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Abstract Using a statistical model in a diagnosis task generally requires a large
amount of labeled data. When ground truth information is not available, too expen-
sive or difficult to collect, one has to rely on expert knowledge. In this paper, it is
proposed to use partial information from domain experts expressed as belief functions.
Expert opinions are combined in this framework and used with measurement data to
estimate the parameters of a statistical model using a variant of the EM algorithm.
The particular application investigated here concerns the diagnosis of railway track
circuits. A noiseless Independent Factor Analysis (IFA) model is postulated, assuming
the observed variables extracted from railway track inspection signals to be generated
by a linear mixture of independent latent variables linked to the system component
states. Usually, learning with this statistical model is performed in an unsupervised
way using unlabeled examples only. In this paper, it is proposed to handle this learning
process in a soft-supervised way using imperfect information on the system compo-
nent states. Fusing partially reliable information about cluster membership is shown
to significantly improve classification results.
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1 Introduction

In the last few years, the diagnosis of complex systems has received growing atten-
tion within the predictive maintenance framework, also referred to as condition-based
maintenance. The idea of predictive maintenance is that continuous monitoring of the
system should allow the user to detect malfunctions and to schedule the appropriate
maintenance operation accordingly. Therefore, in a predictive context, frequent in-
spections of systems are deployed in order to collect inspection data. An automatic
diagnosis process is then needed for detecting and identifying defect occurrences from
the inspection measurements. When a pattern recognition approach is adopted to
solve such problems, it involves using machine learning techniques to assign the mea-
sured signals to one of several predefined classes of defects [10, 24]. Maintainers can
thus be provided with an accurate and systematic analysis of recordings allowing them
to plan preventive maintenance appropriately.

Machine learning methods are generally considered within two main paradigms:
supervised learning and unsupervised learning [27, 30]. To be effective, these meth-
ods require an exhaustive database with data representative of all system states. In
most real world applications, a large amount of data is available but their labeling is
generally a time-consuming and expensive task [11, 34]. However, in many industrial
fields, it can be taken advantage of expert knowledge to label the data. In this case,
the class labels can be subject to imprecision and epistemic uncertainty. The statis-
tical learning community has considered this problem and proposed several learning
schemes, some of them mixing the supervised and unsupervised learning paradigms.

The first situation is that of semi-supervised learning, where the learning set is
built from a combination of labeled and unlabeled samples [8,12,37]. Adding unlabeled
data to a supervised learning set can then be a way to improve the performance of the
algorithms with low additional cost. Another situation is that of partially supervised

learning [2, 3, 19, 28, 31], in which examples are labeled by sets of classes. A learning
example for which all classes are possible is unlabeled, while it is perfectly labeled if
only one class is specified: this framework thus encompasses semi-supervised learning
as a special case. Other learning frameworks have been proposed in order to take
into account the imperfection of class labels. For instance, models incorporating label
noise have been proposed in [4, 35, 36]. In this case, class labels are considered to be
pervaded by random errors: they are thus precise but uncertain.

Using imprecise and uncertain class labels can be interesting when they are sup-
plied by one or several experts and when crisp assignments are hard to obtain [20,
26,32,52]. Jointly, the labeling by several experts raises the issue of their quality and
conformity. A solution to deal with this kind of labels has been proposed in [15,22]. In
this framework, class labels are expressed by Dempster-Shafer belief functions [18,47].
Two kinds of uncertainty are then considered: aleatory uncertainty due to the vari-
ability of the variable of interest in the population and epistemic uncertainty due to
a lack of knowledge on the state of the variable. The proposed model considers these
two kinds of uncertainty separately: aleatory uncertainty is represented by a para-
metric statistical model while epistemic uncertainty is expressed by belief functions
representing expert opinions.

This paper presents a fault diagnosis application using partially labeled data to
learn a statistical model based on Independent Factor Analysis (IFA) [5, 13]. This
generative model assumes the observed variables extracted from the inspection signal
to be generated from a linear mixture of independent latent variables linked to the
states of the system components. Learning of this statistical model is usually per-
formed in an unsupervised way: the model parameters and latent variables are then
learned exclusively from the observed data [1, 5, 40].

The idea investigated in this paper is to incorporate additional information on
the class membership of some samples to estimate the parameters of the IFA model,
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using an extension of the EM algorithm [15, 22]. Real data related to fault diagnosis
in a railway system have been considered. A labeling campaign was organized with
the aim of having these signals labeled by different experts, who were allowed to
express doubt on their assessments, resulting in “soft labels”. The learning was then
performed based on the signals labeled by combining these different opinions via the
theory of belief functions [18,47]. It is shown that the integration of soft-labeled signals
can significantly enhance the information in the data and improve the quality of the
diagnosis.

This article is organized as follows. Background material on belief functions is
first recalled in Section 2. The IFA model and its fitting using data with soft labels
are then addressed in Section 3. Section 4 describes the application under study and
introduces the diagnosis problem in greater detail. Data processing and experimental
results are finally reported in Section 5, and Section 6 concludes the paper.

