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Abstract. In multi-label learning, each instance in the training set is
associated with a set of labels, and the task is to output a label set for
each unseen instance. This paper describes a new method for multi-label
classification based on the Dempster-Shafer theory of belief functions to
classify an unseen instance on the basis of its k nearest neighbors. The
proposed method generalizes an existing single-label evidence-theoretic
learning method to the multi-label case. In multi-label case, the frame
of discernment is not the set of all possible classes, but it is the powerset
of this set. That requires an extension of evidence theory to manipu-
late multi-labelled data. Using evidence theory makes us able to handle
ambiguity and imperfect knowledge regarding the label sets of training
patterns. Experiments on benchmark datasets show the efficiency of the
proposed approach as compared to other existing methods.

1 Introduction

Traditional single-label classification assigns an object to exactly one class, from
a set of Q disjoint classes. In contrast, Multi-label classification is the task of
assigning an instance to one or multiple classes simultaneously. In other words,
the target classes are not exclusive: an object may belong to an unrestricted set
of classes instead of exactly one. This task makes multi-label classifiers more
difficult to train than traditional single-label classifiers. Recently, multi-label
classification methods have been increasingly required by modern applications
where it is quite natural that some instances belong to several classes at the
same time. In text categorization, each document may belong to multiple topics,
such as arts and humanities [8]. In natural scene classification, each image may
belong to several image types at the same time, such as sea and sunset [1]. In
classification of music into emotions, music may evoke more than one emotion
at the same time, such as relaxing and sad [7].

Few algorithms have been proposed for multi-label learning. A first family
of algorithms transforms the multi-label classification problem into a set of bi-
nary classification problems; each binary classifier is then trained to separate
one class from the others [1]. A second family consists in extending common
learning algorithms and making them able to manipulate multi-label data di-
rectly. In [14] and [15], a Bayesian approach based on multi-label extension of



the k-nearest neighbor (k-NN) rule is presented. In the literature, there also ex-
ist multi-label extensions of neural networks [2], support vector machine [6], and
boosting learning algorithms [9].

In this paper, we present a new method for multi-label classification based
on the Dempster-Shafer theory of belief functions to classify an unseen instance
on the basis of its k nearest neighbors.

The Dempster-Shafer (D-S) theory [10] is a formal framework for representing
and reasoning with uncertain and imprecise information. Different approaches for
pattern classification in the framework of evidence theory have been presented
in the literature [4] [5]. In [3], A k-NN classification rule based on D-S theory
is presented. Each neighbor of an instance to be classified is considered as an
item of evidence supporting certain hypotheses regarding the class membership
of that instance. The degree of support is defined as a function of the distance
between the two samples. The evidence of the k nearest neighbors is then pooled
by means of Dempster’s rule of combination.

The proposed method generalizes the k-NN classification rule based on the
D-S theory to the multi-label case. This generalization requires an extension of
the D-S theory in order to handle multi-labelled data. In mono-labelled data
case, the uncertainty is represented by evidence on multiple hypotheses where
each hypothesis is a label to be assigned or not to an unseen instance. In contrast,
when the data is multi-labelled, each hypothesis represents a set of labels and
the uncertainty is then expressed by evidence on sets of label sets. The proposed
algorithm is called EML−kNN for Evidential Multi-Label k-Nearest Neighbor.

The remainder of the paper is organized as follows. Section 2 recalls the
basics of the D-S theory and the principle of the single-label evidence-theoretic
k-NN rule [3]. Section 3 introduces the extension of the D-S theory to the multi-
label case and describes the proposed algorithm for multi-label learning that
consists in applying the D-S multi-label extended theory using the k-NN rule.
Section 4 presents experiments on two real datasets and shows the effectiveness
of the proposed algorithm as compared to a recent high-performance method for
multi-label learning based on k-NN rule, referred to as ML− kNN [15]. Finally
Section 5 summarizes this work and makes concluding remarks.

