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Abstract

In the standard stochastic frontier model, the two-sided error term
V and the one-sided technical inefficiency error term W are assumed to
be independent. In this paper, we relax this assumption by modeling
the dependence between V and W using copulas. Nine copula fami-
lies are considered and their parameters are estimated using maximum
simulated likelihood. The best model is then selected using the AIC
or BIC criteria. This methodology was applied to coffee production
data from Northern Thailand. For these data, the best model was the
one based on the Clayton copula. The main finding of this study is
that the dependence between V and W is significant and cannot be
ignored. In particular, the standard stochastic frontier model with in-
dependence assumption grossly overestimated the technical efficiency
of coffee production. These results call for a reappraisal of previous
production efficiency studies using the SFM with independence as-
sumption, which may occasionally lead to overoptimistic conclusions.

Keywords: Stochastic Frontier, Copula, Technical Efficiency, Econo-
metrics.
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1 Introduction

The Stochastic frontier model (SFM) has proved very useful to assess techni-
cal efficiency of production units. The stochastic frontier production model
for a cross-section of observations was independently proposed by Aigner
et al. [1] and Meeusen and Van den Broeck [20]. It is essentially a linear
regression model with two independent error components: a two-sided term
that captures random variation of the production frontier across firms and a
one-sided term that measures inefficiency relative to the frontier. In recent
decades, most studies about production, cost or profit efficiency have used
the conventional SFM (see, e.g., [1, 9, 10, 15, 19, 22–24, 27–30, 33–36]). In all
these studies, it is assumed that the one-sided and two-sided error terms are
independent. Based on this assumption, the parameters of the SFM can be
estimated using the corrected ordinary least squares or maximum likelihood
methods.

The impact of the independence assumption on technical efficiency esti-
mation has long remained an open issue. This assumption can be relaxed
by using copula to fit the joint distribution of the two random error compo-
nents more appropriately. Smith [26] first proposed a SFM allowing for de-
pendence between the two error components using copula functions. Copula
functions can be used to capture rank correlation and tail dependence be-
tween the two error components, thus making the stochastic frontier analysis
much more flexible. However, the log-likelihood function in the copula-based
SFM generally does not have a closed form, which makes its maximization
numerically intricate.

In this paper, we propose to use the maximum simulated likelihood
method, which has numerical and computational advantages over the nu-
merical integration method used by Smith [26]. Furthermore, to explore the
dependence structure of the error components in the SFM, we systematically
consider several copula families including the Student-t, Clayton, Gumbel
and Joe families as well as their relevant rotated versions. The model with
the best fit-complexity trade-off is selected using the AIC or BIC criteria.
This approach was applied to cross-sectional data about coffee production in
Thailand. A comparison between technical efficiencies computed with and
without the independence assumption (considering the best copula model)
reveals that the standard approach grossly overestimates efficiency, which
has important implication for production analysis using the SFM.

The remainder of this paper is organized as follows. Section 2 introduces
the necessary background on the SFM and copula. Section 3 presents the
copula-based stochastic frontier approach. Empirical results with this model
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applied to coffee production data are reported in Section 4. Finally, Section
5 concludes the paper.

2 Background and theory

The SFM is a regression-like model with a disturbance term that is asymmet-
ric and distinctly non-normal. This model will first be briefly summarized
in Section 2.1. Some background on copula will then be recalled in Section
2.2. These are the two building blocks of the copula-based model introduced
in Section 3.

2.1 Stochastic frontier model

Classical models of production [13,19] consider ideal (i.e., highest achievable)
production as a function h(x,β) of a vector x of inputs, where β is a vector
of parameters. As real production Y can only be less than the ideal one, it
can be written as

Y = h(x,β) · TE, (1)

where TE < 1, called technical efficiency, is the ratio of actual output
y to maximum feasible output h(x,β). For instance, the Cobb-Douglas
production model [37] can be written as

lnY = x′β −W, (2)

where β is a vector of coefficient and W = − ln(TE) is a non-negative
error term. However, a theoretical problem with this approach is that any
measurement error on Y must be embedded in the disturbance W , making
the estimation of β very sensitive to outliers. To solve this problem, Aigner
et al. [1] proposed to add a symmetric random noise V to the right-hand
side of (2), resulting in the following model,

lnY = x′β + ε, (3a)

