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Abstract

This note is a rejoinder to comments by Dubois and Moral about my pa-
per “Likelihood-based belief function: justification and some extensions to
low-quality data” published in this issue. The main comments concern (1)
the axiomatic justification for defining a consonant belief function in the
parameter space from the likelihood function and (2) the Bayesian treat-
ment of statistical inference from uncertain observations, when uncertainty
is quantified by belief functions. Both issues are discussed in this note, in
response to the discussants’ comments.
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I thank the discussants, Dr. Dubois and Prof. Moral, for there insightful
and thought-provoking comments about my paper “Likelihood-based belief
function: justification and some extensions to low-quality data” published
in this issue [6][7][11]. Both discussants questioned some of the axioms I pro-
posed in order to justify the method for defining a consonant belief function
from the likelihood function introduced by Shafer [13]. Additionally, Moral
[11] argued for a Bayesian analysis of statistical inference from uncertain
observations, different from the approach presented in [6]. These two issues
are further examined below, in response to the discussants’ comments.

1. Axiomatic justification of likelihood-based belief functions

In [13], Shafer introduced a method for modeling statistical evidence us-
ing a consonant belief function. In [6], I attempted to justify this method
axiomatically by reasoning as follows. Let X ∈ X denote the observable
data, θ ∈ Θ the parameter of interest and f(x; θ) the probability mass
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or density function describing the data-generating mechanism. Having ob-
served a realization x of X, we wish to quantify the uncertainty on Θ using
a belief function BelΘ(·;x). Which properties should BelΘ(·;x) have? In
[6], I proposed the following three requirements:

1. Likelihood principle: BelΘ(·;x) should only depend on the likelihood
function, defined by L(θ;x) = αf(x; θ) for all θ ∈ Θ, where α is any
positive multiplicative constant.

2. Compatibility with Bayesian inference: if a Bayesian prior π(θ) is
available, combining it with BelΘ(·;x) using Dempster’s rule should
yield the Bayesian posterior.

3. Least Commitment Principle: BelΘ(·;x) should be the least commit-
ted belief function, among all those satisfying the previous two require-
ments.

The first two requirements jointly imply that the contour function pl(θ;x)
associated to BelΘ(·;x) should be proportional to the likelihood function:

pl(θ;x) ∝ L(θ;x). (1)

Assuming the commonality ordering [8] to be relevant for comparing the
informational content of belief functions, the third requirement, together
with the other two, then yields a unique solution, which is the consonant
belief function whose contour function is the relative likelihood function:

pl(θ;x) =
L(θ;x)

supθ′∈Θ L(θ′;x)
. (2)

Dubois [7] and Moral [11] both acknowledge that this formal result provides
a justification for viewing the normalized likelihood function as defining a
consonant belief function, a view that has been shared by several authors
(see, e.g., [17], [21], [1], among others). However, they also claim that the
axioms that support this solution (in particular, requirements 2 and 3 above)
are questionable and that, consequently, they are not sufficiently compelling
to rule out alternative methods of statistical inference in the belief function
framework.

I can only agree with the discussants on this point. Indeed, I never
claimed that the approach advocated in [6] is the only acceptable one for
statistical inference in the belief function framework. As a matter of fact,
formal requirements justifying a solution to some problem are rarely un-
questionable or self-evident (see, e.g., the long-lasting debates on Savage’s
or Cox’s axioms [15], [19], [16]). The axiomatic approach only lays bare some
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basic principles, from which the solution can be derived. These principles
should be as “natural” or “reasonable” as possible. However, accepting or
rejecting them is a matter of personal judgement.

Dubois [7] is, of course, right to point out that the informational ordering
of belief functions based on their commonalities is not the only “reasonable”
one. Other examples are the ordering based on plausibilities, the special-
ization ordering, as well as orderings based on the canonical decomposition
of belief functions, as introduced in [5]. None of these orderings seems to
qualify as the unique way of comparing the information content of belief
functions. Similarly, there is no unique equivalent of Shannon’s entropy for
measuring the degree of uncertainty of belief functions (see, e.g., [12], [10]).
Consequently, any application of the Least commitment Principle [9, 18] can
be criticized as being based on a more or less arbitrary choice of an ordering
or an uncertainty measure. Some arguments in favor of one informational
ordering or another might be found in the future. It seems unlikely, though,
that such arguments will be strong enough to discard other solutions. I am
more inclined to accept the coexistence of several notions of information con-
tent for belief functions, just as there exist several notions of independence
(see, e.g., [2], [3], [4]).

In his comments, Moral [11] focuses his criticism on the second require-
ment, namely, that combining the belief function induced by observations
with a Bayesian prior using Dempster’s rule yield the Bayesian posterior.
Indeed, the belief function induced by two independent samples is not equal
to the orthogonal sum of the belief functions induced by each of the samples.
As noted in [6], this remark suggests that Dempster’s rule is not the only
reasonable mechanism for pooling statistical evidence, which leaves open
the possibility of defining other ways of combining a Bayesian prior with a
belief function induced by the data. Starting from this observation, Moral
[11] proposes two alternatives to the consonant belief function induced by
(2). However, while these two alternative solutions make sense in the impre-
cise probability framework, when interpreting upper probabilities as lower
selling prices [20], they appear to be weakly justified in the belief function
framework. Actually, one of the proposed solution (denoted by P 4) is not
a plausibility function, and it is not known how consistency of the other
solution (denoted by pl3) with Bayesian inference could be achieved.

