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Abstract Multi-label classification can be applied to study empirically discrete
choice problems, in which each individual chooses more than one alternative.
We applied the Classifier Chain (CC) method to transform the Generalized Maxi-
mum Entropy (GME) choice model from a single-label model to a multi-label model.
The contribution of our CC-GME model lies in the advantages of both the GME and
CC models. Specifically, the GME model can not only predict each individual’s
choice, but also robustly estimate model parameters that describe factors determin-
ing his or her choices. The CC model is a problem transformation method that allows
the decision on each alternative to be correlated. We used Monte-Carlo simulations
and occupational hazard data to compare the CC-GME model with other selected
methodologies for multi-label problems using the Hamming Loss, Accuracy, Pre-
cision and Recall measures. The results confirm the robustness of GME estimates
with respect to relevant parameters regardless of the true error distributions. More-
over, the CC method outperforms other methods, indicating that the incorporation of
the information on dependence patterns among alternatives can improve prediction
performance.

1 Introduction

The discrete choice problem describes how an individual chooses an alternative from
M > 2 available ones. Empirically, the problem is similar to the single-label classi-
fication problem, in which objects are classified into M classes. However, in many
situations, we observe an individual choosing more than one alternative simultane-
ously. This problem is then empirically equivalent to the multi-label classification
problem, in which one object can be associated with a subset of classes. In this
study, we extend existing single-label choice models to multi-label choice models.
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Since the development of the random utility model, which explains individuals’
decision making process, the parameters in the empirical models can be linked to
those in the utility functions. The knowledge of the model parameters can contribute
to behavior explanation and policy implications. Consequently, the objectives of
our multi-label choice model are not only to predict a set of alternatives that each
individual chooses, but also to estimate the model parameters that describe factors
determining each individual’s decisions.

Common methods to study discrete choice problems are the Logit and Probit
models [16]. These models are limited in the sense that, being likelihood-based, they
require distributional assumptions for the errors. [4, 15] introduced the Maximum
Entropy (ME) model for discrete choice problems. [5] added the error components
to the model and extended it to the Generalized Maximum Entropy (GME) model for
multinomial choice problem to improve efficiency. The traditional discrete choice
models are for single-label classification. There are a few Logit and Probit models
that were developed to explain the multi-label choice problem in which each individ-
ual purchases a bundle of products. As discussed in [2], commonly used models are
the Label Powerset model with multinomial Logit and Probit estimation and the mul-
tivariate Probit or Logit models [1-3]. Although both models allow each individual
to choose more than one alternatives, none of them can cope with large choice sets.

Existing methodologies to analyze the multi-label classification problem in com-
puter science follow two main approaches, referred to as problem transformation and
algorithm adaptation [17]. The strategy of the former approach is to transform the
multi-label problem into single-label one in order to apply traditional classification
methods. Problem transformation methods include Binary Relevance, Label Pow-
erset, Random k-labelsets, Classifier Chains, Pruned Sets, Ensemble of Classifier
Chains and Ensemble of Pruned Sets [7, 13]. The algorithm adaptation approach,
in contrast, tackles the multi-label problem directly. Algorithm adaptation methods
include Multi-label k-Nearest Neighbors, Back-Propagation Multi-label Learning
and Decision Trees [7, 13].

Since the objective of this study is to extend the single-label choice model to multi-
label choice, we focus on the problem transformation approach. As discussed in [7],
the problem transformation approach is generally simpler, but it has a disadvantage
of not incorporating the dependence among alternatives. However, this is not true for
the Classifier Chain (CC) method, which can capture the dependence pattern among
alternatives. Since the choices that each individual makes are usually correlated, this
study focuses on the CC method. As for the base single-label choice model, the Logit,
Probit and GME models were all developed with a main objective to estimate model
parameters that describe factors determining each individual’s decisions. However,
the GME estimates are robust to distributional assumptions. In addition, the GME
model can generally estimate under-determined problems most efficiently. In other
words, the GME method yields the estimated parameters with the smallest possible
variances [6]. Therefore, to robustly estimate all relevant parameters and capture the
dependence pattern among alternatives, we propose the CC-GME model.