ε = V −W, (3b)

where the two error componentsW and V are assumed to be independent. In
this model, the frontier exp(x′β+V ) is stochastic, hence the term “stochastic
frontier”. The disturbances ε are now assumed to arise from two sources:
(1) productive inefficiency, resulting in a non-negative error term W , and
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(2) firm-specific effects V , which can enter the model with either signs. The
technical efficiency TE can then be written as

TE =
exp(x′iβ + V −W )

exp(x′iβ + V )
= exp(−W ). (4)

The inefficiency error term W is usually assumed to have a gamma, exponen-
tial, or half-normal distribution (defined as the distribution of the absolute
value of a normal variable) [11]. In contrast, the symmetric error term V is
usually assumed to have a normal or logistic distribution.

2.2 Copula

A copula connects a given number of one-dimensional marginal distributions
to form a joint multivariate distribution [21]. In the following, we will limit
the presentation to bivariate copula, which will be used later. Sklar’s theo-
rem [25] states that any cumulative distribution function (cdf) F (x1, x2) of
a two-dimensional random vector (X1, X2) can be expressed as

F (x1, x2) = C (F1(x1), F2(x2)) , (5)

where F1(·) and F2(·) are the marginal cdfs of X1 and X2, and C is a
bivariate function, called a copula. If X1 and X2 are independent, then C
is the product. A function C : [0, 1]2 → [0, 1] is a copula if and only if it
satisfies the following properties:

1. C(u1, 0) = C(0, u2) for all u1 and u2 in [0, 1];

2. C(u1, 1) = u1 and C(1, u2) = u2 for all u1 and u2 in [0, 1];

3. For all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1,

C(u2, v2)− C(u2, v1)− C(u1, v2)− C(u1, v1) ≥ 0. (6)

The Fréchet-Hoeffding theorem states that the following bounds hold any
copula C:

max(u1 + u2 − 1, 0) ≤ C(u1, u2) ≤ min(u1, u2), (7)

for any (u1, u2) ∈ [0, 1]2. The lower and upper Fréchet-Hoeffding bounds
correspond to two extreme forms of dependence in which the two variables
are, respectively, countermonotonic and comonotonic.
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If the random vector (X1, X2) has a joint density f(x1, x2), it can be
expressed as a function of the copula density,

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
(8)

by the following formula,

f(x1, x2) =
∂2F (x1, x2)

∂x1∂x2
(9a)

=
∂2C(u1, u2)

∂u1∂u2

∂F1(x1)

∂x1

∂F2(x2)

∂x2
(9b)

= c(u1, u2)f1(x1)f2(x2), (9c)

where f1(x1) and f2(x2) are the marginal densities.
The most common measure of dependence between random variables is

Pearson’s correlation coefficient. However, it only measures linear depen-
dence and is not very informative for asymmetric distributions [5]. To mea-
sure nonlinear dependence, rank correlation coefficients such as Kendall’s
tau and Spearman’s rho are more suitable. They can be expressed in terms
of the copula as [21]

τ(X1, X2) = 4

∫∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1 = 4E[C(U1, U2)]− 1, (10)

ρ(X1, X2) = 12

∫∫
[0,1]2

C(u1, u2)dC(u1, u2)− 3 = 12E[C(U1, U2)]− 3, (11)

where (U1, U2) is a two-dimensional random vector with C(u1, u2) as a cdf.
Another important concept is that of tail dependence, which describes

extreme comovements in the tail of the joint distribution of (X1, X2). The
lower and upper tail dependence coefficients are defined, respectively, as

λL = lim
u→0+

Pr
[
X2 ≤ F−1

2 (u)|X1 ≤ F−1
1 (u)

]
= lim

u→0+

C(u, u)

u
(12)

and

λU = lim
u→1−

Pr
[
X2 > F−1

2 (u)|X1 > F−1
1 (u)

]
=

lim
u→1−

1− 2u+ C(u, u)

1− u
, (13)
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where F1 and F2 are the marginal cumulative distribution functions of X1

and X2, respectively.
To fit a copula to data, one commonly uses families of copula {Cθ}

depending on some parameter θ. The copula families used in this study are
summarized in Appendix A (see [21,31,32]). Copula families can be selected
based on their ability to capture positive and negative dependence, as well
as tail dependence. Some copulas, such as the Gaussian and Frank copulas,
possess the characteristic λU = λL = 0, while most copulas can capture
upper or lower tail dependence. For instance, Clayton copulas can measure
lower tail dependence, while Gumbel and Joe copulas can measure upper
tail dependence. Student-t copula reflects symmetric tail dependence [6].