2 Single-Label Classification

2.1 Basics of Dempster-Shafer Theory

In D-S theory, a frame of discernment Ω is defined as the set of all hypotheses
in a certain domain, e.g., in classification Ω is the set of all possible classes. A
basic belief assignment (BBA) is a function m that defines a mapping from the
power set of Ω to the interval [0, 1] verifying:

m : 2Ω −→ [0, 1] (1)
∑

A∈2Ω

m(A) = 1. (2)



Given a certain piece of evidence, the value of the BBA for a given set A expresses
a measure of belief that one is willing to commit exactly to A. The quantity m(A)
pertains only to the set A and makes no additional claims about any subsets of
A. If m(A) > 0 , then the subset A is called a focal element of m.

The BBA m and its associated focal elements define a body of evidence, from
which a belief function Bel and a plausibility function Pl mapped from 2Ω to
[0, 1] can be deduced. For a set A, Bel(A), called belief in A or credibility of A,
represents a measure of the total belief committed to the set A ⊆ Ω. Bel(A) is
defined as the sum of all the BBAs of the non-empty subsets of A.

Bel(A) =
∑

∅6=B⊆A

m(B) (3)

Pl(A), called plausibility of A, represents the amount of belief that could po-
tentially be placed in A, if further information became available [3]. Pl(A) is
defined as the sum of all the BBAs of the sets that intersect A.

Pl(A) =
∑

B∩A 6=∅

m(B) (4)

From the definitions of belief and plausibility functions, it follows that:

Pl(A) = Bel(Ω) − Bel(Ā) (5)

where Ā is the complement of A.
Given the belief function Bel, it is possible to derive the corresponding BBA

as follows:

m(∅) = 1 − Bel(Ω), (6)

m(A) =
∑

B⊆A

(−1)|A\B| Bel(B), A 6= ∅ (7)

where |A\B| is the cardinality of the complement of B in A.
As a consequence of (5), (6) and (7), given any one of the three functions m,

Bel and Pl it is possible to recover the other two.
The unnormalized Dempster’s rule of combination [10] [11] is an operation for

pooling evidence from a variety of sources. This rule aggregates two independent
bodies of evidence defined within the same frame of discernment into one body
of evidence. Let m1 and m2 be two BBAs. Let m12 be the new BBA obtained by
combining m1 and m2 using the unnormalized Dempster’s rule of combination.
m12 is the orthogonal sum of m1 and m2 denoted as m12 = m1 ∩©m2. The
aggregation is calculated in the following manner:

m12(A) =
∑

B∩C=A

m1(B)m2(C), A ⊆ Ω. (8)

This rule is commutative and associative, and admits the vacous BBA (m(Ω) =
1) as neutral element.



2.2 Evidence-Theoretic k-NN Rule

Let X = RP denote the domain of instances and let Y = {1, 2, . . . , Q} be the
finite set of classes, also called labels or categories. The available information is
assumed to consist in a training set T = {(x1, y1), . . . , (xM , yM )} of M single-
labelled samples, where xi ∈ X and the corresponding class label yi takes value
in Y, for each i = 1, . . . ,M .

Let x be a new instance to be classified on the basis of its nearest neighbors
in T . Let Nx = {(xi, yi)|i = 1 . . . , k} be the set of the k-nearest neighbors of
x in T based on a certain distance function d(., .), e.g, the Euclidean distance.
Each pair (xi, yi) in Nx constitutes a distinct item of evidence regarding the
class membership of x. If x is close to xi according to the distance function d,
then one will be inclined to believe that both instances belong to the same class,
while when d(x,xi) increases, this belief decreases and that yields to a situation
of almost complete ignorance concerning the class of x. Consequently, each pair
(xi, yi) in Nx induces a basic belief assignment mi over Y defined by:

mi({yi}) = αφ(di) (9)

mi(Y) = 1 − αφ(di) (10)

mi(A) = 0, ∀A ∈ 2Y\{Y, {yi}} (11)

where di = d(x,xi), α is a parameter such that 0 < α < 1 and φ is a decreasing
function verifying φ(0) = 1 and limd→∞ φ(d) = 0. In [3], the author suggests to
choose the function φ as:

φ(d) = exp(−γdβ) (12)

where γ > 0 and β ∈ {1, 2, . . .}. As explained in [3], parameter β has been
found to have very little influence on the performance of the method, and can
be arbitrarily fixed to a small value (1 or 2). The most influential parameter
on the performance of the classifier is γ. In [3], a distinct parameter γq was
associated for each class q ∈ Y. When considering the item of evidence (xi, yi)
for the class membership of x, if yi = q, using (12), φ(di) in (9) and (10) was

replaced by γqd
β
i . The values of α and γq, q = 1, . . . , Q were fixed via heuristics

[3].

As a result of considering each training instance in Nx as an item of evidence,
we obtain k BBAs that can be pooled by means of the unnormalized Dempster’s
rule of combination yielding to the aggregated BBA m synthesizing one’s final
belief regarding the class membership of x:

m = m1 ∩© . . . ∩©mk. (13)

For making decisions, functions Bel and Pl can be derived from m using (3)
and (4) respectively, and the test instance x is assigned to the class q that
corresponds to the maximum credibility or the maximum plausibility.



3 Multi-Label Classification

3.1 Multi-Label Extension of Dempster-Shafer Theory

In Sect. 2.1, we have recalled the basics of D-S theory used to handle uncer-
tainty in problems where only one single hypothesis is true. Moreover, there ex-
ist problems where more than one hypothesis is true at the same time, e.g., the
multi-label classification task. To handle such problems, we need to extend the
classical D-S framework. The frame of discernment of the multi-label extended
D-S theory is not the set Ω of all possible single hypotheses but its power set
Θ = 2Ω . A basic belief assignment is now defined as a mapping from the power
set of Θ to the interval [0, 1]. Instead of considering the whole power set of Θ,
we will focus on the subset C(Ω) of 2Θ defined as:

C(Ω) = {ϕ(A,B)| A ∩ B = ∅} ∪ {∅Θ} (14)

where ∅Θ represents the conflict in the frame 2Θ, and for all A, B ⊆ Ω with
A ∩ B = ∅, ϕ(A,B) is the set of all subsets of Ω that include A and have no
intersection with B:

ϕ(A,B) = {C ⊆ Ω| C ⊇ A and C ∩ B = ∅}. (15)

The size of the subset C(Ω) of 2Θ is equal to 3|Ω| +1, it is thus much smaller

than the size of 2Θ (|2Θ| = 22|Ω|

), while being rich enough to express evidence
in many realistic situations. That reduces the complexity of such problems.

The chosen subset C(Ω) of 2Θ is closed under intersection, i.e., for all ϕ(A,B),
ϕ(A′, B′) ∈ C(Ω), ϕ(A,B)∩ϕ(A′, B′) ∈ C(Ω). Based on the definition of ϕ(A,B),
one can deduce that:

ϕ(∅, ∅) = Θ, (16)

∀A ⊆ Ω, ϕ(A, Ā) = {A}, (17)

∀A ⊆ Ω, A 6= ∅, ϕ(A,A) = ∅Θ. (18)

By convention, we will note ∅Θ by ϕ(Ω,Ω) in the rest of the paper.

Example 1. Let Ω = {a, b} be a frame of discernment. The corresponding subset
C(Ω) of 2Θ, where Θ is the power set of Ω, is:

C(Ω) = {ϕ(∅, ∅), ϕ(∅, {a}), ϕ(∅, {b}), ϕ(∅, Ω), ϕ({a}, ∅),

ϕ({b}, ∅), ϕ(Ω, ∅), ϕ({a}, {b}), ϕ({b}, {a}), ϕ(Ω,Ω)}.

