, a DS layer
and an expected utility layer instead of a softmax layer introduce a positive effect on the
networks in the semantic-relationship classification.540

The strategy for determining the optimal values of ν in this experiment was the same
as those in the CIFAR-10 and UrbanSound 8K experiments. The test average utilities in
set-valued classification of the two types of models are shown in Figure 13, which demon-
strate the superiority of the evidential deep-learning classifiers. Figure 14 indicates the
acceptable capacity of novelty detection in the evidential deep-learning classifiers. Similar545

as the CIFAR-10 and UrbanSound 8K dataset, the acts generated from the complete-linkage
dendrogram (Figure 15 and an inflection point whose CHI is 2.627 and a distance equals
1.107) works as well as the 2Ω acts if the classifier has a suitable γ.

25



(a) (b)

(c)

Figure 10: Rate of fΩ vs. γ for novelty detection in the signal-classification experiment:
Stage 1 (a), Stage 2 (b), and Stage 3 (c).

Table 12: The three baseline stages used on SemEval-2010 Task 8.

Stage 1 [73] Stage 2 Stage 3
Pre-processing: word representation

Input: 50 × 1 × t, in which t is the number of input sentences

3 × 1 Conv. 200 ReLU
3 × 1 Conv. 200 ReLU 2 × 1 Conv. 200 ReLU
1 × 1 Conv. 200 ReLU 2 × 1 Conv. 200 ReLU

1 × 1 Conv. 100 tanh
1 × 1 Conv. 200 tanh 1 × 1 Conv. 200 tanh
1 × 1 Conv. 100 tanh 1 × 1 Conv. 100 tanh

1 × 1 mean-pooling stride 1× 1
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(a) (b)

(c) (d)

Figure 11: Dendrograms for the UrbanSound 8K dataset: single linkage (a), complete linkage
(b), average linkage (c) , and Ward linkage (d).

Table 13: Test average utilities in precise classification on SemEval-2010 Task 8.

Models
Stage 1 [73] Stage 2 Stage 3

Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier Probabilistic classifier Evidential classifier
Utility 0.8255 0.8347 0.8351 0.8425 0.837 0.8436
p-value

(McNemar’s test)
0.0301 0.0415 0.0430
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Figure 12: Curves in ν-utility for the proposed classifiers on the SemEval-2010 Task 8
dataset: Stage 1 (a), Stage 2 (b), and Stage 3 (c).
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(a) (b)

Figure 13: Average utility (a) and average cardinality (b) vs. γ for the proposed classifiers
and the probabilistic CNN classifiers on the SemEval-2010 Task 8 dataset.
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(a) (b)

(c)

Figure 14: Rate of fΩ vs. γ for novelty detection in the semantic-relationship-classification
experiment: Stage 1 (a), Stage 2 (b), and Stage 3 (c).
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(a) (b)

(c) (d)

Figure 15: Dendrograms for the SemEval-2010 Task 8 dataset: single linkage (a), complete
linkage (b), average linkage (c) , and Ward linkage (d).
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5. Conclusions

In this paper, we have presented a new neural network classifier based on deep CNN and550

DS theory for set-valued classification, called the evidential deep-learning classifier. This new
classifier consists of several stages for feature representation, a DS layer to construct mass
functions, and an expected utility layer to make set-valued assignments based on the mass
functions. The classifier can be trained in an end-to-end way. Besides, we have proposed a
strategy to select partial acts instead of considering all of them.555

A major finding of this study is that the hybridization of deep CNNs and evidential
neural networks by plugging DS and expected utility layers at the output of a CNN makes it
possible to improve the performance of deep CNN models by assigning ambiguous patterns
to multi-class sets. The proposed classifier is able to select a set of classes when the object
representation does not allow us to select a single class unambiguously, which easily leads to560

incorrect classification in probabilistic classifiers. This result provides a novel direction to
improve the cautiousness of deep CNNs for object recognition. The use of DS and expected
utility layers also improves precise classification performance. The hybridization also makes
it possible to reject outliers together with ambiguous patterns when the tolerance degree of
imprecise is between 0.7 and 0.9. Additionally, the strategy of selecting partial multi-class565

acts works as well as that of considering all 2|Ω| acts.
Future work will focus on three main aspects. First, we will extend the proposed classifier

to pixel-wise segmentation, where each pixel in an image must be assigned to one of the
subsets of Ω. Secondly, other advanced evidential combination rules, such as contextual-
discounting evidential K-nearest neighbor [13] will be studied to improve the performance570

of the proposed classifier. Finally, we will consider modifications of the model introduced in
this paper to make it applicable to regression problems.
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[18] Guettari, N., Capelle-Laizé, A. S., Carré, P., Sep. 2016. Blind image steganalysis based on evidential

K-Nearest Neighbors. In: Proceedings of the 2016 IEEE International Conference on Image Processing.
Phoenix, USA, pp. 2742–2746.

[19] Guo, K., Xu, T., Kui, X., Zhang, R., Chi, T., 2019. ifusion: Towards efficient intelligence fusion for620

deep learning from real-time and heterogeneous data. Information Fusion 51, 215–223.
[20] Ha, T. M., 1997. The optimum class-selective rejection rule. IEEE Transactions on Pattern Analysis

and Machine Intelligence 19 (6), 608–615.
[21] Han, X., Zhu, H., Yu, P., Wang, Z., Yao, Y., Liu, Z., Sun, M., 2018. Fewrel: A large-scale supervised

few-shot relation classification dataset with state-of-the-art evaluation. In: Proceedings of the 2018625

Conference on Empirical Methods in Natural Language Processing. pp. 4803–4809.
[22] Hendrickx, I., Kim, S. N., Kozareva, Z., Nakov, P., Ó Séaghdha, D., Padó, S., Pennacchiotti, M.,
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[39] Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S., 2010. Recurrent neural network
based language model. In: Proceedings of the 11th Annual Conference of the International Speech
Communication Association. Chiba, Japan, pp. 1045–1048.665
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