All of these copulas, except the Gaussian, T and Frank copulas, can only
capture positive dependence. However, a copula may be “rotated”. There
are three rotated forms, with angles 90 degrees, 180 degrees and 270 degrees,
defined as follows,

C90(u1, u2) = u2 − C(1− u1, u2), (14a)

C180(u1, u2) = u1 + u2 − 1 + C(1− u1, u2), (14b)

C270(u1, u2) = u1 − C(u1, 1− u2). (14c)

Rotation by 90 and 270 degrees allows for the modeling of negative depen-
dence. A thorough review of rotated copulas may be found in [6, 8, 16].

To summarize, different copulas have different characteristics, such as up-
per tail dependence, lower dependence, positive and negative dependences,
etc. Therefore, the above copula families and relevant rotated copula can po-
tentially capture the appropriate dependence between two random variables.
Other popular copula families, such as the Farlie-Gumbel-Morgenstern (FGM)
and Ali-Mikhail-Haq (AMH) copulas, although widely used in the economet-
rics literature, have been discarded because they cannot achieve the Fréchet
bounds and they can only accommodate relatively weak dependence between
the margins. The ranges of dependence of Kendall’s tau and Spearman’s
rho for the FGM copula are [−2/9, 2/9] and [1/3, 1/3], respectively; the
Kendall’s tau of the AMH copula is bounded in the interval [0.1817, 0.3333],
and the range of Spearman’s rho is [−0.2711, 0.4784] (see [18,26]).

3 Copula-based stochastic frontier model

The classical SFM makes the strong assumption that the error components
V and W are independent. Smith [26] proposed to relax this assumption and
to model the dependence between V and W using a copula. The classical
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model is recovered as a special case corresponding to the product copula.
Following Smith [26], the joint density f(w, ε) can be obtained from f(w, v)
using (9) as

f(w, ε) = f(w,w + ε) = fW (w)fV (w + ε)cθ(FW (w), FV (w + ε)). (15)

Marginalizing out W then yields

fΘ(ε) =

∫ +∞

0
f(w, ε)dw, (16)

or, equivalently,

fΘ(ε) = EW [fV (W + ε)cθ(FW (W ), FV (W + ε))] , (17)

where EW [·] denotes the expectation with respect to the technical inefficiency
W and Θ represents the vector of all parameters of the marginals and the
copula function.

Assuming the data to consist of independent cross-sectional observations
of n individuals or firms, the log-likelihood function for model (3) is given
by

L(β, σw, σv, θ) =

n∑
i=1

log fΘ(εi) =

n∑
i=1

log fΘ(yi − x′iβ), (18)

where yi is the realization of the output from individual or firm i, xi is
explanatory variable vector for individual i, and σw and σv are scale param-
eters of the marginal distributions of W and V , respectively. As discussed by
Smith [26], there are very few density function of ε for which the maximum
likelihood estimate has a closed-form expression. However, each term f(εi)
in (18) can be written as an expectation using (17), and can easily be ap-
proximated using Monte Carlo simulation. The log-likelihood (18) can then
be maximized using the maximum simulated likelihood method [7, 14,17].

Assuming W and V to have, respectively, half-normal and normal dis-

7



tributions, the density function of ε can be written as

f(ε) =

∫ ∞
0

fW (w)fV (w + ε)cθ (FW (w), FV (w + ε)) dw (19a)

=

∫ ∞
0

2 exp
(
− w2

2σ2
w

)
√

2πσw
fV (w + ε)cθ(FW (w), FV (w + ε))dw (19b)

=

∫ ∞
0

2 exp
(
− (σww0)2

2σ2
w

)
√

2πσw
fV (σww0 + ε)cθ(FW (σww0), FV (σww0 + ε))dσww0

(19c)

=

∫ ∞
0

2 exp
(
−w2

0
2

)
√

2π
fV (σww0 + ε)cθ(FW (σww0), FV (σww0 + ε))dw0.

