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Abstract. We study a new approach to regression analysis. We propose
a new rule-based regression model using the theoretical framework of be-
lief functions. For this purpose we use the recently proposed Evidential
c-means (ECM) to derive rule-based models solely from data. ECM allo-
cates, for each object, a mass of belief to any subsets of possible clusters,
which allows to gain a deeper insight on the data while being robust with
respect to outliers. The proposed rule-based models convey this added
information as the examples illustrate.

1 Introduction

Dempster-Shafer theory of evidence is a theoretical framework for reasoning with
partial and unreliable information [1]. It provides a very powerful tool to deal
with epistemic uncertainty, by allowing experts to express partial beliefs, such as
partial or even total ignorance in a very flexible way, and can be easily extended
to deal with objective probabilities. It provides tools to combine several pieces
of evidence, such as the conjunctive and the disjunctive rules of combination.
Furthermore, using for instance the pignistic transformation, it is possible to
solve decision making problems.

Real-world problems can be solved using the Dempster-Shafer theory of evi-
dence by modeling information pieces using a belief function on a specific domain,
and manipulating the resulting belief functions using available operations of this
framework. The two conventional sources of partial or unreliable knowledge are
human experts and observation data. In this work, we consider the latter. Ob-
servation data often contain partial and unreliable information. The framework
of belief functions is well suited to deal with such data.

Rule-based models are simple, yet powerful tools that can be used for a great
variety of problems, such as regression, classification, decision making and con-
trol. An example of such a model, defined in the framework of fuzzy sets, is the



Takagi-Sugeno fuzzy model [2]. Usually these types of models translate the do-
main knowledge and relation between the variables defined for the system model
in the form of if-then rules. The if-then rules provide a transparent description of
the system, which may reflect the possible nonlinearity of the system. One way
of obtaining rule-based models from data is using product-space clustering. A
clustering algorithm finds a partition matrix which best explains and represents
the unknown structure of the data with respect to the model that defines it [3].
Different clustering algorithms can be used, which will yield different information
and insights about the underlying structure of the data.

In this paper we study how to construct, within the framework of belief func-
tions, as understood in the transferable belief model [4], a rule-based model, by
means of product-space clustering for regression analysis. We use the Evidential
c-means (ECM) algorithm [5] to derive rule-based models solely from data.

Regression analysis is a technique for modeling and analyzing relationships
between variables. More specifically, regression analysis helps to ascertain the
causal effect of one variable upon another. In classical statistics, it is assumed
that the variables are measured in a precise and certain manner. In reality,
observation data often contain partial and unreliable information both on the
dependent and independent variables. Several approaches have been proposed
to deal with different origins of uncertainty in the data, such as fuzzy linear
regression [6, 7], fuzzy rule-base models [2], fuzzy rule-base models with a belief
structure as output [8], nonparametric belief functions [9] and function regression
using neural network with adaptive weights [10]. The approach proposed in this
work combines the formalism to handle imprecise and partially conflicting data,
given by the belief function theory, with a transparent description of the system
in the form of if-then rules.

This paper is organized as follows. Section 2 reviews briefly the main con-
cepts underlying the theory of belief functions, and explains the clustering algo-
rithm used for deriving a credal partition from object data. Section 3 proposes
a rule-based model for regression analysis and the identification of the model
parameters. An example is shown in Section 4 and finally the conclusions and
future work are given in Section 5.

2 Belief Functions

2.1 Basic Concepts

Dempster-Shafer theory of evidence is a theoretical framework for reasoning
with partial and unreliable information. In the following, we briefly recall some
of the basics of the belief function theory. More details can be found in [1, 4,
11]. In this work, we adopt the subjectivist, nonprobabilistic view of Smet’s
transferable belief model (TBM) [4, 11]

Let Ω be a finite set of elementary values ω called the frame of discernment.
A basic belief assignment (bba)[1] is defined as a function m from 2Ω to [0, 1],



satisfying:
∑

A⊆Ω

m(A) = 1 , (1)

which represents the partial knowledge regarding the actual value taken by ω.
The subsets A of Ω = {ω1, . . . , ωc} such that m(A) > 0 are the focal sets of
m. Each focal set A is a set of possible values for ω and the value m(A) can be
interpreted as the part of belief supporting exactly that the actual event belongs
to A. Perfect knowledge of the value of ω is represented by the allocation of the
whole mass of belief to a unique singleton of Ω and m is called a certain bba.
Complete ignorance corresponds to m(Ω) = 1, and is represented by the vacuous
belief function [1]. When all focal sets of m are singletons, m is equivalent to a
probability function and is called a Bayesian bba.