For instance, ϕ({a}, ∅) = {{a}, Ω} and ϕ({a}, {b}) = {{a}}.

For any ϕ(A,B), ϕ(A′, B′) ∈ C(Ω) the intersection operator over C(Ω) is
defined as follow:

ϕ(A,B) ∩ ϕ(A′, B′) =

{
ϕ(A ∪ A′, B ∪ B′) if A ∩ B′ = ∅ and A′ ∩ B = ∅

ϕ(Ω,Ω) otherwise,

(19)



and the inclusion operator over C(Ω) is defined as:

ϕ(A,B) ⊆ ϕ(A′, B′) ⇐⇒ A ⊇ A′ and B ⊇ B′. (20)

The description of a BBA m on C(Ω) can be represented with the following
two equations:

m : C(Ω) −→ [0, 1] (21)

∑

ϕ(A,B)∈C(Ω)

m(ϕ(A,B)) = 1. (22)

In the following, the notation m(ϕ(A,B)) will be simplified to m(A,B). For
any ϕ(A,B) ∈ C(Ω), the belief and plausibility functions are defined as:

Bel(A,B) =
∑

ϕ(Ω,Ω) 6=ϕ(A′,B′)⊆ϕ(A,B)

m(A′, B′), (23)

and
Pl(A,B) =

∑

ϕ(A′,B′)∩ϕ(A,B) 6=ϕ(Ω,Ω)

m(A′, B′). (24)

Given two independent bodies of evidence over the same frame of discern-
ment like C(Ω), the aggregated BBA, denoted by m12, obtained by combining
the BBAs m1 and m2 of the two bodies of evidence using the unnormalized
Dempster’s rule is calculated in the following manner:

m12(A,B) =
∑

ϕ(A′,B′)∩ϕ(A′′,B′′)=ϕ(A,B)

m1(A
′, B′)m2(A

′′, B′′). (25)

This rule is commutative and associative, and has the vacuous BBA (m(∅, ∅) = 1)
as neutral element.

3.2 Evidential Multi-Label k-NN

Problem. As in Sect. 2.2, let X = RP denote the domain of instances and
let Y = {1, 2, . . . , Q} be the finite set of labels. The multi-label classification
problem can be formulated as follows. Given a set S = {(x1, Y1), . . . , (xM , YM )}
of M training examples drawn from X × 2Y , and identically distributed, where
xi ∈ X and Yi ⊆ Y, the goal of the learning system is to output a multi-label
classifier H : X → 2Y that optimizes some pre-defined criteria.

The method. Let x be an unseen instance that we search to estimate its set
of labels Y on the basis of its k nearest neighbors in S represented by Nx using
the multi-label extension of the D-S theory introduced in Sect. 3.1. The frame
of discernment of the multi-label classification problem is the powerset of Y.



Each pair (xi, Yi) in Nx constitutes a distinct item of evidence regarding the
label set of x. Regarding the label set Yi, we can conclude either that Y must
include all the labels in Yi, or that Y must contain at least one of the labels
that belong to Yi, or that Y does not contain any label not belonging to Yi.
Let ϕ(Ai, Bi) be the set of label sets that corresponds to the item of evidence
(xi, Yi), where Ai, Bi ⊆ Y. We recall that the set ϕ(Ai, Bi) contains all the label
sets that include Ai and having no intersection with Bi. There exist different
ways to express our beliefs about the labels to be assigned to the instance x

based on the item of evidence (xi, Yi). This leads to different versions of our
proposed method EML − kNN :

– Version 1 (V1): the mass is attributed to the set Yi, thus ϕ(Ai, Bi) =
ϕ(Yi, Ȳi).

– Version 2 (V2): the mass is attributed to the set Yi and all its supersets,
thus ϕ(Ai, Bi) = ϕ(Yi, ∅).

– Version 3 (V3): the mass is attributed to the set Yi and all its subsets, thus
ϕ(Ai, Bi) = ϕ(∅, Ȳi).