2 Background on belief functions

This section provides a brief account of the fundamental notions of the Dempster-
Shafer theory of belief functions, also referred to as Evidence Theory. This uncertain
reasoning framework was initiated by Dempster [18] and developed by Shafer [47]. It
can be seen as an extension of Bayesian Probability Theory. A particular interpreta-
tion of Dempster-Shafer theory has been proposed by Smets [51], under the name of
the Transferable Belief Model (TBM). The theory of belief functions has proved to be
particularly useful to represent and reason with partial information in a wide range
of applications, including system diagnosis [43, 54].

2.1 Belief representation

Let Ω = {ω1, ..., ωn} be a finite frame of discernment, defined as a set of exclusive and
exhaustive hypotheses about some question Q of interest. Partial information about
the answer to question Q can be represented by a mass function m : 2Ω → [0, 1] such
that:

∑

A⊆Ω

m(A) = 1, (1)

The quantitym(A) represents a measure of the belief that is assigned to subset A ⊆ Ω

given the available evidence and that cannot be committed to any strict subset of A.
Every A ⊆ Ω such that m(A) > 0 is called a focal set of m. A mass function m is
said to be:

– normalized if ∅ is not a focal set (this condition is not imposed in the TBM under
the open-world assumption);

– dogmatic if Ω is not a focal set;
– vacuous if Ω is the only focal set (it then represents total ignorance);
– simple if it has at most two focal sets and, if it has two, Ω is one of those;
– categorical if it is both simple and dogmatic.

A simple mass function such that m(A) = 1− w for some A 6= Ω and m(Ω) = w

can be noted Aw. Thus, the vacuous mass function can be noted A1 for any A ⊂ Ω,
and a categorical mass function can be noted A0 for some A 6= Ω.

The information contained in a mass function m can be equivalently represented
in several different ways, such as the belief and plausibility functions defined, respec-
tively, as follows:

Bel(A) =
∑

∅6=B⊆A

m(B), ∀A ⊆ Ω, (2)
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and

Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω. (3)

The quantity Bel(A) is interpreted as a total degree of justified support assigned to
A, while Pl(A) is an upper bound on the degree of support that could be assigned to
A if more specific information became available. The function pl : Ω → [0, 1] defined
by pl(ω) = Pl({ω}) for all ω ∈ Ω is referred to as the contour function.

2.2 Information combination

Conjunctive combination

Smets introduced the conjunctive rule of combination to combine several mass func-
tions defined on the same frame of discernment [48]. For this rule to be used, the
different mass functions must be based upon independent pieces of evidence. Let
m1 and m2 be two mass functions obtained from two different reliable sources. The
mass function that results from their conjunctive combination, denoted by m1 ∩©m2,
is defined as:

(m1 ∩©m2)(A) =
∑

B∩C=A

m1(B)m2(C) (4)

for all A ⊆ Ω. This rule is commutative and associative, and it admits the vacuous
mass function as neutral element. It has the effect of focusing masses of belief to
those hypotheses that are jointly supported by both sources. The mass (m1 ∩©m2)(∅)
assigned to the empty set may be interpreted as a degree of conflict between the two
sources.

Several extensions of the conjunctive rule have been proposed for handling the
conflict among partially inconsistent sources of evidence [23,55]. For instance, Yager’s
rule of combination [55] assumes that, in case of conflict, the result is not reliable but
the solution must be in the frame of discernment Ω: the mass (m1 ∩©m2)(∅) is thus
redistributed to Ω, resulting in the normalized mass function (m1 ∩©m2)

∗ defined as

(m1 ∩©m2)
∗(A) = (m1 ∩©m2)(A), ∀A ⊂ Ω,A 6= ∅, (5)

(m1 ∩©m2)
∗(Ω) = (m1 ∩©m2)(Ω) + (m1 ∩©m2)(∅), (6)

(m1 ∩©m2)
∗(∅) = 0. (7)

Disjunctive combination

When it can only be assumed that at least one source is reliable, without knowing
which one, but sources are still considered as independent, the disjunctive rule is
appropriate [49]. It is defined as:

(m1 ∪©m2)(A) =
∑

B∪C=A

m1(B)m2(C) (8)

for all A ⊆ Ω. This rule is commutative and associative.

Cautious conjunctive combination

In the conjunctive and disjunctive rules of combination, the data sources are assumed
to be independent. The cautious rule of combination ∧© was introduced in [21] to
combine mass functions provided by non independent sources. This rule avoids double-
counting information shared by two sources (see also [46]).
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Although the cautious rule can be applied to any non dogmatic mass function, it
will be recalled here only in the case of separable mass function, i.e., mass functions
that can be decomposed as the conjunctive combination of simple mass functions
[47, 50]. Let m1 and m2 be two such mass functions. They can be written as:

m1 = ∩©A⊂ΩA
w1(A)

and
m2 = ∩©A⊂ΩA

w2(A)
,

where Aw1(A) and Aw2(A) are simple mass functions, w1(A) ∈ (0, 1] and w2(A) ∈ (0, 1]
for all A ⊂ Ω. Their combination using the cautious rule is defined as:

(m1 ∧©m2)(A) = ∩©A⊂ΩA
w1(A)∧w2(A)

, (9)

where ∧ denotes the minimum operator. This rule is commutative, associative and
idempotent, i.e., it verifies m ∧©m = m for all m.