(19d)

It can then approximated by

f̂(ε) =
1

N

N∑
r=1

fV (σww0,r + ε)cθ(FW (σww0,r), FV (σww0,r + ε)), (20)

where w0,r, r = 1, . . . , N , is a sequence ofN random draws from the standard
half-normal distribution. The simulated log-likelihood is then

LS(β, σw, σv, θ) =

n∑
i=1

log

[
1

N

N∑
r=1

fV (σww0,ir + εi)cθ(FW (σww0,ir), FV (σww0,ir + εi))

]
. (21)

Following Battese and Coelli [3], the parameters (σw, σv) can be trans-
formed to (λ, σ) with λ = σw/σv and σ =

√
σ2
w + σ2

v . The larger λ, the
greater the inefficiency component in the model [12]. We can also measure
the global inefficiency by γ = σ2

w/(σ
2
w + σ2

v). The values of λ and γ reveal
whether inefficiency plays an important role in the composite error term [13].

In stochastic frontier analysis, the technical efficiency terms (4) are of
primary interest. They are not observed, but we can estimate their condi-
tional expectations given ε,

TEΘ = E [exp(−W )|ε] (22a)

=
1

fΘ(ε)

∫ +∞

0
exp(−w)f(w, ε)dw (22b)

=
EW [exp(−W )fV (W + ε)cθ(FW (W ), FV (W + ε))]

EW [fV (W + ε)cθ(FW (W ), FV (W + ε))]
. (22c)
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The nominator and denominator on the right-hand side of (22c) can be
approximated using Monte Carlo simulation by

T̂EΘ =
A

B
, (23a)

with

A =
1

N

N∑
i=1

exp(−σww0,ir)fV (σww0,ir+εi)cθ(FW (σww0,ir), FV (σww0,ir+εi))

(23b)
and

B =
1

N

N∑
i=1

fV (σww0,ir + εi)cθ(FW (σww0,ir), FV (σww0,ir + εi)). (23c)

4 Empirical results

The data used in this study were collected by interviewing farmers in the
Chiang Mai province of Thailand [2]. The upland areas of the Chiang Mai
province, in particular, proved fertile areas for high quality coffee. The
area has lower humidity, a shorter monsoon season, and a lower annual
temperature, creating a micro-climate among the Chiang Mai mountains.
Rainwater from the mountains seeps into the soil, making it particularly
rich in mineral content.

A questionnaire was constructed to ask for details about the irrigated rice
production at the farms. In particular, there was interest in the area grown,
the yields obtained, as well as the use of fertilizer and labor. Information
was also obtained on social characteristics of the sample farmers. Data
on a sample of 111 farmers were obtained in the survey. In this study,
we considered the relation between production output, fertilizer and labor.
These data are displayed in Figure 1.

4.1 Estimation of the stochastic frontier model

We considered the following linear translog production model

lnYi = β0 + β1 ln(labor) + β2 ln(fertilizer)+

β3

2
(ln(labor))2 +

β4

2
(ln(fertilizer))2+

β5 ln(labor) ln(fertilizer) + Vi −Wi, (24)
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Figure 1: Matrix plot of coffee production data.

where Yi represents intercrop coffee output of farmer i. Fertilizer and labor
are expressed, respectively, in kg/ha and in man-days per hectare. We made
the usual assumptions of normal and half-normal distributions for noise
terms Vi and inefficiency terms Wi, respectively. In addition to the indepen-
dence copula, we considered nine different copula families (see Appendix A):
Gaussian copula, T copula, Frank copula, Clayton copula, Gumbel copula,
Joe copula, rotated Clayton copula (180◦), rotated Gumbel copula (180◦)
and rotated Joe copula (180◦). The independence and Gaussian copulas
were estimated first, to obtain initial values and determine the sign of cor-
relation between V and W . If it is negative, the rotated copulas at 90◦ and
270◦ should be used in this model. The simulated log-likelihood function
(21) was computed using N = 500 and maximized using the Nelder-Mead
algorithm in the R statistical software, using starting values obtained from
the sfa function in the package frontier in R.

Figure 2 displays the AIC and BIC for each copula-based SFM. Accord-
ing to both criteria, the best model is the one based on the Clayton copula,
whereas the independence copula performs the worst. This result confirms
the interest of relaxing the assumption of independence between the two
error components of the SFM. We also performed the likelihood ratio (LR)
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Figure 2: AIC and BIC for each copula-based stochastic frontier model.

test to test the null hypothesis of independence between U and V , vs. the
alternative hypothesis of a dependence structure characterized by each of
the copula families. The LR test statistic has approximately a chi-squared
distribution with degrees of freedom equal to the difference of the number of
parameters of the two models. The results are reported in Table 1. We can
be see that, except in one case, the p-values are less than 10%, which implies
that the null hypothesis of independence is rejected with a confidence level
at least equal to 10%.

