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zheng.tong@hds.utc.fr; philippe.xu@hds.utc.fr; thierry.denoeux@utc.fr

Abstract. We propose a novel classifier based on convolutional neural
network (ConvNet) and Dempster-Shafer theory for object recognition
allowing for ambiguous pattern rejection, called the ConvNet-BF clas-
sifier. In this classifier, a ConvNet with nonlinear convolutional layers
and a global pooling layer extracts high-dimensional features from in-
put data. The features are then imported into a belief function clas-
sifier, in which they are converted into mass functions and aggregated
by Dempster’s rule. Evidence-theoretic rules are finally used for pattern
classification and rejection based on the aggregated mass functions. We
propose an end-to-end learning strategy for adjusting the parameters in
the ConvNet and the belief function classifier simultaneously and deter-
mining the rejection loss for evidence-theoretic rules. Experiments with
the CIFAR-10, CIFAR-100, and MNIST datasets show that hybridizing
belief function classifiers with ConvNets makes it possible to reduce error
rates by rejecting patterns that would otherwise be misclassified.

Keywords: Pattern Recognition · Belief Function · Convolutional Neu-
ral Network · Supervised Learning · Evidence Theory.

1 Introduction

Dempster-Shafer (DS) theory of belief functions [3,24] has been widely used for
reasoning and making decisions with uncertainty [29]. DS theory is based on
representing independent pieces of evidence by completely monotone capacities
and aggregating them using Dempster’s rule. In the past decades, DS theory has
been applied to pattern recognition and supervised classification in three main
directions. The first one is classifier fusion, in which classifier outputs are con-
verted into mass functions and fused by Dempster’s rule (e.g., [19,2]). Another
direction is evidential calibration: the decisions of classifiers are transformed into
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mass functions (e.g., [28,20]). The last approach is to design evidential classi-
fiers (e.g., [6]), which represent the evidence of each feature as elementary mass
functions and combine them by Dempster’s rule. The combined mass functions
are then used for decision making [5]. Compared with conventional classifiers,
evidential classifiers can provide more informative outputs, which can be ex-
ploited for uncertainty quantification and novelty detection. Several principles
have been proposed to design evidential classifiers, mainly including the evi-
dential k-nearest neighbor rule [4,9], and evidential neural network classifiers
[6]. In practice, the performance of evidential classifiers heavily depends on two
factors: the training set size and the reliability of object representation. With
the development of the “Big Data” age, the number of examples in benchmark
datasets for supervised algorithms has increased from 102 to 105 [14] and even
109 [21]. However, little has been done to combine recent techniques for object
representation with DS theory.

Thanks to the explosive development of deep learning [15] and its applications
[14,25], several approaches for object representation have been developed, such
as restricted Boltzmann machines [1], deep autoencoders [26,27], deep belief net-
works [22,23], and convolutional neural networks (ConvNets) [12,17]. ConvNet,
which is maybe the most promising model and the main focus of this paper,
mainly consists of convolutional layers, pooling layers, and fully connected lay-
ers. It has been proved that ConvNets have the ability to extract local features
and compute global features, such as from edges to corners and contours to ob-
ject parts. In general, robustness and automation are two desirable properties
of ConvNets for object representation. Robustness means strong tolerance to
translation and distortion in deep representation, while automation implies that
object representation is data-driven with no human assistance.

Motivated by recent advances in DS theory and deep learning, we propose to
combine ConvNet and DS theory for object recognition allowing for ambiguous
pattern rejection. In this approach, a ConvNet with nonlinear convolutional
layers and a global pooling layer is used to extract high-order features from
input data. Then, the features are imported into a belief function classifier, in
which they are converted into Dempster-Shafer mass functions and aggregated by
Dempster’s rule. Finally, evidence-theoretic rules are used for pattern recognition
and rejection based on the aggregated mass functions. The performances of this
classifier on the CIFAR-10, CIFAR-100, and MNIST datasets are demonstrated
and discussed.

The organization of the rest of this paper is as follows. Background knowl-
edge on DS theory and ConvNet is recalled in Section 2. The new combination
between DS theory and ConvNet is then established in Section 3, and numerical
experiments are reported in Section 4. Finally, we conclude the paper in Section
5.



ConvNet and Dempster-Shafer Theory for Object Recognition 3

2 Background

In this section, we first recall some necessary definitions regarding the DS theory
and belief function classifier (Section 2.1). We then provide a description of the
architecture of a ConvNet that will be combined with a belief function classifier
later in the paper (Section 2.2).