The BBA mi over C(Y) induced by the item of evidence (xi, Yi) regarding
the label set of x can then be defined as:

mi(Ai, Bi) = αφ(di) (26)

mi(∅, ∅) = 1 − αφ(di) (27)

where di = d(x,xi), φ is the decreasing function introduced in Sect. 2.2 (see (12)).
After considering each item of evidence in Nx, we obtain the BBAs mi, i =

1, . . . , k that can be combined 2 by 2 using the multi-label extension of the
unnormalized Dempster’s rule of combination presented in Sect. 3.1 (see (25))
to form the resulting BBA m.

Let Ŷ denote the estimated label set of the instance x to differentiate it from
the ground truth label set Y of x. One of the methods to determine Ŷ that we
have adopted in this paper is to assign x to the set C ⊆ Y that corresponds to
the maximum plausibility. Thus, the estimated label set of x is:

Ŷ = max
C⊆ Y

Pl(C, C̄). (28)

The plausibility function Pl derived from the aggregated BBA m is determined
using (24).

4 Experiments

4.1 Datasets

Two datasets are used for experiments: the emotion and the scene datasets.

Emotion Dataset. This dataset contains 593 songs, each represented by a 72-
dimensional feature vector (8 rhythmic features and 64 timbre features) [7]. The
emotional labels are: amazed-surprised, happy-pleased, relaxing-calm, quiet-still,

sad-lonely and angry-fearful.



Scene Dataset. This dataset contains 2000 natural scene images. Each image
is associated with some of the six different semantic scenes: sea, sunset, trees,

desert and mountains. For each image, spatial color moments are used as fea-
tures. Images are divided into 49 blocks using a 7×7 grid. The mean and variance
of each band are computed corresponding to a low-resolution image and to com-
putationally inexpensive texture features, respectively [1]. Each image is then
transformed into a 49 × 3 × 2 = 294-dimensional feature vector.

Each dataset was split into a training set and a test set. Table 1 summarizes the
characteristics of the datasets used in the experiments. The label cardinality of
a dataset is the average number of labels of the instances, while the label density
is the average number of labels of the instances divided by the total number of
labels [12].

4.2 Evaluation metrics

Let D = {(x1, Y1), . . . , (xN , YN )} be a multi-label evaluation dataset containing

N labelled examples. Let Ŷi = H(xi) be the predicted label set for the pattern
xi, while Yi is the ground truth label set for xi.

A first metric called Accuracy gives an average degree of similarity between
the predicted and the ground truth label sets of all test examples:

Accuracy(H,D) =
1

N

N∑

i=1

|Yi ∩ Ŷi|

|Yi ∪ Ŷi|
. (29)

Two other metrics called Precision and Recall are also used in the literature
to evaluate a multi-label learning system. The former computes the proportion
of correct positive predictions while the latter calculates the proportion of true
labels that have been predicted as positives:

Precision(H,D) =
1

N

N∑

i=1

|Yi ∩ Ŷi|

|Ŷi|
, (30)

Recall(H,D) =
1

N

N∑

i=1

|Yi ∩ Ŷi|

|Yi|
. (31)

These metrics have been cited in [12].
Another evaluation criterion is the F1 measure that is defined as the har-

monic mean of the Precision and Recall metrics [13]:

F1 =
2

1
Precision

+ 1
Recall

. (32)

The values of these evaluation criteria are in the interval [0, 1]. Larger values
of these metrics correspond to higher classification quality.



Table 1. Characteristics of datasets

Number of Feature vector Number of Training Test Label Label maximum size
Dataset instances dimension labels instances instances cardinality density of a label set

emotion 593 72 6 391 202 1.868 0.311 3
scene 2407 294 6 1211 1196 1.074 0.179 3
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Fig. 1. Accuracy, Precision, Recall and F1 measures for EML − kNN (V1) and
ML − kNN algorithms as a function of γ on the emotion dataset, for k = 10.