For the experimental part of this study, we used Monte-Carlo simulations to
compare the CC method with the Binary Relevance (BR) and Label Powerset (LP)
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methods and we compare the GME method with the Logit and Probit methods. Specif-
ically, we empirically assessed the performances CC-GME model against CC-Logit,
CC-Probit, BR-GME, BR-Logit, BR-Probit, LP-GME, LP-Logit and LP-Probit mod-
els. To test the robustness of the estimations, we applied all the methods to three sim-
ulated datasets with normal, logistic and uniform errors. Moreover, we also applied
all the methods to a real dataset to explain factors determining the set of occupational
hazards that each individual faces. Performance measures used in this study include
Hamming Loss, Accuracy, Precision and Recall [7, 13, 18]. The results show that the
forecasting performances are more sensitive to the choice of the problem transfor-
mation method than to the choice of single-label estimation methods. That is, the CC
model outperformed the BR and LP models with respect to all evaluation measures
expect the Precision. For the parameter estimates, the GME based methods yielded
smaller Mean Squared Error (MSE) than the Logit and Probit base methods.

This paper is organized as follows. The original GME model for single-label
choice model is recalled in Sect. 2 and the multi-label CC-GME model is introduced
in Sect. 3. In Sect. 4, the CC-GME model is evaluated using Monte-Carlo simulations.
Section5 provides an empirical example using occupational hazard data. Finally,
Sect. 6 presents our conclusions and remarks.

2 The Single-Label GME Model

The concept of entropy was introduced by [14] to measure the uncertainty of a set
of events. The Shannon entropy function is H(p) = Z/ pjlog(pj), where p; is the
probability of observing outcome j [8, 9]. Proposed the Maximum Entropy (ME)
principle, stating that the probability distribution that best represents the data or
available information is the one with the largest entropy. From the ME principle,
[4, 15] developed the ME model for discrete choice problems [5]. Added error
components to the model and extended it to the GME model for discrete choice
problems.

Consider a problem in which each of N individuals chooses his or her most
preferred choice from M alternatives. From the data, we observe dummy variables
v;j which equal 1 if individual i chooses alternative j and O otherwise. Moreover, we
observe K characteristics of each individual x;;, where k = 1, ..., K. The objective
of the GME multinomial choice model is to predict p;; = Pr{y; = 1|xj} for all i
and j, which is the probability of individual i choosing each alternative j given the
set of his or her characteristics x;;. That is, we want to recover p;; from the observed
data y;; and x;.

In the GME model, the observed data y;; is assumed to be decomposed into the
signal component p;; and error component e;;,

Yij = pij + eij. ey
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The error component is supposed to be the expected value of a discrete random
variable with support {v;} and probabilities {w;;,}: e;; = > vpwijn. Following [11],
the error support is constructed using the three sigma rule, which states that the error
support should be symmetric around zero and the bounds should be —30y and 30y
where oy is the empirical standard deviation of the dependence variable. The number
of values for the error is usually fixed at 3 or 5. That is, the error support is usually set
to {—30y, 0, 30y} or {—30y, —1.50y, 0, 1.50y, 30y} [6, 11]. Premultiplying (1) with
Xir and summing across i, we have MK stochastic moment constraints,

D xivi = D xapy+ D Xgvwwgn, Yj=1.... .M Vk=1....K. (2
i i ih

From the principle of ME, p;; that best represents the data must maximize the
entropy function

IE’%VX H(pij, Wijh) = - Zpij 10g(pij) - z Wijh 10g(Wijh) (3)
ij ijh
subject to constraints (2) and the following normalization constraints

> pj=1, Vi=1,....N 4)

j
Zwijhzl’ Vi=1,....N,Vj=1,..., M. (5)
h

This maximization problem can be solved using the Lagrangian method. It should
be noted that we can estimate p;; and w;;; without making any functional form or dis-
tributional assumptions. However, to analyze marginal effects of each characteristic
Xk on pjj, let us assume that

yij = pij + eij = G(xifj) + e (6)

for some function G and coefficients B;. Unlike the Logit or Probit-based models, the
GME model only makes the linear assumption on x; 8;, but it does not need to make
assumption on function G. However, [5] show that the estimated Lagrange multiplier
for each stochastic moment constraint A; is equal to —f; and the marginal effect can
be calculated using the information from the ;.