2.1 Dempster-Shafer Theory

Evidence Theory The main concepts regarding DS theory are briefly presented
in this section, and some basic notations are introduced. Detailed information
can be found in Shafer’s original work [24] and some up-to-date studies [8].

Given a finite set Ω = {ω1, · · · , ωk}, called the frame of discernment, a mass
function is a function m from 2Ω to [0,1] verifying m(∅) = 0 and∑

A⊆Ω

m(A) = 1. (1)

For any A ⊆ Ω, given a certain piece of evidence, m(A) can be regarded as the
belief that one is willing to commit to A. Set A is called a focal element of m
when m(A) > 0.

For all A ⊆ Ω, a credibility function bel and a plausibility function pl,
associated with m, are defined as

bel(A) =
∑
B⊆A

m(B) (2)

pl(A) =
∑

A∩B 6=∅

m(B). (3)

The quantity bel(A) is interpreted as a global measure of one’s belief that hy-
pothesis A is true, while pl(A) is the amount of belief that could potentially be
placed in A.

Two mass functions m1 and m2 representing independent items of evidence
can be combined by Dempster’s rule ⊕ [3,24] as

(m1 ⊕m2) (A) =

∑
B∩C=A

m1 (B)m2 (C)∑
B∩C 6=∅

m1 (B)m2 (C)
(4)

for all A 6= ∅ and (m1⊕m2)(∅) = 0. Mass functions m1 and m2 can be combined
if and only if the denominator on the right-hand side of (4) is strictly positive.
The operator ⊕ is commutative and associative.
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Belief Function Classifier Based on DS theory, an adaptive pattern classifier,
called belief function classifier, was proposed by Denœux [6]. The classifier uses
reference patterns as items of evidence regarding the class membership. The
evidence is represented by mass functions and combined using Dempster’s rule.
In this section, we describe the architecture of a belief function classifier. For
a more complete introduction, readers are invited to refer to Denœux’s original
work [6].

(a) Architecture of a belief function classifier (b) Connection between layers L2 and L3

Fig. 1: Belief function classifier

We denote by x ∈ RP a pattern to be classified into one of M classes
ω1, · · · , ωM , and by X a training set of N P -dimensional patterns. A belief
function classifier quantifies the uncertainty about the class of x by a belief
function on Ω = {ω1, · · · , ωM}, using a three-step procedure. This procedure
can also be implemented in a multi-layer neural network illustrated in Figure 1.
It is based on n prototypes p1, · · · ,pn, which are the weight vectors of the units
in the first hidden layer L1. The three steps are defined as follows.

Step 1: The distance between x and each prototype pi is computed as

di =
∥∥x− pi∥∥ i = 1, · · · , n, (5)

and the activation of the corresponding neuron is defined by introducing new pa-

rameters ηi (ηi ∈ R) as si = αi exp(−
(
ηidi

)2
), where αi ∈ (0, 1) is a parameter

associated to the prototype pi.

Step 2: The mass function mi associated to prototype pi is computed as

mi = (mi({ω1}), . . . ,mi({ωM}),mi(Ω))T (6a)

= (ui1s
i, . . . , uiMs

i, 1− si)T , (6b)
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where ui = (ui1, . . . , u
i
M ) is a vector of parameters associated to the prototype

pi verifying
∑M
j=1 u

i
j = 1.

As illustrated in Figure 1a, Eq. (6) can be regarded as computing the activa-
tions of units in the second hidden layer L2, composed of nmodules ofM+1 units
each. The units of module i are connected to neuron i of the previous layer. The
output of module i in the hidden layer corresponds to the belief masses assigned
by mi.

Step 3: The n mass functions mi, i = 1, · · · , n, are combined in the final layer
based on Dempster’s rule as shown in Figure 1b. The vectors of activations
µi = (µi1, · · · , µiM+1), i = 1, . . . , n of the final layer L3 is defined by the following
equations:

µ1 = m1, (7a)

µij = µi−1j mi({ωj}) + µi−1j mi({Ω}) + µi−1M+1m
i({ωj}) (7b)

for i = 2, · · · , n and j = 1, · · · ,M , and

µiM+1 = µi−1M+1m
i({Ω}) i = 2, · · · , n. (7c)

The classifier outputs m = (m({ω1}), . . . ,m({ωM}),m(Ω))T is finally obtained
as m = µn.