2.3 Cognitive independence

Let Ω and Θ be two finite frames of discernment and let mΩ×Θ be a mass function
on the product frame Ω ×Θ. The marginal mass function on Ω is defined as

m
Ω×Θ↓Ω(A) =

∑

C↓Ω=A

m
Ω×Θ(C),

for all A ⊆ Ω, where C ↓ Ω denotes the projection of C ⊆ Ω ×Θ on Ω.
Let mΩ and mΘ denote, respectively, the marginal mass functions on Ω and Θ

and let PlΩ and PlΘ denote the corresponding plausibility functions. The frames Ω
and Θ are said to be cognitively independent [47, page 149] with respect to mΩ×Θ if
the following equalities hold:

Pl
Ω×Θ(A×B) = Pl

Ω(A)Pl
Θ(B), (10)

for all A ⊆ Ω and B ⊆ Θ. As shown by Shafer [47], this property means that new
evidence on one variable does not affect our beliefs in the other variable.

3 Statistical model and learning method

3.1 Independent Factor Analysis

IFA was introduced in [5]. It originates from both standard factor analysis (FA) in
applied statistics [6] and independent component analysis (ICA) in signal process-
ing [7, 17]. IFA is based on a generative model that makes it possible to recover
independent latent components from their observed linear mixtures. In its noiseless
formulation (used throughout this paper), the IFA model can be expressed as:

y = H z, (11)

where H is a nonsingular square matrix of size S, y is the observed random vector
whose elements are the S mixtures and z the random vector whose elements are the
S latent components. Thanks to the noiseless setting, a deterministic relationship
between the distributions of observed and latent variables can be expressed as:

f
Y(y) =

1

| det(H)|
f
Z(H−1

y), (12)
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where fY and fZ denote, respectively, the probability density functions (pdf’s) of
y and z. In the IFA model [5, 40], each source density is a mixture of Gaussians
(MOG), so that a wide class of densities can be approximated, and latent component
are assumed to be independent. The pdf of z is thus given by:

f
Z(z) =

S
∏

j=1

Kj

∑

k=1

π
j
kϕ(z

j ;µj
k, ν

j
k), (13)

where zj denotes the j-th component of vector z, ϕ(.;µ, ν) denotes the Gaussian pdf
with mean µ and variance ν; πj

k, µ
j
k and ν

j
k are the proportion, mean and variance of

component k for source j, and Kj is the number of components for source j. In the
classical unsupervised setting used in IFA, the problem is to estimate both the mixing
matrix H and the MOG parameters from the observed variables y alone. Considering
an iid random sample Y = (y1, . . . ,yN ) of size N , the log-likelihood has the following
form:

logL(Ψ ;Y) = −N log(|det(H)|) +
N
∑

i=1

S
∑

j=1

log





Kj

∑

k=1

π
j
kϕ((H

−1
yi)

j ;µj
k, ν

j
k)



 , (14)

where Ψ is the IFA parameter vector Ψ = (H,π1, . . . ,πS ,µ1, . . . ,µS ,ν1, . . . ,νS), πj

the vector of cluster proportions of source j summing to one, µj and νj the vectors
of size Kj containing the means and the variances of each cluster.

Maximum likelihood estimation of the model parameters can be achieved by an
alternating optimization strategy. The gradient algorithm [1] is indeed well suited
to optimize the log-likelihood function with respect to the mixing matrix H when
the parameters of the source marginal densities are frozen. Conversely, with H kept
fixed, an EM algorithm can be used to optimize the likelihood function with respect
to the parameters of each source. These remarks have led to the development of a
Generalized EM algorithm (GEM) able to simultaneously maximize the likelihood
function with respect to all the model parameters [38].

3.2 Soft-supervised learning in IFA

The IFA model is often considered within an unsupervised learning framework. This
section considers the learning of this model in a soft-supervised learning context where
partial knowledge of the cluster membership of some samples is available in the form
of belief functions. In the general case, we will consider a learning set of the form:

M = {(y1,m
1
1, . . . ,m

S
1 ), . . . , (yN ,m

1
N , . . . , m

S
N )}, (15)

where m1
i , . . . ,m

S
i is a set of mass functions encoding uncertain knowledge on the

cluster membership of sample i for each one of the S sources. Each mass function m
j
i

is defined on the frame of discernment Uj = {c1, . . . , cKj} composed of all possible
clusters for source j. The unsupervised case is recovered as a special case where
all mass functions are vacuous, while the supervised case would correspond to the
situation where each mass function is focused on a singleton.