We now turn to the frontier estimates of the best model based in the

Table 1: LR texts between independence copula and other copula models.
R-C, R-G and R-Joe represent rotated Clayton, rotated Gumbel and rotated
Joe copulas by 180 degrees, respectively.

Gau T Cla Fra Gum Joe R-Cla R-Gum R-Joe
LR stat. 2.71 7.63 8.25 7.45 5.60 7.59 2.28 6.01 6.15
p-value 0.10 0.02 < 0.01 0.01 0.02 0.01 0.13 0.01 0.01
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Clayton copula. The results are shown in Table 2. Most parameters are
significantly non-null at the 10% level. The estimated parameter of the
Clayton copula is 4.65, which is significantly different from zero at the 10%
level. This result confirms that significant dependence between error com-
ponents exists, thereby justifying the use of copula-based SFM. Parameter
γ, which measures the relative importance of the technical inefficient term,
is equal to 0.99. The estimated Kendall’s tau and Spearman’s rho are, re-
spectively, 0.70 and 0.87. Additionally, the lower tail dependence coefficient
equals 0.86.

4.2 Technical efficiencies

Figure 3 displays the technical efficiencies computed using the best model
based on the Clayton copula (solid line) and the independent copula-based
model (interrupted line) in term of technical efficiency. The efficiency range
is 0.44-0.99 (average 0.73) for the classical model but only 0.35-0.95 (average
0.66) for the best copula-based model. Obviously, the usual assumption of
independence between the random error and inefficiency terms result in a
severe overestimation of technical efficiencies in this study.

Figure 4 shows the distribution of technical efficiency scores for all sample
farmers using the independence and Clayton copula models. According to
the classical SFM with independence assumption, more than half of the
farmers have high technical efficiencies (i.e., greater than 0.7). In contrast,
according to the best model, a large proportion (39%) of the sample farmers
have low technical efficiency scores (< 0.50). This finding suggests that a
considerable amount of productivity is lost due to inefficiency.

More generally, we may wonder whether positive or negative dependence
between the error components of the SFM systematically result in, respec-
tively, overestimation and underestimation of technical efficiencies. To try
to answer this question, we performed a Monte Carlo experiment. Model
(24) was used to generate new samples of the same size as the dataset used
in this study, but with different degrees of dependence between V and W .
The cofactor values (labor and fertilizer) were the same as in the original
data, and the coefficients βj as well as the parameters of the marginal dis-
tributions of V and W were assigned their maximum likelihood estimates
computed from the real data. Five datasets were then generated by simu-
lating the error terms Vi and Wi from a joint distribution based on Clayton
copulas with parameter θ such that the Kendall’s correlation correlation co-
efficient between V and W equals -0.9, 0.4, 0, 0.4 and 0.9. (The Clayton
copula was rotated by 90◦ to obtain negative dependence.) The conventional
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Figure 3: Technical efficiencies for the independence and Clayton copula-
based models.
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and Cayton-copula-based SFMs were then estimated using each of the five
datasets. The conventional model thus wrongly assumed independence, ex-
cept for the dataset corresponding to τ = 0. The distribution of differences
between technical efficiencies computed from the two models are shown in
Figure 5. A positive difference corresponds to overestimation of technical
efficiency for the conventional model. We can verify that large positive and
negative dependence between the error terms result, respectively, in severe
over- and underestimation of technical efficiencies by the conventional model
based on the independence assumption.
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Figure 5: Distribution of differences between technical efficiencies estimated
using the conventional and copula-based models, for five datasets with ran-
domly generated error terms Vi and Wi with τ ∈ {−0.9,−0.4, 0, 0.4, 0.9}.

5 Conclusions

The SFM is a linear regression model in which the error component is as-
sumed to consist in the sum of a random error term V with a symmetric
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distribution and a non-negative inefficiency term W. In the classical model,
these two terms are assumed to be independent. Following Smith [26], we
have relaxed this assumption and modeled the dependency between the two
error components using copula. The methodology proposed in this paper
is based on (1) the consideration of a large number of copula families to
capture a wide range of dependence patterns between V and W, (2) the use
of the maximum simulated likelihood method to estimate the parameters
of both the copula and the marginal distribution, and (3) the selection of
the best model using the AIC and BIC criteria. In this study, the marginal
distributions of the errors were assumed to be normal and half-normal, but
other distributions could be considered as well, and tested jointly with the
copula families.