Evidence-Theoretic Rejection Rules Different strategies to make a decision
(e.g., assignment to a class or rejection) based on the possible consequences of
each action were proposed in [5]. For a complete training set X , we consider
actions αi, i ∈ {1, · · · ,M} assigning the pattern to each class and a rejection
action α0. Assuming the cost of correct classification to be 0, the cost of mis-
classification to be 1 and the cost of rejection to be λ0, the three conditions for
rejection reviewed in [5] can be expressed as

Maximum credibility: maxj=1,··· ,M m({ωj}) < 1− λ0
Maximum plausibility: maxj=1,··· ,M m({ωj}) +m(Ω) < 1− λ0
Maximum pignistic probability: maxj=1,··· ,M m({ωj}) + m(Ω)

M < 1− λ0.

Otherwise, the pattern is assigned to class ωj with j = arg maxk=1,··· ,M m({ωk}).
For the maximum plausibility and maximum pignistic probability rules, rejection
is possible if and only if 0 ≤ λ0 ≤ 1 − 1/M , whereas a rejection action for the
maximum credibility rule only requires 0 ≤ λ0 ≤ 1.

2.2 Convolutional Neural Network

In this section, we provide a brief description of some state-of-the-art techniques
for ConvNets including the nonlinear convolutional operation and global aver-
age pooling (GAP), which will be implemented in our new model in Section 3.
Detailed information about the two structure layers can be found in [18].
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Nonlinear Convolutional Operation The convolutional layer [15] is highly
efficient for feature extraction and representation. In order to approximate the
representations of the latent concepts related to the class membership, a novel
convolutional layer has been proposed [18], in which nonlinear multilayer per-
ceptron (MLP) operations replace classic convolutional operations to convolve
over the input. An MLP layer with nonlinear convolutional operations can be
summarized as follows:

f1i,j,k = ReLU
((

w1
k

)T · x + b1k

)
, k = 1, · · · , C (8a)

...

fmi,j,k = ReLU
(

(wm
k )

T · fm−1i,j + bmk

)
, k = 1, · · · , C. (8b)

Here, m is the number of layers in an MLP. Matrix x, called receptive field of
size i × j × o, is a patch of the input data with the size of (rW − r − p + i) ×
(rH − r − p + j) × o. An MLP layer with an r stride and a p padding can
generate a W × H × C tensor, called feature maps. The size of a feature map
is W × H × 1, while the channel number of the feature maps is C. A rectified
linear unit (ReLU) is used as an activation function as ReLU(x) = max(0, x). As
shown in Eq. (8), element-by-element multiplications are first performed between
x and the transpositions of the weight matrices w1

k (k = 1, · · · , C) in the 1st

layer of the MLP. Each weight matrix w1
k has the same size as the receptive

field. Then the multiplied values are summed, and the bias b1k (k = 1, · · · , C) is
added to the summed values. The results are transformed by a ReLU function.
The output vector is f1i,j = (f1i,j,1,f

1
i,j,2,· · ·,f1i,j,C). The outputs then flow into the

remaining layers in sequence, generating fmi,j of size 1× 1× C. After processing
all patches by the MLP, the input data is transformed into a W ×H×C tensor.
As the channel number C of the last MLP in a ConvNet is the same as the input
data dimension P in a belief function classifier, a W × H × P tensor is finally
generated by a ConvNet.

Global Average Pooling In a traditional ConvNet, the tensor is vectorized
and imported into fully connected layers and a softmax layer for a classification
task. However, fully connected layers are prone to overfitting, though dropout
[11] and its variation [10] have been proposed. A novel strategy, called global
average pooling (GAP), has been proposed to remove traditional fully connected
layers [18]. A GAP layer transforms the feature tensor W ×H×P into a feature
vector 1× 1× P by taking the average of each feature map as follows:

xk =

W∑
i=1

H∑
j=1

fmi,j,k

W ·H
k = 1, · · · , P. (9)

The generated feature vector is used for classification. From the belief func-
tion perspective, the feature vector can be used for object representation and
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classified in one of M classes or rejected by a belief function classifier. Thus, a
ConvNet can be regarded as a feature generator.