We can remark that, in the model considered here, two kinds of uncertainty are
present: aleatory uncertainty induced by the random data generation process of each
realization yi, and epistemic uncertainty induced by the imperfect perception of clus-
ter membership. This kind of estimation problem was initially addressed in the specific
case of mixture models in [53] and [33]. It was formalized in [15] and it received a
general formulation in [22], where a generalization of the likelihood function was in-
troduced together with an extension of the EM algorithm for its maximization.
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Let us denote by xi = (yi, u
1
i , . . . , u

S
i ) the completed data where yi ∈ R

S are the
observed variables and u

j
i ∈ Uj , ∀j ∈ {1, . . . , S} are the cluster membership variables

which are ill-known. As in classical IFA, stochastic independence between the xi will
be assumed:

f(X;Ψ ) =

N
∏

i=1

f(xi;Ψ ), (16)

where X = (x1, . . . ,xN ) is the complete sample vector and f(xi;Ψ) is the pdf of a
complete observation according to the IFA model:

f(xi;Ψ ) =
1

| det(H)|

S
∏

j=1

Kj

∏

k=1

(

π
j
kϕ((H

−1
y)j ;µj

k, ν
j
k)
)

1{uj

i
=ck}

. (17)

Additionally, the following cognitive independence assumption (10) will be made:

pl(X) =

N
∏

i=1

pli(xi) =

N
∏

i=1

S
∏

j=1

pl
j
i (u

j
i ), (18)

where pl(X) is the plausibility that the complete sample vector is equal toX, pli(xi) is
the plausibility that the complete data for instance i is xi and pl

j
i (u

j
i ) is the plausibility

that source j for example i was generated from component uj
i .

It should be stressed that assumptions (16) and (18) are unrelated: the former is
a property of the random data generation process, while the latter pertains to the
uncertain observation process. Under these two assumptions and following [22], the
observed data log likelihood can be written as:

logL(Ψ ;M) =

N
∑

i=1

logEΨ [pli(xi)] =

N
∑

i=1

log

∫

X

f(xi;Ψ )pli(xi)dx (19)

= −N log(| det(H)|) +
N
∑

i=1

S
∑

j=1

log





Kj

∑

k=1

pl
j
ikπ

j
kϕ((H

−1
yi)

j ;µj
k, ν

j
k)



 (20)

where pl
j
ik = pl

j
i (ck) is the plausibility (computed from soft label mj

i ) that sample i

belongs to cluster k of latent variable j.
This criterion must be maximized with respect to Ψ to compute parameter es-

timates. The EM algorithm can be extended to perform this task. In this extended
setting it is referred to as E2M for Evidential EM [22]. The next section presents this
extension applied to the IFA model.

3.3 Evidential EM algorithm for soft-supervised IFA

As the classical EM algorithm, the E2M algorithm uses the complete data log-likelihood,
which has the following expression in the case of the IFA model:

logL(Ψ ;X) = −N log(|det(H)|)+

N
∑

i=1

S
∑

j=1

Kj

∑

k=1

1{uj
i = ck} log

(

π
j
kϕ((H

−1
yi)

j ;µj
k, ν

j
k)
)

. (21)

Let f(X|M;Ψ (q)) denote the conditional pdf obtained by combining M with the
complete data density function f(X;Ψ) using Dempster’s rule [22]. The conditional
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expectation of logL(Ψ ;X) with respect to f(X|M;Ψ (q)) defines the auxiliary function
Q(Ψ ,Ψ (q)) that will be maximized during the M-step of the algorithm:

Q(Ψ ,Ψ
(q)) = E

Ψ
(q) [logL(Ψ ;X)|M] (22)

= −N log(|det(H)|) +
N
∑

i=1

S
∑

j=1

Kj

∑

k=1

t
j(q)
ik log

(

π
j
kϕ((H

−1
yi)

j ;µj
k, ν

j
k)
)

,(23)

where t
j(q)
ik is the posterior probability that sample i belongs to cluster k for latent

variable j given the crisp observations yi, the imprecise label mj
i and the current

estimate of the parameter vector Ψ (q), and q is the iteration counter. At the E-step,
the posterior probabilities are computed as follows:

t
j(q)
ik =

pl
j
ikπ

j
k

(q)
ϕ(z

j(q)
i ;µj

k

(q)
, ν

j
k

(q)
)

∑Kj

k′=1 pl
j
ik′π

j
k′

(q)
ϕ(z

j(q)
i ;µj

k′

(q)
, ν

j
k′

(q)
)
, (24)

with z
j(q)
i = ((H(q))−1yi)

j . These quantities are the only terms that need to be
computed during the E-step of the algorithm and they differ from the usual posteriors
solely by the presence of the pl

j
ik terms. During the M-step, the maximization of

Q(Ψ ,Ψ (q)) leads to analytical solutions similar to the classical updated formulas for
the proportions, means and variances of the clusters:

π
j(q+1)
k =

1

N

N
∑

i=1

t
j(q)
ik , (25)

µ
j
k

(q+1)
=

∑N
i=1 t

j(q)
ik z

j(q)
i

∑N
i=1 t

j(q)
ik

, (26)

ν
j
k

(q+1)
=

∑N
i=1 t

j
ik(q)

(

z
j(q)
i − µ

j
k

(q+1)
)2

∑N
i=1 t

j(q)
ik

. (27)

As in standard IFA, the maximization of Q with respect to the mixing matrix
must be performed using gradient ascent:

H
(q+1) = H

(q) + τ∆H
(q)

, (28)

where τ is the learning rate that can be adjusted by a linear search method [41], and
∆H(q) is the IFA learning rule for the mixing matrix H [5]:

∆H
(q) = ([H(q)]−1)t

(

1

N

N
∑

i=1

g
(

z
(q)
i

)