4.3 Results and discussions

The proposed algorithm was compared to a Bayesian method for multi-label
classification based on the k-NN rule named ML − kNN [15].

The model parameters for EML − kNN are : The number of neighbors k,
and the parameters for the induced BBAs, α, β and γ. ML − KNN has only
one parameter that needs to be optimized, which is k. As in [3], α was fixed to
0.95 and β to 1. For all experiments, EML−kNN and ML−kNN were trained
on the training data and evaluated on the test data of each of the two datasets.

To take an idea about the influence of the parameter γ on the performance
of the proposed algorithm, we evaluated version 1 of our method on the emotion
dataset where k was fixed to 10 and γ was varied from 0 to 2 with 0.01 steps.
Figure 1 shows the results. For the different values of γ, our algorithm performs
better than ML−KNN for all criteria except Precision. Based on (26) and (27),
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Fig. 2. Accuracy, Precision, Recall and F1 measures for the three versions of EML−
kNN and ML−kNN algorithms as a function of k on the emotion dataset, for γ = 0.1.

we can notice that for small values of γ, we favor the allocation of mass to the
set of label sets ϕ(Ai, Bi) that corresponds to the item of evidence (xi, Yi). In
contrast, for larger values of γ, a larger fraction of the mass is assigned to the
ignorance set ϕ(∅, ∅).

In a second step, γ was fixed to 0.1 and k was varied from 1 to 30. Figures 2
and 3 show the performance of the three versions of EML − kNN (denoted
by V1, V2 and V3) and the ML − kNN algorithms on the emotion and scene
datasets, respectively. Algorithm V1 yields the better performance on the emo-
tion dataset based on all criteria. On the scene dataset, algorithms V1 and V3
yield similar results and both outperform ML − KNN for the different values
of k and for all evaluation measures. Algorithm V2 yields poor results for all
values of k and for all metrics except Recall. We recall that for version 2 of
EML − kNN , given an item of evidence (xi, Yi), the belief is allocated to the
set Yi and all its supersets. For higher values of k, given an unseen instance x,
the most plausible label set after pooling the BBAs induced by the k nearest
neighbors will be the set of all labels, i.e., the predicted label set will be Ŷ = Y.
That explains the fact that the Recall measure tends to 1 while the Precision

measure decreases when the value of k increases.
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Fig. 3. Accuracy, Precision, Recall and F1 measures for the three versions of EML−
kNN and ML− kNN algorithms as a function of k on the scene dataset, for γ = 0.1.

5 Conclusion

In this paper, an evidence-theoretic k-NN rule for multi-label classification has
been presented. Using the evidence theory makes us able to handle the ambiguity
and making decisions with multiple possible label sets for an unseen instance
without having to resort to assumptions about these sets. The proposed method
generalizes the single-label evidence-theoretic k-NN rule to the multi-label case.
An unseen instance is classified on the basis of its k nearest neighbors. Each
neighbor of an instance to be classified is considered as an item of evidence
supporting some hypotheses regarding the set of labels of this instance. A first
approach consists in supporting the hypothesis that the label set of the unseen
instance is identical to the label set of the ith neighbor considered as an item of
evidence. A second one consists in supporting the label set of the ith neighbor
and all its supersets. The hypotheses supported by a third approach are the
label set of the ith neighbor and all its subsets. The experiments on two real
datasets demonstrate the effectiveness of the proposed method as compared to
state-of-the-art method also based on the k-NN principle. Especially, the first
and the third approaches gave better performance than the second one.



Another contribution of this paper is the presentation of an extension of the
D-S theory to manipulate multi-labelled data. In the multi-label case, the frame
of discernment defined as the set of all hypotheses in a certain domain is not
the set of all possible classes but the powerset of this set. Thus, each hypothesis
represents a set of labels and the uncertainty is then expressed by evidence on
sets of label sets.
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