3 ConvNet-BF Classifier

In this section, we present a method to combine a belief function classifier and a
ConvNet for objection recognition allowing for ambiguous pattern rejection. The
architecture of the proposed method, called ConvNet-BF classifier, is illustrated
in Figure 2. A ConvNet-BF classifier can be divided into three parts: a ConvNet
as a feature producer, a belief function classifier as a mass-function generator,
and a decision rule. In this classifier, input data are first imported into a ConvNet
with nonlinear convolutional layers and a global pooling layer to extract latent
features related to the class membership. The features are then imported into
a belief function classifier, in which they are converted into mass functions and
aggregated by Dempster’s rule. Finally, an evidence-theoretic rule is used for
pattern classification and rejection based on the aggregated mass functions. As
the background of the three parts has been introduced in Section 2, we only
provide the details of the combination in this section, including the connectionist
implementation and the learning strategy.

Fig. 2: Architecture of a ConvNet-BF classifier

3.1 Connectionist Implementation

In a ConvNet-BF classifier, the Euclidean distance between a feature vector and
each prototype is first computed and then used to generate a mass function. To
reduce the classification error when P is large, we assign weights to each feature
as

di =

√√√√ P∑
k=1

wik(xk − pik)2, (10)
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and the weights are normalized by introducing new parameters ζik (ζik ∈ R) as

wik =
(ζik)2

P∑
l=1

(ζil )
2

. (11)

3.2 Learning

The proposed learning strategy to train a ConvNet-BF classifier consists in two
parts: (a) an end-to-end training method to train ConvNet and belief function
classifier simultaneously; (b) a data-driven method to select λ0.

End-to-End Training Compared with the belief function classifier proposed
in [6], we have different expressions for the derivatives w.r.t. wik, ζik, and pik in
the new belief function classifier. A normalized error Eν (x) is computed as:

Eν (x) =
1

2N

I∑
i=1

M∑
q=1

(Preν,q,i − Tarq,i)2, (12a)

Preν,q,i = m
′

q,i + νm
′

M+1,i, (12b)

m
′

i =
mi∑M+1

k=1 mi({ωk})
. (12c)

Here, Tari = (Tar1,i, · · · , TarM,i) andmi = (mi({ω1}), . . . ,mi({ωM}),mi(Ω))T

are the target output vector and the unnormalized network output vector for
pattern xi, respectively. We transform mi to a vector (Preν,1,i, . . . , P reν,M,i) by
distributing a fraction ν of mi(Ω) to each class under the constraint 0 ≤ ν ≤ 1.
The numbers Pre1,q,i, Pre0,q,i and Pre1/M,q,i represent, respectively, the credi-
bility, the plausibility, and the pignistic probability of class ωq. The derivatives
of Eν(x) w.r.t pik, wik, and ζik in a belief function classifier can be expressed as

∂Eν(x)

∂pik
=
∂Eν(x)

∂si
∂si

∂pik
=
∂Eν(x)

∂si
· 2(ηi)2si ·

P∑
k=1

wik(xk − pik), (13)

∂Eν(x)

∂wik
=
∂Eν(x)

∂si
∂si

∂wik
=
∂Eν(x)

∂si
·
(
ηi
)2
si ·
(
xk − pik

)2
, (14)

and

∂Eν(x)

∂ζik
=
∂Eν(x)

∂wik

∂wik
∂ζik

(15a)

=
2ζik(

P∑
k=1

(
ζik
)2)2

[
∂Eν(x)

∂wik

P∑
k=1

(ζik)2 −
P∑
k=1

(ζik)2
∂Eν(x)

∂wik

]
. (15b)
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Finally, the derivatives of the error w.r.t. xk, wmi,j,k and bmk in the last MLP
are given as

∂Eν(x)

∂xk
=
∂Eν(x)

∂si
∂si

∂xk
= −∂Eν(x)

∂si
· 2(ηi)2si ·

P∑
k=1

ωik(xk − pik), (16)

∂Eν(x)

∂wmi,j,k
=
∂Eν(x)

∂fmi,j,k
·
∂fmi,j,k
∂wmi,j,k

= wmi,j,k ·
∂Eν(x)

∂fmi,j,k
k = 1, · · · , P, (17)

and
∂Eν(x)

∂bmk
=
∂Eν(x)

∂fmi,j,k
·
∂fmi,j,k
∂bmk

=
∂Eν(x)

∂fmi,j,k
k = 1, · · · , P (18)

with
∂Eν(x)

∂fmi,j,k
=
∂Eν(x)

∂xk
· ∂xk
∂fmi,j,k

=
1

W ·H
∂Eν(x)

∂xk
k = 1, · · · , P. (19)

Here, wmi,j,k is the component of the weight matrix wm
k , while fmi,j,k is the com-

ponent of vector fmi,j in Eq. (8).