(z
(q)
i )t − I

)

, (29)

where g
(

z
(q)
i

)

is the S-dimensional vector computed using the posterior probabilities

and the model parameters:

g
(

z
j(q)
i

)

=

Kj

∑

k=1

t
j(q)
ik

z
j(q)
i − µ

j(q)
k

ν
j(q)
k

. (30)

Finally, to account for scale indeterminacy in the IFA model, rows of H together
with the latent variables should be scaled by the mixture parameters to constrain
the latent variables to have unit variance. This transformation leaves the likelihood
unchanged and must be performed after each M-step [5].
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Fig. 1 Track circuit representation and examples of inspection signals (Icc)

4 Application

The application considered in this paper concerns fault diagnosis of railway track
circuits. The addressed problem will first be introduced in Section 4.1 and the model
construction will be described in Section 4.2.

4.1 Problem description

The track circuit is an essential component of the automatic train control system [43].
Its main function is to detect the presence or absence of vehicle traffic on a given
section of the railway track. For this purpose, the railway track is divided into different
sections (Fig. 1); each one of them is equipped with a specific track circuit consisting
of:

– A transmitter connected to one of the two section ends, which supplies a frequency
modulated alternating current;

– The two rails that can be considered as a transmission line;
– A receiver at the other end of the track section, which essentially consists of a trap

circuit used to avoid the transmission of information to the neighboring section;
– Trimming capacitors connected between the two rails at constant spacing to com-

pensate the inductive behavior of the track.

A train is detected when the wheels and axles short-circuit the track. It induces
the loss of the track circuit signal and the drop of the received signal below a threshold
indicates that the section is occupied.

On French high-speed lines, the track circuit is also a fundamental component
of the track-to-vehicle transmission system. It uses a specific carrier frequency to
transmit coded data to the train regarding, for example, the maximum authorized
speed on a given section on the basis of safety constraints.

The different parts of this system can be subject to malfunctions due to aging,
atmospheric conditions or track maintenance operations. Faults must be detected as
soon as possible to maintain the system at the required safety and availability levels.
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Icc (mA)

X(m)

x 2+ x +

Fig. 2 Inspection signal parametrization

In the most extreme cases, an abnormal attenuation of the transmitted signal may
induce important signaling problems (a section can be considered as occupied even if
it is not). A diagnosis system is needed to avoid such undesirable situation and inform
maintainers about failures on the basis of inspection signals analysis [42, 43].

Information about the condition of track circuits is obtained using an inspection
vehicle that delivers a measurement signal (denoted as Icc) linked to electrical char-
acteristics of the system. Fig. 1 shows examples of inspection signals simulated along
a 1500 m track circuit: one of them corresponds to a fault-free system, while the oth-
ers correspond to a signal with one and two defective capacitors, respectively. The
problem considered here concerns the diagnosis of track circuit from real inspection
signals, focusing on trimming capacitor faults.

4.2 Implementation of the IFA model

The proposed method is based on the following two observations:

– The presence of a defect in a capacitor only affects the signal downstream (i.e.,
between the capacitor and the receiver), leaving the other part of the signal un-
changed (Fig. 1);

– The inspection signal has a specific structure, which is a succession of local arches
that can be approximated by quadratic polynomials αx2 + βx+ γ (Fig. 2).

As the inspection signal at one location along the track circuit is affected by the
unobservable states of all capacitors located between that location and the transmit-
ter, it can be seen as a result of a mixing process and described using the IFA model
presented in Section 3.1. The corresponding generative model is shown in Fig. 3.

The variables yji are features extracted from each inspection signal i by approxi-
mating each arch j by a quadratic polynomial:

y
j
i = (β̂j

i , γ̂
j
i ). (31)

We note that only two coefficients are needed because the third coefficient is lin-
early related to the three coefficients of the previous polynomial. The size of each
observation vector yi is thus 2S, where S is the number of capacitors in the track
circuit.

As the IFA model requires using as many continuous latent variables as observed
ones, we need to define 2S latent variables. They are defined in our model as:

z
j
i = (cji , ε

j
i ), (32)
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Fig. 3 Generative model for the diagnosis of track circuits represented by a graphical model

where c
j
i is the capacitance of capacitor j for circuit i and ε

j
i is a noise variable.

Each variable c
j
i is assumed to have a MOG distribution with three components

corresponding to three states of the capacitor: fault-free, medium defect and major
defect. The state of capacitor j for circuit i is encoded by a discrete latent variable
u
j
i . The noise variables εji are assumed to be normally distributed.
In the IFA model, the vectors yi and zi of observed and latent variables are

assumed to be linked by relation (11). As there is no influence of a trimming capacitor
state on parts of the inspection signal located upstream along the track circuit (Fig.
1), some terms of matrix H are constrained to be equal to zero in our implementation
of the model [14, 16].

5 Results and discussion

This section presents experiments carried out to validate the two main ideas explored
throughout this paper, i.e., the integration of soft labels for estimating the parameters
of the IFA model and the fusion of expert opinions in the belief function framework.