A bba m such that m(∅) = 0 is said to be normal [1]. This condition may be
relaxed by assuming that ω might take its value outside Ω, which means that
Ω might be incomplete [12]. The quantity m(∅) is then interpreted as a mass of
belief given to the hypothesis that ω might not lie in Ω.

The information provided by a bba m can be represented by a belief function
bel : 2ω 7→ [0, 1], defined as

bel(A) =
∑

∅6=B⊆A

m(B) ∀A ⊆ Ω. (2)

The quantity bel(A) represents the amount of support given to A. A bba m can
be equivalently represented by a plausibility function pl : 2Ω 7→ [0, 1], defined as

pl(A) =
∑

B∩A 6=∅

m(B) ∀A, B ⊆ Ω. (3)

The plausibility pl(A) represents the potential amount of support given to A.
Given two bba’s m1 and m2 defined over the same frame of discernment Ω

and induced by two distinct pieces of evidence, we can combine them using a
binary set operation ▽, which can be defined as [11]:

m1 ▽ m2(A) =
∑

B▽C=A

m1(B)m2(C), ∀A ∈ Ω. (4)

The conjunctive and disjunctive rule can be obtained by choosing ▽ = ∩, and
▽ = ∪, respectively. For the case of the conjunctive rule ∩ , the normality
condition m(∅) = 0 may be recovered, by using the Dempster normalization
procedure, by converting the subnormal BBA (m1 ∩ m2) into a normal one (m1⊕
m2)

∗(A), defined as follows:

(m1 ⊕ m2)
∗(A) =

(m1 ∩m2)(A)

1 − (m1 ∩m2)(∅)
, ∀A 6= ∅, (m1 ⊕ m2)

∗(∅) = 0. (5)

The Dempster’s rule of combination [1], noted as ⊕ corresponds to the conjunc-
tive sum combined by the Dempster’s normalization. The choice of the combi-
nation rule depends on the reliability of the two sources. The conjunctive rule



should be used when all sources of information are fully reliable and distinct.
Otherwise, if there are doubts over the reliability of at least one sources then
the disjunctive rule of combination should be chosen.

The decision making problem regarding the selection of one single hypothesis
in Ω, is solved in the transferable belief model framework, by using a pignistic
probability, BetP, defined, for a normal bba, by [11]:

BetP(ω) ,
∑

ω∈A

m(A)

|A|
∀ω ∈ Ω, (6)

where |A| denotes the cardinality of A ⊆ Ω. It is shown, that this is the only
transformation between belief function and a probability function satisfying el-
ementary rationality requirements, in which each mass of belief m(A) is equally
distributed among the elements of A [13].

2.2 Evidential c-Means Algorithm

In [5], the Evidential c-Means (ECM) algorithm was proposed to derive a credal
partition from object data. In this algorithm the partial knowledge regarding the
class membership of an object i is represented by a bba mi on the set Ω. This
representation makes it possible to model all situations ranging from complete
ignorance to full certainty concerning the class label of the object. This idea was
also applied to proximity data [14].