3 The Multi-label CC-GME Model

Let £2 be a choice set that contains M alternatives. Let us observe a set of dummy
variables y;; where y;; = 1 when individual i chooses alternative j. For the multi-label
model, each individual may choose more than one alternative. In other words, it is
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possible that y; = 1 for more than one j. Therefore, there are at most 2M possible
outcomes.

3.1 The CC Model

The multi-label CC model was introduced by [12]. The objective of the multi-label
choice model is to estimate Pr{y, = Alx;} where y; is the set of all alternatives
that individual i chooses and A € 2%. To allow the probability of choosing each
alternative to be correlated, the CC method uses Bayes’ rule to expand Pr{y;|x} as
follows,

Priy;lxi} = Priyir = Hxa}Pri{yio = 1y, xic} - - .

Privie = 1lyit. iz, - - s YiM—1y, Xik } (7a)
which can be denoted as
M M
Priylxa} = [ | Privy = 1155} = [ | GGy, (7b)
j=1 j=1
where 551']‘ = (yil, e Vi Xily v e ,xiK) for allj = 2, . ,M and iil = (x,-l, ey

xix). In (7a,7b), notice that the multi-label problem is decomposed into a series
of conditionally independent binary choice problems Pr{y; = 1|x;} for all j =
1, ..., M. The CC method reduces the dimension of the problem significantly, as 28
grows exponentially with the size of the choice set £2.

Notice that different sequences of the choices y;; yield different estimates and
predictions. The criterion to select the sequence of the choice depends on the method
used to estimate Pr{y; = 1|x;;}. When GME is used, the criterion is to choose the
sequence that maximizes the total entropy. When the Logit or Probit models are used,
the criterion is to maximize the likelihood.

3.2 The CC-GME Model

To estimate the probability Pr{y;|x;} of individual i choosing a set A, we need
to estimate all the components of the Bayes’ decomposition in Eq. (7a,7b). In this
section, we address the problem of estimating the parameters for each of the binomial
choice problems Pr{y; = 1|x;} forall j = 1, ..., M using the multinomial choice
GME model with two alternatives in the choice set. In this case, the y; only can
take values O or 1. Therefore, the two alternatives are whether individual i chooses
alternative j or not.

Let yij = ]3,] +ej = G()?,],B]) + ejj, where ejj = Zh VhWih- Let kj be the index
for elements in X;;. To simultaneously estimate p;; and w;j, for all j, the GME model
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can be written as

nax H (pij, i) = — > P 10g(pi) = > wipn 10g(wijn) ®)
, ~

b ij ijh

subject to

Ziijk,-yij = chijk/ﬁzj + Ziijkj\/hwljh, Vi=1,...,M,
i i ih 9)
Vii=1,....(K+j—1)

Zw,-jhzl, Vi=1,...,N.Vi=1,..., M, (10)
h

where (8) is the entropy function, (9) are the stochastic-moment constraints and (10)
are normalization constraints. From the maximization problem, the Lagrangian can
be expressed as

L(pij, wijn) = — Zﬁij log(pij) — Zszjh log(wijn)
-

ij ijh
+ Z Ajk [Z Xijk; Vij — chijk,-ﬁij - Zilykjvm,‘h}
jk i i ih
+28’7 [1—Wijh]. (11)
ij

The solutions to the above Lagrangian problem are

pij = exp (—1 - Z,\jkfc,-jkj) (12a)
k

and

o exp(— X Ak Vh)
ijh = T :
21 eXP(— 2 AjiXiji; vh)

(12b)

3.2.1 The Concentrated CC-GME Model

Following [5], the GME model can be reduced to the concentrated GME model,
which is the model with the minimum number of parameters that represents the orig-
inal GME model. From the Lagrangian (11) and the GME solutions (12a, 12b), we
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can derive the objective function for the concentrated GME model as