Determination of λ0 A data-driven method for determining λ0 to guarantee
a ConvNet-BF classifier with a certain rejection rate is shown in Figure 3. We
randomly select three-fifths of a training set χ to train a ConvNet-BF classifier,
while random one-fifth of the set is used as a validation set. The remaining one-

fifth of the set is used to draw a λ
(1)
0 -rejection curve. We can determine the value

of λ
(1)
0 for a certain rejection rate from the curve. We repeat the process and

take the average of λ
(i)
0 as the final λ0 for the desired rejection rate.

Fig. 3: Illustration of the procedure for determining λ0

4 Numerical Experiments

In this section, we evaluate ConvNet-BF classifiers on three benchmark datasets:
CIFAR-10 [13], CIFAR-100 [13], and MNIST [16]. To compare with traditional
ConvNets, the architectures and training strategies of the ConvNet parts in
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ConvNet-BF classifiers are the same as those used in the study of Lin et al,
called NIN [18]. Feature vectors from the ConvNet parts are imported into a
belief function classifier in our method, while they are directly injected into
softmax layers in NINs.

In order to make a fair comparison, a probability-based rejection rule is
adopted for NINs as maxj=1,··· ,M pj < 1−λ0, where pj is the output probability
of NINs.

4.1 CIFAR-10

The CIFAR-10 dataset [13] is made up of 60,000 RGB images of size 32 × 32
partitioned in 10 classes. There are 50,000 training images, and we randomly
selected 10,000 images as validation data for the ConvNet-BF classifier. We
then randomly used 10,000 images of the training set to determine λ0.

The test set error rates without rejection of the ConvNet-BF and NIN classi-
fiers are 9.46% and 9.21%, respectively. The difference is small but statistically
significant according to McNemar’s test (p-value: 0.012). Error rates without
rejection mean that we only consider maxj=1,··· ,M pj and maxj=1,··· ,M m ({ωj}).
If the selected class is not the correct one, we regard it as an error. It turns
out in our experiment that using a belief function classifier instead of a softmax
layer only slightly impacts the classifier performance.

The test set error rates with rejection of the two models are presented in
Figure 4a. A rejection decision is not regarded as an incorrect classification.
When the rejection rate increases, the test set error decreases, which shows that
the belief function classifier rejects a part of incorrect classification. However,
the error decreases slightly when the rejection rate is higher than 7.5%. This
demonstrates that the belief function classifier rejects more and more correctly

classified patterns with the increase of rejection rates. Thus, a satisfactory λ
(i)
0

should be determined to guarantee that the ConvNet-BF classifier has a desirable
accuracy rate and a low correct-rejection rate. Additionally, compared with the
NIN, the ConvNet-BF classifier rejects significantly more incorrectly classified
patterns. For example, the p-value of McNemar’s test for the difference of error
rates between the two classifiers with a 5.0% rejection rate is close to 0. We
can conclude that a belief function classifier with an evidence-theoretic rejection
rule is more suitable for making a decision allowing for pattern rejection than a
softmax layer and the probability-based rejection rule.

Table 1 presents the confusion matrix of the ConvNet-BF classifier with
the maximum credibility rule, whose rejection rate is 5.0%. The ConvNet-BF
classifier tends to select rejection when there are two or more similar patterns,
such as dog and cat, which can lead to incorrect classification. In the view of
evidence theory, the ConvNet part provides conflicting evidence when two or
more similar patterns exist. The maximally conflicting evidence corresponds to
m ({ωi}) = m ({ωj}) = 0.5 [7]. Additionally, the additional mass function m (Ω)
provides the possibility to verify whether the model is well trained because we
have m (Ω) = 1 when the ConvNet part cannot provide any useful evidence.