The diagnosis system was assessed using real signals provided by the French Na-
tional Railway Company (SNCF) and obtained during inspections carried out on a
333 km high-speed line during a two year period, at a frequency of one inspection
every two weeks. Although a large amount of data was collected, no ground truth in-
formation about the state of capacitors could be obtained because of the high cost of
collecting such information. Moreover, given the current scheduled maintenance pol-
icy, most provided signals were fault-free. Therefore, only a small proportion of the
available signals was used in the experiments. Signals presenting defects and consid-
ered as more relevant were selected primarily. However, this selection did not prevent
the representation of fault-free cases in the dataset because there is usually no more
than one or two defective capacitors in each track circuit.

Overall, 422 real signals were presented to four experts for labeling. Imprecise
and uncertain labels were elicited and represented as simple belief functions. The
labels from individual experts were then combined using each of the rules described
in Section 2.2 and the IFA model was fit using the combined labels thanks to the
algorithm described in Section 3.3. Each of these steps is described in greater detail
below.

5.1 Soft label elicitation

A database composed of 422 real signals was used to elicit class labels from experts.
Three classes were considered, corresponding to the three operating modes of the
capacitors, namely: fault free, medium defect and major defect. All the inspection
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confidence

Fig. 4 Interface for labeling inspection signals

signals included into the database were shown separately to four experts thanks to a
dedicated software application (Fig. 4). Two kinds of inspection signals were presented
to the experts: the Icc signal considered as the observation in the statistical model
and another signal that is not used in the diagnosis task but can be helpful during
the labeling operation (see the lower part of Fig. 4). Using this graphical interface
experts were asked to:

1. Visualize the inspection signals one by one;
2. Indicate, for each capacitor, a set of possible classes;
3. Specify a degree of confidence in their decision.

5.2 Combination in the belief function framework

Expert opinions elicited as described above were expressed in the frame

Ω = {ω0, ω1, ω2}, (33)

where ω0, ω1 and ω2 stand for “fault free”, “medium defect” and “major defect”,
respectively. The opinion of each expert about each capacitor was represented by a
simple mass function on Ω, based on the set of possible classes and the confidence
degree given by the expert (the mass assigned to Ω was one minus the confidence
degree).

In the example shown in Fig. 4, one of the experts expressed an imprecise opinion
about the 11-th capacitor’s operating state by selecting the two defective classes of
major and medium defects. In addition, he gave a confidence of 0.5 on this labeling.
This information is represented by the assignment of a mass equal to 0.5 to {ω1, ω2}
and the rest 0.5 to Ω. The first column of Table 1 shows the corresponding mass
function.

With the previous labeling process, each signal labeled by the four experts was
associated to four mass functions for each capacitor of the corresponding track cir-
cuit. The mass functions obtained on each single capacitor were then combined by
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Table 1 Mass functions representing soft labels elicited from the four experts and combined mass
functions using the conjunctive, disjunctive and cautious rules

A m1(A) m2(A) m3(A) m4(A) m ∩©(A) m ∪©(A) m ∧©(A)

∅ 0 0 0 0 0 0 0
{ω0} 0 0 0 0 0 0 0
{ω1} 0 0.8 0.9 0 0.98 0 0.9
{ω2} 0 0 0 0 0 0 0
{ω0, ω1} 0 0 0 0 0 0 0
{ω0, ω2} 0 0 0 0 0 0 0
{ω1, ω2} 0.5 0 0 0.9 0.019 0.3 0.09
Ω 0.5 0.2 0.1 0.1 0.001 0.7 0.01

Table 2 Contour functions resulting from their combination of mass functions in Table 1 by the
conjunctive, disjunctive and cautious rules

ω pl ∩©(ω) pl ∪©(ω) pl ∧©(ω)

{ω0} 0.001 0.7 0.01
{ω1} 1 1 1
{ω2} 0.02 1 0.1

the conjunctive, disjunctive and cautious conjunctive rules defined, respectively, by
(4), (8) and (9). These three rules have been chosen because they are well justified
theoretically and they have clear interpretations (see, e.g., [45] for a discussion on var-
ious justifications for these rules). In particular, the cautious rule has been shown to
yield good results when combining dependent items of evidence [29,46], which makes
it a good candidate for combining the opinions of multiple experts sharing common
background knowledge. Without prior information about the dependence relations
between expert opinions, there seems to be no way to select one of those rules be-
fore performing the experiments. In the case of conjunctive rules, conflicting opinions
were handled using Yager’s normalization (5)-(7), after the combination of all mass
functions.

The contour functions associated to the combined mass functions were then used
to estimate the parameters of the IFA model. Examples of combined mass functions
and corresponding contour functions are shown in Tables 1 and 2, respectively.

5.3 Performance evaluation

To study the impact of the fusion method, the database of 422 signals was associated
to seven different sets of labels obtained from the four individual expert assessments
and the three combination rules.

Because of the lack of the ground truth about the real state of capacitors, we chose
to take as reference another labeling of the same database obtained thanks to a third-
party expertise. This reference labeling was established as a consensus among three
experts working in favorable conditions. For each signal in the database, historical data
collected during past inspections over two years was provided as a support. Thereby,
the labeling of each signal was carried out with a sufficient hindsight that allowed the
experts to observe the onset and progression of defects in the capacitors. In this way,
the estimated labels were sufficiently precise and reliable to assume that they reflect
the true capacitors state. Furthermore, it took two days to get these reference labels,
whereas the experts had only a few hours to perform the labeling task. This reference
labeling will be referred to as REF in the following.