MO =S iy + S [exm—l -y xfk,.xl-,-k»}
[ k

ijkj ij
+ > [1og D exp(— D A ik vn) | - (13)
ij h kj

The concentrated GME model minimizes expression (13) with respect to Ajk/.. The
gradient can be written as

oM ~ . N
FyP DT — D Kb — D XijkgVnwih- (14)
I i i i

Notice that the objective function of the concentrated model is no longer a function
of p;; and wyj,, but only a function of Ak As discussed in [5], the interpretation of
Ajk; from the concentrated model can be compared to that of the B, parameters.
Specifically, it can be shown mathematically that Bjx, = —Ajy, .

3.3 Result Analysis

The multi-label CC-GME model can capture the marginal effects of an individual
characteristics on his or her decisions and the dependence pattern of the decisions
on all available alternatives.

3.3.1 Marginal Effects

The marginal effects measure the effect of a change in an individual characteristic
on an individual’s choice decisions. For this multi-label model, the marginal effects
are situated at two levels. The first level is to analyze the effect of a change in x; on
the probability that the individual will choose an alternative j € §2. This marginal

effects in this level is -
dPr{y;l%}

o BiG' (%iB)). (15)

The second level is to analyze the effect of a change in x; on the probability that the
individual will choose a set of alternatives A € 2°. From Eq. (7a, 7b), the marginal
effect of x; on Pr{y|x}is

oPr{ylx}
axy

> BG G [[GGEBy) |- (16)

J q#j
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3.3.2 Dependence of the Alternatives

In the multi-label model, an individual can choose multiple alternatives. The deci-
sions of choosing each of those alternatives or not can be dependent. The dependence
between an alternative j and another alternative g, where the index ¢ < j, can be
captured from the marginal effects of the change in y, on Pr{y;|;}, which is

8Pr{yj|)~cj'}

Oy, = Bikk+¢9)G & B)- (17)

3.3.3 Model Evaluations

The evaluation of multi-label choice problems requires different measures from those
of single-label problems. In contrast to the single-label prediction, which can either
be correct or incorrect, the multi-label prediction can be partially correct [13]. Sum-
marized several measures to evaluate multi-label classification models. Commonly
used measures include the Hamming Loss, Accuracy, Precision and Recall. The
Hamming Loss measures the symmetric difference between the predicted and the
true choices with respect to the size of the choice set. The other three methods mea-
sures the number of correct predicted choices. The difference is in the normalizing
factors. The Accuracy measures the number of correct predicted choices with respect
to the sum of all correct, incorrect and missing choices. The Precision and Recall
measure the number of correct predicted choices with respect to the number of all
predicted choices and the number of all true choices, respectively. The formulas for
these four measures are

N -
Hamming Loss = Y % (18)

i=1
& 0y

Accuracy = g:l Tyl (19)
& %Nyl

Precision = ) H (20)
i=1 Wil

N N
Recall = > 0%l Q1)
i=1

1Yl

where | - | is the number of elements in the set, A is the symmetric difference
between the two sets, N is the intersection of the two sets and U is the union of the
two sets.
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4 Monte-Carlo Experiment

In this section, we used Monte-Carlo simulations to empirically evaluate our multi-
label CC-GME model using three simulated datasets with normal, logistic and uni-
form errors. We compared the performance of the CC-GME model with some selected
multi-label estimations including CC-Logit, CC-Probit, BR-GME, BR-Logit, BR-
Probit, LP-GME, LP-Logit and LP-Probit models.

The BR model simplifies the multi-label model to an independent series of binary
single-label choice models. For example, the BR-GME model applies the GME
single-label model to estimate the probability that individual i chooses alternative
J» Pr{y;j = 1|x;i}. The probability that individual i chooses the set of alternatives
A is then Priy;, = Alxy} = Hlel Pr{y; = 1lxi}. The LP model transforms the

multi-label problem into a single-label problem of 2*? alternatives. For example, the
LP-GME model applies the GME single-label model to estimate Pr{y;, = Alx;}
where A € 2.