ConvNet and Dempster-Shafer Theory for Object Recognition 11

(a)

(b)

(c)

Fig. 4: Rejection-error curves: CIFAR-10 (a), CIFAR-100 (b), and MNIST (c)

Table 1: Confusion matrix for Cifar10.
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Airplane - 0.03 0.03 0.01 0.02 0.05 0.04 0.01 0.04 0.05
Automobile 0 - 0.04 0.04 0.08 0.08 0.04 0.06 0.03 0.07
Bird 0.02 0.04 - 0.05 0.04 0.07 0.03 0.08 0 0.04
Cat 0.02 0.03 0.13 - 0.06 0.44 0.11 0.04 0.05 0.06
Deer 0.01 0.04 0.07 0.12 - 0.03 0.12 0.34 0.04 0.08
Dog 0.02 0.03 0.05 0.49 0.11 - 0.06 0.09 0.01 0.04
Frog 0.02 0.04 0.08 0.06 0.12 0.06 - 0.06 0.06 0.05
Horse 0.01 0.02 0.04 0.06 0.31 0.10 0.04 - 0.04 0.04
Ship 0.04 0.05 0.02 0.04 0.12 0.05 0.04 0.18 - 0.02
Truck 0.02 0 0.06 0.09 0.03 0.06 0.07 0.06 0.04 -
Rejection 0.20 0.13 0.14 1.05 0.84 1.07 0.14 1.14 0.18 0.11
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4.2 CIFAR-100

The CIFAR-100 dataset [13] has the same size and format at the CIFAR-10
dataset, but it contains 100 classes. Thus the number of images in each class
is only 100. For CIFAR-100, we also randomly selected 10,000 images of the
training set to determine λ0. The ConvNet-BF and NIN classifiers achieved,
respectively, 40.62% and 39.24% test set error rates without rejection, a small
but statistically significant difference (p-value: 0.014). Similarly to CIFAR-10, it
turns out that the belief function classifier has a similar error rate as a network
with a softmax layer. Figure 4b shows the test set error rates with rejection
for the two models. Compared with the rejection performance in CIFAR-10,
the ConvNet-BF classifier rejects more incorrect classification results. We can
conclude that the evidence-theoretic classifier still performs well when the clas-
sification task is difficult and the training set is not adequate. Similarly, Table 2
shows that the ConvNet-BF classifier tends to select the rejection action when
two classes are similar, in which case we have m ({ωi}) ≈ m ({ωj}). In contrast,
the classifier tends to produce m(Ω) ≈ 1 when the model is not trained well
because of an inadequate training set.

4.3 MNIST

The MNIST database of handwritten digits consists of a training set of 60,000 ex-
amples and a test set of 10,000 examples. The training strategy for the ConvNet-
BF classifier was the same as the strategy in CIFAR-10 and CIFAR-100. The test
set error rates without rejection of the two models are close (0.88% and 0.82%)
and weakly signifiant (p-value: 0.077). Again, using a belief function classifier
instead of a softmax layer introduce no negative effect on the network in MNIST.
The test set error rates with rejection of the two models are shown in Figure
4c. The ConvNet-BF classifier rejects a small number of classification results be-
cause the feature vectors provided by the ConvNet part include little confusing
information.

5 Conclusion

In this work, we proposed a novel classifier based on ConvNet and DS theory for
object recognition allowing for ambiguous pattern rejection, called “ConvNet-BF

Table 2: Confusion matrix for the superclass flowers.
Orchids Poppies Roses Sunflowers Tulips

Orchids - 0.24 0.23 0.28 0.15
Poppies 0.14 - 0.43 0.10 0.90
Roses 0.27 0.12 - 0.16 0.13
Sunflowers 0.18 0.15 0.12 - 0.22
Tulips 0.08 1.07 0.76 0.17 -
Rejection 0.09 0.37 0.63 0.12 0.34
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classifier”. This new structure consists of a ConvNet with nonlinear convolutional
layers and a global pooling layer to extract high-dimensional features and a belief
function classifier to convert the features into Dempster-Shafer mass functions.
The mass functions can be used for classification or rejection based on evidence-
theoretic rules. Additionally, the novel classifier can be trained in an end-to-end
way.

The use of belief function classifiers in ConvNets had no negative effect on the
classification performances on the CIFAR-10, CIFAR-100, and MNIST datasets.
The combination of belief function classifiers and ConvNet can reduce the errors
by rejecting a part of the incorrect classification. This provides a new direction
to improve the performance of deep learning for object recognition. The classifier
is prone to assign a rejection action when there are conflicting features, which
easily yield incorrect classification in the traditional ConvNets. In addition, the
proposed method opens a way to explain the relationship between the extracted
features in convolutional layers and class membership of each pattern. The mass
m(Ω) assigned to the set of classes provides the possibility to verify whether a
ConvNet is well trained or not.
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