This methodology was applied to intercrop coffee production data from
Northern Thailand. For these data, all investigated copula families outper-
formed the independence copula according to the AIC and BIC criteria, the
best results being obtained for the Clayton copula model. The main finding
of this study is that the independence assumption leads to a gross overes-
timation of production efficiency. These results raise the question of the
reliability of stochastic frontier analyses based on the classical model. They
suggest that the dependence between random error and the inefficiency term
cannot be ignored and call for a systematic use of copula-based models in
stochastic frontier analyses. The economic interpretation of this observed
dependence is an interesting and important open issue, which is left for
further research.
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Inst. Statist. Univ. Paris 8 (1959) 229-231.

[26] M.D. Smith, Stochastic frontier models with dependent error compo-
nents, Econometrics Journal 11 (2008) 172-192.

[27] S. Sriboonchitta, Evaluation of Cost Efficiency of Thai Public Uni-
versities, International Journal of Intelligent Technologies & Applied
Statistics 5 (2012) 361-374.

[28] S. Sriboonchitta, A. Wiboonpongse, On the Estimation of Stochastic
Production Frontiers with Self-Selectivity: Jasmine and Non-Jasmine
Rice in Thailand, CMU. Journal 4 (2005) 105-124.

[29] S. Sriboonchitta, A. Wiboonpongse, Technical Efficiency of Rural Mi-
cro and Community Enterprises in the Upper North of Thailand. Asia-
Pacific Productivity Conference, Seoul National University, Seoul, Ko-
rea (2006) 17-19.

[30] S. Sriboonchitta, A. Wiboonpongse, The Effects of Production Inputs,
Technical Efficiency and Other Factors on Jasmine and Non-Jasmine
Rice Yields in Thailand. Asia-Pacific Productivity conference, Brisbane,
Australia (2004) 14-16.

[31] S. Sriboonchitta, H.T. Nguyen, A. Wiboonpongse, J. Liu, Modeling
volatility and dependency of agricultural price and production indices
of Thailand: Static versus time-varying copulas, International Journal
of Approximate Reasoning 54 (2013) 793-808.

[32] P. Trivedi, D. Zimmer. Copula Modeling: An Introduction for Practi-
tioners’, Foundations and Trends in Econometrics 1 (1) (2005) 1-111.

[33] A. Wiboonpongse, S. Sriboonchitta, Agricultural Production Growth
Assessment for Agroeconomic Zones in Northern Thailand Using Statis-
tical Data. Asia Pacific Productivity Conference 2008, Academic Sinica,
Taipei, Taiwan, July 17-19, 2008.

[34] A. Wiboonpongse, S. Sriboonchitta, Impact of Technical Skill on Potato
Production Efficiency in Thailand. Asia Pacific Productivity Conference
2008, Academic Sinica, Taipei, Taiwan, July 17-19, 2008.

[35] A. Wiboonpongse, S. Sriboonchitta, E.G. Battese, The Effects of Pro-
duction Input, Technical Inefficiency and Biological Risk on Jasmine

19



and Non-Jasmine Rice Yields in Thailand, The Empirical Economics
Letters 4 (3) (2005).

[36] A. Wiboonpongse, S. Sriboonchitta, S. Rahman, P. Calkins, Thanes
Sriwichailumphun, Joint determination of the choice of planting season
and technical efficiency of potato in Northern Thailand: A compari-
son of Greene’s versus Heckman’s sample selection approach, African
Journal of Business Management 6 (12) (2012) 4504-4513.

[37] A. Zellner and J. Kmenta and F. Drèze. Specification and estimation of
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A Copula families used in this study

In the following, we briefly summarize the main properties of copula families
used in this study.

Gaussian copulas

Gaussian copulas take the form

CGa(u1, u2; ρ) =∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π
√

1− r2
exp

[
−x

2
1 + x2

2 − 2rx1x2

2(1− r2)

]
dx1dx2, (25)

where −1 < r < 1 is Pearson’s correlation coefficient and Φ is the cdf the
standard normal distribution function. This is the copula pertaining to a
bivariate normal distribution with standard normal marginals and Pear-
son’s linear correlation coefficient r. Parameter ρ is related to Kendall’s
τ and Spearman’s ρ coefficients by the relations τ = (2/π) sin−1(r) and
ρ = (6/π) sin−1(r/2).