As shown in Table 3, the number of major or medium defects in the considered
database according to the REF labeling is much smaller than the number of fault
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Table 3 Distribution of capacitors according to the REF labeling

fault free medium defect major defect

number of capacitors 8102 126 106
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Fig. 5 Number of medium (blue) and major (white) defect occurrences with respect to the ca-
pacitor positions for track circuits containing 25 capacitors and according to the REF labeling.

free capacitors, resulting in underrepresentation of the two defect classes. This is even
more apparent when considering the number of defects according to the capacitor po-
sition. Figure 5 shows the distribution of defects (according to the REF labeling) with
respect to the capacitor positions for track circuits containing 25 capacitors. It can
be seen that some positions do not have any occurrence of a defective capacitor. This
representation highlights the lack of fault occurrences for some capacitor positions
and the need for more defect cases to learn the model parameters.

To overcome this problem, the real data were complemented by simulated data
generated using an electrical model [42], which allows the simulation of track circuits
behavior by modifying some contextual parameters. Five hundred noisy signals with
known class labels were generated, corresponding to track circuits of 25 capacitors
with different values of the capacitance of each capacitor.

Note that the simulated data were only used to learn the model parameters; they
were never used for the evaluation of the diagnosis performances. A cross-validation
approach was adopted to assess the performance of each labeling. The database was
split randomly into ten subsets; we used nine of them increased by the 500 simulated
signals as the training set to learn the IFA model parameters, and the remaining
subset was used as the test set to estimate the performances obtained with these
parameter estimates. These two steps were repeated 10 times, each time leaving out
a different subset for testing. The results were averaged over the 10 test sets.

5.4 Results

The results were analyzed according to the prediction of capacitor states. Confusion
matrices between the classes defined by the REF labeling and the estimated classes
for all capacitors in the database for each of the four experts and the different combi-
nation schemes are reported in Tables 4 and 5, respectively. Decisions d0, d1 and d2
correspond to the estimated class. These decisions were determined for each capacitor
according to the maximum posterior probabilities computed on every test sets using
the parameters estimated from each labeled database.

Note that a unique performance measure could be computed from each confusion
matrix by defining misclassification costs. For instance, the cost of classifying a major
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Table 4 Confusion matrices for decisions based on labels elicited from each experts

ω0 ω1 ω2

d0 98.8 33.1 2.1
d1 0.9 51.1 6.9
d2 0.2 15.8 90.9

(Expert 1)

ω0 ω1 ω2

d0 98.9 34.7 3.0
d1 0.8 58.8 12.2
d2 0.3 6.5 84.7

(Expert 2)

ω0 ω1 ω2

d0 98.7 22.1 2.1
d1 1.1 63.6 13.8
d2 0.2 14.3 84.1

(Expert 3)

ω0 ω1 ω2

d0 98.8 34.6 3.3
d1 1.0 49.6 5.8
d2 0.2 15.8 90.9

(Expert 4)

Table 5 Confusion matrices for decisions based on the four fusion schemes

ω0 ω1 ω2

d0 98.9 30.7 2.9
d1 0.9 58.0 7.7
d2 0.2 11.3 89.4

(Majority rule)

ω0 ω1 ω2

d0 98.9 20.2 2.9
d1 1.0 64.2 6.5
d2 0.1 15.6 90.6

(Conjunctive combination)

ω0 ω1 ω2

d0 98.9 23.1 2.9
d1 0.8 62.8 8.0
d2 0.1 14.1 89.2

(Disjunctive combination)

ω0 ω1 ω2

d0 98.9 20.4 2.6
d1 1.0 65.3 4.9
d2 0.1 14.2 92.4

(Cautious combination)

defect as medium is obviously less than the cost of classifying it as fault-free. Even
though quantitative cost assessments are difficult to obtain in this application, weaker
information such as interval-valued or linguistic cost assessments could be used, as
suggested in [44]. This is left for further study.

The results reveal good classification performances despite some misclassification
between contiguous classes (i.e., between ω0 and ω1 and ω1 and ω2). The confusion
matrices corresponding to individual experts provide some information on expert skills
(Table 4). Indeed, experts 1 and 4 better detected major defects, while experts 2 and
3 were more accurate for the detection of medium defects. The combination of expert
opinions makes it possible to improve the detection of both types of defects (Table 5).
The best results were achieved by the cautious rule, which suggests that the expert
opinions cannot be regarded as independent.