A credal partition is defined as the n-tuple M = (m1, m2, . . . , mn). It can be
seen as a general model of partitioning, where:

– when each mi is a certain bba, then M defines a conventional, crisp partition
of the set of objects; this corresponds to a situation of complete knowledge;

– when each mi is a Bayesian bba, then M specifies a fuzzy partition, as defined
by Bezdek [15];

Determining a credal partition M from object data, using ECM, implies
determining, for each object i, the quantities mij = mi(Aj), Aj 6= ∅, Aj ⊆ Ω)
in such a way that the mass of belief mij is low (high) when the distance dij

between i and the focal set Aj is high (low). The distance between an object
and any non empty subset of Ω is defined by associating to each subset Aj of
Ω the barycenter v̄ of the centers associated to the classes composing Aj . Each
cluster ωk is represented by a center vk ∈ R

p. Specifically,

skj =

{

1, if ωk ∈ Aj

0 otherwise
. (7)

The barycenter v̄j associated to Aj is:

vj =
1

|Aj |

c
∑

k=1

skjvk , (8)



The distance dij is then defined as d2
ij , ||xi − v̄j ||. The proposed objective

function for ECM, used to derive the credal partition M and the matrix V
containing the cluster centers, is given by:

JECM (M, V, A) =

n
∑

i=1

∑

{j/Aj⊆Ω,Aj 6=∅}

τα
j mβ

ijd
2
ij +

n
∑

i=1

δ2mβ
i∅, (9)

subject to
∑

{j/Aj⊆Ω,Aj 6=∅}

mij + mi∅ = 1, ∀i = 1, . . . , n, (10)

where β > 1 is a weighting exponent that controls the fuzziness of the partition,
δ controls the amount of data considered as outliers and mi∅ denotes mi(∅),the
amount of evidence that the class of object i does not lie in Ω. The weighting
coefficient τα

j was introduced to penalize the subsets in Ω of high cardinality and
the exponent α allows to control the degree of penalization. The second term
of (10) is used to give a separate treatment term for the empty set. This focal
element is in fact associated to a noise cluster, which allows to detect atypical
data. The minimization of (10) can be done using the Lagrangian method, with
the following update equation for the credal partition:

mij =
c
−α/(β−1)
j d

−2/(β−1)
ij

∑

Aj 6=∅

c
−α/(β−1)
j d

−2/(β−1)
ij + δ−2/(β−1)

, ∀i = 1, . . . , n, ∀j/Aj ⊆ Ω, Aj 6= ∅,

(11)
and

mi∅ = 1 −
∑

Aj⊆Ω,Aj 6=∅

mij , ∀i = 1, . . . , n. (12)

The credal partition provides different structures, which can give different types
of information about the data. A possibilistic partition could be obtained by
computing from each bba mi the plausibilities pli({ωk}) of the different clusters,
using (3). The value pli({ωk}) represents the plausibility that object i belongs
to cluster k. In the same way, a probabilistic fuzzy partition may be obtained
by calculating the pignistic probability BetPi({ωk}), using (6) induced by each
bba mi. Furthermore, other approximations such as a hard credal partition and
lower and upper approximations of each cluster can be retrieved from the credal
partition [5]. The information obtained from the credal partition and its approx-
imations can be considered intuitive and simple to interpret. In this work, we
try to incorporate the additional degrees of freedom and information obtained
from the credal partition, in the rule-based classification systems.

3 Rule-Based Model

3.1 Regression Problem

Supervised learning is concerned with the prediction of an quantitative measure
of the output variable y, based on a vector x = (x1, . . . , xp) of n observed input



variables. Let x be an arbitrary vector, and y the corresponding unknown output.
In classical regression literature, the objective is to determine the best mathemat-
ical expression describing the functional relationship between one response and
one or more independent variables. Following the nomenclature used, the prob-
lem is to obtain some information on y from the training set L = {(xi, yi)}n

i=1

of n observations of the input and output variables. Classically, it is assumed
that the variables are measured in a precise and certain manner. In reality,
observation data often contain partial and unreliable information both on the
dependent and independent variables. For this case, it necessary to use a formal-
ism to handle such imprecise and partially conflicting data, such as the belief
function framework.