T copula

As Gaussian copulas, T copulas belong to the class of elliptical copula (i.e.,
they are the copulas of elliptically contoured distributions). However, T
copulas can capture tail dependence. They are defined as

C(u1, u2|r, ν) =

∫ T−1
ν (u1)

−∞
dx

∫ T−1
ν (u2)

−∞
dy

[
1 +

x2 − 2rxy + y2

ν(1− r2)

]− ν+2
2

, (26)
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where r is the Pearson’s correlation coefficient and Tν is the cdf of a Student
distribution with ν degrees of freedom. When ν tends to infinity, the T
copula converges to the Gaussian copula. The symmetric tail dependence
coefficient can be calculated as a function of parameters r and ν as

λU = λL = 2Tν+1

(
−
√
ν + 1

√
1− r
1 + r

)
. (27)

Clayton copula

A copula of the form C(u1, u2) = ϕ−1(ϕ(u1)+ϕ(u2)) is said to be Archimedean
and function ϕ is said to be its generator [21]. There are different Archimedean
copulas based on different generators, such as the Clayton, Gumbel, Frank,
Joe and AMH copulas, among others. The Clayton family can reflect lower
tail dependence for θ > 0. It is characterized by the following formula,

CCl(u1, u2|θ) = (uθ1 + uθ2 − 1)−1/θ. (28)

This copula can only capture a strong lower tail and positive dependence,
but it can be rotated and used in capture negative dependence or reflect
strong upper tail dependence (see [8,16]). The corresponding Kendall’s tau
and lower tail dependence coefficients are, respectively, τCL = θ/(θ+ 2) and
λL = 2−1/θ. The expression of Spearman’s rho as a function of θ is more
complicated.

Frank copula

Copulas in the Frank family are the only Archimedean copulas that attain
the lower and upper Fréchet bounds, thus allowing for positive and negative
dependence. The corresponding copula function is given by

CFr(u1, u2) = −1

θ
ln

(
1 +

(exp(−θu1)− 1)(exp (−θu2)− 1)

exp (−θ)− 1

)
, (29)

where θ ∈ (−∞,+∞)\{0}. Positive (resp., negative) values of θ correspond
to positive (resp., negative) dependence. The independence copula is recov-
ered in the limit when θ → 0. The rank correlation coefficients are given
by

τ = 1− 4

θ
+ 4

D1(θ)

θ
(30a)

and

ρ = 1− 12

θ
[D1(θ)−D2(θ)], (30b)
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where Dk(θ) is Debye function

Dk(θ) =
k

θk

∫ θ

0

tk

exp(t)− 1
dt, k = 1, 2. (30c)

Gumbel copula

The bivariate Gumbel copula is given by

CGum(u1, u2|θ) = exp

[
−
(

(− lnu1)1/θ + (− lnu2)1/θ
)θ]

, (31)

where θ ∈ (1,+∞). It is an asymmetric Archimedean copula that allows for
strong upper tail dependence. The rotated Gumbel copula can be applied to
capture negative dependence as well. The Kendall’s tau of Gumbel copula
is given by τGum = 1− 1/θ, but the Spearman’s rho does not have a closed
form. The upper tail dependence coefficient is λU = 2− 21/θ.

Joe copula

The Joe copula is defined as follows:

CJoe(u1, u2|θ) = 1−
[
(1− u1)θ + (1− u2)θ − (1− u1)θ(1− u2)θ

]1/θ
, (32)

where θ ≥ 1. This copula can capture upper tail dependence, as does
Gumbel copula. But it can capture a stronger upper tail dependence than
does Gumbel copula (see [4]); the coefficient of upper tail dependence is
λU = 2− 21/θ. The Kendall’s tau is related to parameter θ by

τJoe = 1 +
4

θ2

∫ 1

0
t ln(t)(1− t)2(1−θ)/θdt. (33)

The relationship between Spearman’s rho and parameter θ does not have
a closed form expression. The rotated Joe copula can describe negative
dependence as well.

Highlights

• A copula-based stochastic frontier model is investigated.

• The use of copula allows us to capture dependency between the two
error components.
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• The method was applied to coffee production in Northern Thailand.

• The conventional stochastic frontier model severely overestimates the
technical efficiencies.
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