The confusion between contiguous classes (specially ω1 and ω2) can be explained
by two factors. First, considering the overall number of capacitors represented in the
database, the number of major and medium defects remains too small as compared
to fault-free cases for expecting a reliable learning of these two classes. Secondly,
the identification of medium defects is a particularly difficult exercise due to the
continuous nature of the real states. In critical cases they can be confused with the
two contiguous classes (ω0 and ω2), which further reduces their detection rate. To
confirm this analysis, we computed the degree of conflict resulting from the conjunctive
combination of the mass functions obtained from the expert labels and those obtained
from the REF labeling. As shown by Fig. 6, the degree of conflict is globally very low
(< 0.03), which is consistent with the high number of fault-free capacitors in the
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Table 6 Confusion matrices for decisions based on simulated data only, with N generated exam-
ples

ω0 ω1 ω2

d0 90.5 35.1 4.6
d1 8.4 52.4 17.4
d2 1.1 12.5 78.0

N = 500

ω0 ω1 ω2

d0 91.0 28.4 5.0
d1 8.4 58.1 14.2
d2 0.6 13.5 80.8

N = 900

ω0 ω1 ω2

d0 90.8 22.7 3.1
d1 8.4 59.0 15.6
d2 0.8 18.4 81.3

N = 1500

database (Table 3). Indeed, conflict is higher in the case of major defects (< 0.14),
and even more so in the case of medium defects (conflict between 0.45 and 0.8), as
shown in Figs. 7 and 8, respectively.

As simulated data is used together with real data in our study, we may won-
der whether simulated data alone could be sufficient to achieve good classification
performances. Table 6, which displays confusion matrices for classifiers trained using
simulated data alone (with N ∈ {500,900, 1500} samples), shows that this is not the
case, even for large N . This demonstrates that the use of real signals with expert
labeling is essential to achieve good performances in this diagnosis task.

Finally, a detection matrix can be computed by merging the two defect classes
(ω1 ∪ ω2). The following performance indicators can then be computed:

– The accuracy (AC ), defined the proportion of correct predictions:

AC =
#(d0, ω0) + #(d1 ∪ d2, ω1 ∪ ω2)

N
; (34)

– The true positive rate (TP), defined as the proportion of defective capacitors that
were correctly identified:

TP =
#(d1 ∪ d2, ω1 ∪ ω2)

#(d0, ω1 ∪ ω2) + #(d1 ∪ d2, ω1 ∪ ω2)
; (35)

– The false negative rate (FN ) defined as the proportion of defective capacitors that
were incorrectly classified as fault-free:

FN =
#(d0, ω1 ∪ ω2)

#(d0, ω1 ∪ ω2) + #(d1 ∪ d2, ω1 ∪ ω2)
. (36)

The results reported in Table 7 show that an accuracy of at least 97% is reached
by the different sets of labels. However, the different combination schemes outperform
each of the individual experts, particularly in terms of true positives and false neg-
atives. The conjunctive and cautious rules yield better results than the disjunctive
rule.
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Table 7 Accuracy(AC ), true positive rate (TP) and false negative rate (FN ) corresponding to
the learning by each expert labeling and their combination

Expert 1 Expert 2 Expert 3 Expert 4 Maj. ∩© ∪© ∧©

AC 97.2% 97, 9% 98.5% 97.2% 98.2% 98.5% 98.1% 98.5%
TP 79.5% 79.5% 84.1% 78.2% 82.6% 87.5% 78.4% 87.9%
FN 20.3% 20.3% 12.8% 21.2% 17.3% 12.5% 13.6% 12.0%

Moreover, the benefit of exploiting label uncertainty for estimating the parameters
of the IFA model can be noted in Tables 4, 5 and 7. Indeed, the results obtained if no
confidence is considered and expert opinions are combined using the majority rule are
much lower than those obtained by the other fusion methods and are not necessarily
better than the performances obtained using individual expert labels (see Expert 3
in Tables 4 and 7).

6 Conclusion

The advantages of combining statistical data with knowledge from multiple experts
has been demonstrated through a real-world diagnosis application. The proposed ap-
proach estimates the parameters of a statistical model using both objective data and
uncertain class labels elicited from several experts. Parameter estimates are computed
by maximizing a generalized likelihood criterion, using the evidential EM algorithm
introduced in [15, 22].

The particular application that was considered concerns the diagnosis of railway
track circuits. Experiments were carried out with real signals labeled by four differ-
ent human experts. Experts’ uncertain knowledge about the state of each capacitor
was encoded as belief functions, which were pooled using different combination rules.
These combined opinions were shown to yield better classification results than those
obtained from each individual expert and from the majority rule. The cautious rule of
combination introduced in [21] outperformed the conjunctive and disjunctive rules in
this problem, which can be explained by the existence of common knowledge shared
among the experts. Additionally, the benefits of taking into account degrees of con-
fidence has also been demonstrated, which provides an empirical justification of the
use of belief functions to encode expert knowledge in this kind of problem.

This work can be extended in several directions. The approach relies on expert
knowledge elicitation in the belief function framework, an important problem that has
not received much attention until now [9]. More sophisticated combination schemes
could also be considered: for instance, discount rates could be learned from the data
to take into account the competence of each individual expert using, e.g., the expert
tuning method described in [25] (see also [39]). Finally, the parameter estimation
approach based on uncertain data is obviously very general and can be applied to
many other problems involving a statistical model and uncertain observations.
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15. Côme E, Oukhellou L, Denoeux T, Aknin P (2009), Learning from partially supervised data
using mixture models and belief functions, Pattern Recognition, 42(3):334–348
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