3.2 Model Structure

Given a data set with n data samples, given by X = {x1,x2, . . . ,xn}, y =
{y1, y2, . . . , yn} where each data sample has a dimension of p (n ≫ p), following
a structure similar to a Takagi-Sugeno fuzzy model [2], the objective is to obtain,
directly from the data, rule-based models according to

Rj : If x1 is Mj1and x2 is Mj2 and . . . and xp is Mjp then yj = fj(x), (13)

where Rj denotes the j-th rule, j = 1, 2, . . . , K is the number of rules, x ∈ R
p

is the antecedent variable, Mj is the (multidimensional) antecedent set Mjq of
the j-th rule for q = 1, . . . , p. Each rule j has a different function fj yielding a
different value yj for the output. This type of system consists of a set of if-then
rules combined with an inference mechanism and logical connectives to establish
relations between the variables defined for the model of the system. This type of
model can be identified, by product space clustering. A possibility for the output
function, is to use an affine function for the output function as:

yj = aT
j x + bj.

The sets Mj are ill-known regions of R
p. For a given x it is not possible to

define exactly to which region Mj belongs, but instead, it is possible to compute
a mass function based on the credal partition M . From this mass function it is
possible to compute the pignistic expectation of y given by:

ybet(x) =
∑

Aj⊆Ω,Aj 6=∅

mΩ(Aj)
1

|Aj |
yj (14)

where

mΩ(Aj) =
βj(x)

∑

Bj⊆Θ,Bj 6=∅

βj(x)
, (15)

βj(x) is the degree of activation, and |Aj | is the cardinality of Aj ⊆ Ω.



3.3 Model Parameters

To form the rule-base model from the available learning set L , the structure of
the model is first determined and afterward the parameters of the structure are
identified. Clustering is applied to the learning set L , using ECM. The number
of rules characterizes the structure of a rule-based system and in our case cor-
responds to the number of non-empty subsets of partitions obtained from the
clustering algorithm.

In this work, we use ECM to partition the space using the framework of belief
function. The Evidential c-Means algorithm was proposed to derive a credal
partition from object data. In this algorithm the partial knowledge regarding
the observation data of an object is represented by a basic belief assignment
on the finite set of frame of discernment. This representation makes it possible
to model all situations ranging from complete ignorance to full certainty. Using
the credal partition it is possible to highlight the points that unambiguously
belong to one cluster, and the points that lie at the boundary of two or more
clusters. For this research we try to incorporate the added degrees of freedom
and information obtained from the credal partition, in the rule-based systems.
This type of model will provide a rich description of the data and its underlying
structure, while making it robust to partial and unreliable data.

Antecedent Belief Functions The antecedent functions can be obtained
by projecting the credal partition onto the antecedent variables. The princi-
ple of generating antecedent functions by projection is to project the multidi-
mensional sets defined point wise in the rows of the credal partition matrix
M = (m1, . . . , mn) onto the individual antecedent variables of the rules. This
method projects the credal partition matrix onto the axes of the antecedent
variables xq, 1 ≤ q ≤ p.

In order to obtain the mass of belief functions for the antecedent sets Mjq,
the multidimensional set defined pointwise in the j-th row of the partition matrix
M are projected onto the axes of the antecedent variables xq, by:

mMjq
(xqi) = projq(mij). (16)

where mij is given by (11), defined on frame of discernment Ω. In order to obtain
a model, the point-wise defined sets Mjq can be approximated by appropriate
parametric functions. Several types of functions such as triangular, gaussian or
trapezoidal, can be used. In this work we choose a combination of gaussian
functions of the form

Mjq ≈ f(xq; σ1jq , c1jq, σ2jq , c2jq) = e

(

−(xq−c1jq)2

2σ2
1jq

+
−(xq−c2jq)2

2σ2
2jq

)

. (17)

When computing the degree of activation βj(x) of the j-th rule, the orig-
inal cluster in the antecedent product space is reconstructed by applying the
intersection operator in the cartesian product space of the antecedent variables:

βj(x) = mMj1(x1) ∧ mMj2(x2) ∧ . . . ∧ mMjp(xp), (18)



where ∧ denotes a t-norm. Suitable possible t-norms are the product or the
minimum operator. In this work, we consider the p features to be uncorrelated,
hence we use the product operator. Other possibilities [16] include combination
operators which generalize Dempster rule and the cautious rule [17], based on
a generalized discounting process or alternatively a parameterized family of t-
norms containing both the product and the minimum as special cases, such as
Frank’s family of t-norms [18]