To conclude this section, we might observe that, while the discussants’
criticisms are partly well-founded, they do not point to any better justi-
fied alternative to the method advocated in [6] for representing statistical
evidence in the belief function framework.
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2. Bayesian analysis of inference from uncertain data

In [6], I considered the situation where the data x are imperfectly ob-
served, and uncertainty about x is described by a mass function mX induced
by a finite random set (Ω, 2Ω, PΩ,Γ) (to simplify the discussion, the sam-
ple space X is assumed to be finite). I then proposed an extension of the
likelihood function to such uncertain data, as:

L(θ;mX) =
∑
x∈X

f(x; θ)pl(x), (3)

where pl(x) is the contour function associated to mX. This corresponding
contour function in the parameter space is then

pl(θ;mX) =
L(θ;mX)

supθ∈Θ L(θ;mX)
, (4)

which is a proper generalization of (2). In [6], I also proposed a Bayesian
analysis of this problem, and arrived at the conclusion that the posterior
probability function f(θ|mX) given mX is not proportional to pl(θ;mX),
which means that the Dempster-Shafer and Bayesian analyses of this prob-
lem yield different solutions.

In his comments [11], Moral proposes an alternative Bayesian analysis,
which he claims to be “the most natural” and which yields a solution equiv-
alent to (3). To clarify the discussion, we need to examine in detail the
assumptions underlying the two solutions.

Moral models a piece of evidence as a propositional variable E depending
on x and ω, such that

P (E|x, ω) =

{
1 if x ∈ Γ(ω),

0 otherwise.
(5)

Assuming (a) the independence of X and Ω and (b) the conditional inde-
pendence of E and θ given x and ω, he then finds P (E|θ) to be identical to
L(θ;mX) in (3). The posterior probability mass or density function f(θ|E)
(with our notation) is then proportional to P (E|θ)π(θ).

The meaning of these assumptions can be better understood using a
simple concrete example. Consider an urn containing red and green balls.
A ball is drawn from the urn, and an observer reports that the ball is green.
However, there is 20 % chance that the observer is color-blind. What can
we say about the proportion θ of green balls?
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Here, x = 1 if the drawn ball is green, and x = 0 otherwise; Ω =
{c, nc}, where c stands for “color-blind” and nc for “not color-blind”; and
the probability distribution on Ω is defined by p(c) = 0.2 and p(nc) = 0.8.
If the observer is not color-blind, we know that the ball that has been drawn
from the urn is green; otherwise, we only know that it is either red or green.
Such evidence can then be modeled by a multi-valued mapping Γ from Ω to
2X such that Γ(nc) = {1} and Γ(c) = {0, 1}.

In this example, it can be assumed that E corresponds to the proposi-
tion “The observer reports that the ball is green”. The two independence
assumptions make sense: the fact that the observer is color-blind does not
depend on the color of the ball being drawn from the urn, and the probabil-
ity that the observer will report the ball to be green does not depend on the
proportion of green balls in the urn, if we already know the color of the ball
as well as the state of the observer (color-blind or not). Assumption (5),
though, is more problematic. In this example, it implies that P (E|0, c) = 1
and P (E|1, c) = 1, which means that, if the observer is color-blind, he will
report for sure the ball to be green, whatever its real color. This assumption
is quite strong and it does not seem to be implied by the initial story. We
may simply not know what a color-blind observer would report if the ball
was green or red.

The analysis presented in [6] is based on the interpretation of a piece of
evidence as a message with uncertain meaning [14]. Here, the report that
the ball is green can be seen as a message with two possible meanings: if the
observer is not color-blind, it means that the ball is really green; otherwise,
it means that the ball is either red or green. Let us detail the analysis in [6]
by explicitly introducing the meaning M of the message, taking values in 2X.
We note that the introduction of this variable taking values in the power set
of X is not artificial, as suggested in [11]; it is inherent in the interpretation
of belief functions as representing pieces of evidence. The relation between
ω and M given E is determined by the multi-valued mapping Γ:

p(M = A|E,ω) =

{
1 if Γ(ω) = A,

0 otherwise.
(6)

Now,

f(θ|E) =
∑

ω∈Ω,A⊆X
f(θ|ω,M = A,E)p(ω,M = A|E). (7)
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We have

p(ω,M = A|E) = p(M = A|ω,E)p(ω|E) (8a)

=

{
mX(A) if Γ(ω) = A,

0 otherwise,
(8b)

and f(θ|ω,M = A,E) = f(θ|M = A) (once the meaning of the message is
known, the state of the observer becomes irrelevant). Consequently,

f(θ|E) =
∑
A⊆X

f(θ|M = A)mX(A). (9)

Now, knowing that the meaning of the message is A is the same as knowing
that X ∈ A, and nothing more. Hence,

f(θ|M = A) = f(θ|X ∈ A) =
PX(A|θ)π(θ)

PX(A)
, (10)

and

f(θ|E) = π(θ)
∑
A⊆X

PX(A|θ)
PX(A)

mX(A), (11)

which is identical to Equation (42) in [6]. In the example considered here,
we have, assuming a uniform prior:

f(θ|E) =
PX({1}|θ)
PX({1})

mX({1}) +
PX({0, 1}|θ)
PX({0, 1})

mX({0, 1}). (12)

As PX({1}|θ) = θ and PX({1}) =
∫
θπ(θ)dθ = 1/2, we have

f(θ|E) = 1.6θ + 0.2. (13)

In contrast, the generalized likelihood function (3) is

L(θ|E) = L(θ|1)pl(1) + L(θ|0)pl(0) (14a)

= θ + 0.2(1− θ) (14b)

= 0.8θ + 0.2. (14c)

The Bayesian analysis (with the above assumptions) and the D-S analysis
thus yield different results even in the case of a uniform prior, as claimed in
[6].
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