Consequents Parameters The consequent parameters for each rule can be
estimated by the least-squares method. A set of optimal parameters with re-
spect to the model output can be estimated from the identification data set by
ordinary least-squares methods. This approach is formulated as a minimization
of the total prediction error of the model. Let V T

j = [aT
j , bj ] be the vector of con-

sequent parameters, let Xe denote the regressor matrix [X ; 1] and let Wj denote
a diagonal matrix with the normalized degree of activation βj(x) in its i-th diag-
onal element. Denote X ′ = [W1Xe, . . . , WKXe]. Assuming that the columns of
Xe are linearly independent, the resulting solution of the least-squares problem
y = X ′V + ε becomes

V = [X ′T X ′]−1X ′Ty. (19)

The determination of the consequent parameters concludes the identification of
the rule-based system.

4 Examples

In this section, two examples are presented to verify the validity of the proposed
strategy. One is a univariate function, while the other is the gas furnace data
of Box and Jenkins [19]. To assess model performance, the mean squares error
(MSE) will be used. We compare the results obtained using belief rule–base
models proposed in this paper to Takagi–Sugeno fuzzy rule–base models and
also to the results presented in [8]. The Takagi–Sugeno fuzzy rule–base models
antecedent membership functions are obtained using Fuzzy C-Means [15] while
the consequent parameters are obtained using by least-square estimation.

For the first example, let us consider the approximation of a nonlinear static
univariate function:

y(x) = 3 exp−x2

sin(πx) + η (20)

where η is a normal distribution with zero mean and variance 0.15 and x is an
input random sample vector of size n = 30, uniformly distributed in the domain
[−3, 3].

The Box and Jenkins gas furnace data is a well known and frequently used
benchmark data for modeling and identification. The data consist of 296 mea-
surements. The input u(t) is the gas flow rate and the output is CO2 concen-
tration in outlet gas y(t). A possible way of modeling this process is to consider
that the output y(t) is a function of the input variables x = [y(t− 1), u(t− 4)]T .



For both examples a belief rule–base model was derived with c = 3 clusters.
The resulting model will have K = 2c − 1 rules, as we do not consider a rule
for the empty–set. This model was compared to a FCM T–S fuzzy model with
c = 3, 7 clusters, resulting in a model with 3 or 7 rules. The results for this model
can be found in Table 1.

Table 1. MSE for the univariate static function and the gas furnace example.

Model Univariate Gas furnace

Ramdani [8] 0.018 0.045
FCM c = 3 0.432 0.070
FCM c = 7 0.013 0.064
ECM c = 3 0.017 0.063

Table 1 shows that the MSE obtained with the belief rule–base model pro-
posed in this paper are in line with previous studies. Notice that both FCM and
ECM use Euclidean distance as the inner product norm. A more suitable choice
for modeling this type of systems is to employ an adaptive distance norm, such
as the Mahalanobis distance, to detect clusters of different shape and orienta-
tion [20]. This explains the poor results in the univariate case for the fuzzy–rule
base models with c = 3 clusters. Notice that in the case of the belief rule–base
models, a rule is derived for each possible subset of clusters. Thus local models
are identified for objects which are clearly identified as belonging to one clus-
ter, but also to objects in overlapping cluster regions. This is an advantage of
the proposed method as it helps to improve the results using a low number of
clusters. Adding more clusters may increase the number of overlapping cluster
regions and consequently the number of rules. This may result in a system which
will overfit the data. Furthermore, we note that the proposed model is developed
in an automated manner solely from data. This model combines the capability
to handle imprecise and partially conflicting data, given by the belief function
theory, with a transparent description of the system in the form of if-then rules.

5 Conclusions and Future Work

This paper proposes the use of the credal partition obtained from the Evidential
C-Means based on the theoretical framework of belief functions, to derive rule-
based models. This type of model provides a rich description of the data and
its underlying structure, which can be successfully translated into rules, while
making it robust to partial and unreliable data. Future research will focus on
assessing properties and characteristics of the proposed model.
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