4.1 Simulation

For simplicity, we assumed N = 1,000 individuals, M = 3 alternatives and K = 2
individual characteristics. The simulation procedures are composed of two main
steps. The first step is to generate all characteristics x;, the true parameters ,BS( and
the error ¢;;. Given the information from x; and 8 ?k’ we calculated the latent variable
¥i; = > i XitkBix + €i1. We then generated the choice variable y;; by letting y;; = 1
when y§ | = 0andy;; = 0 otherwise. Once we have y;1, we can simulate y;, ..., yim.
This first step provided us with the simulated data (y;;, x;) and true parameters ﬂl%.

The second step is to use the data from the first step and apply the CC-Logit, CC-
Probit, BR-GME, BR-Logit, BR-Probit, LP-GME, LP-Logit and LP-Probit models.
After computing the parameter estimates Bix. the predicted probability of individual
i choosing choice j, pjj, and the corresponding predicted choices, ¥;, can be obtained.
Using Monte-Carlo simulation, the standard deviation of each estimated parameter
and statistics can be estimated.

4.2 Results

The Monte-Carlo simulations allowed us to compare the performances of the CC-
Logit, CC-Probit, BR-GME, BR-Logit, BR-Probit, LP-GME, LP-Logit and LP-
Probit models.

Table 1 shows the true parameters and the estimated parameters from all the CC
and the BR models. It should be noted that the LP models can also provide estimates
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Table 1 True and estimated parameters for the CC and BR models

Alternative | Regressor | TRUE | Classifier chains Binary relevance
GME |Logit |Probit |GME |[Logit |Probit
Normal error
Vi X 0.318 0.513 0.516 0.319 0.513 0.516 0.319
(0.071) |(0.072) |(0.044) |(0.071) |(0.072) |(0.044)
X2 0 0.003 0.003 0.002 0.003 0.003 0.002
(0.068) |(0.068) |(0.042) |(0.068) |(0.068) |(0.042)
2 X —0.223 | -0.382 | -0.382 | —0.228 | —0.331 | —0.333 | —0.199
(0.073) |(0.076) |(0.045) |(0.069) |(0.071) |(0.042)
X2 —0.659 | —1.100 |—1.108 | —0.665 |—1.073 | —1.098 | —0.660
(0.076) |(0.077) |(0.044) |(0.071) |(0.074) |(0.043)
Y1 0.243 0.404 0.382 0.228 — — —
(0.101) |(0.139) |(0.082)
3 X 0.706 1.190 1.205 0.700 0.841 1.092 0.640
(0.103) |(0.107) |(0.060) |(0.071) |(0.095) |(0.053)
X2 —0.360 | —0.629 | —0.633 | —0.368 | —0.645 | —0.849 | —0.498
(0.092) |(0.100) |(0.058) |(0.068) |(0.092) |(0.052)
i 0.551 0.965 0.992 0.574 — — —
(0.150) |(0.177) |(0.102)
2 0.844 1.407 1.442 0.837 — — —
(0.152) |(0.183) |(0.106)
MSE 0.001 0.143 0.005 0.001 0.112 0.006
Logistic error
Y1 X 0.318 0.324 0.325 0.203 0.324 0.325 0.203
(0.070) |(0.070) |(0.043) |(0.070) |(0.070) |(0.043)
X2 0 0.006 0.006 0.004 0.006 0.006 0.004
(0.060) |(0.061) |(0.038) |(0.060) |(0.061) |(0.038)
2 X1 —0.223 | -0.227 | -0.228 | —0.139 | —0.209 | —-0.208 | —0.127
(0.068) |(0.069) |(0.042) |(0.068) |(0.069) |(0.042)
X2 —0.659 | —0.665 | —0.669 | —0.409 |—0.656 | —0.666 |—0.408
(0.072) |(0.073) |(0.043) |(0.071) |(0.073) |(0.043)
i 0.243 0.244 0.241 0.148 — - -
(0.099) |(0.131) |(0.080)
3 X1 0.706 0.703 0.707 0.422 0.593 0.676 0.407
(0.079) |(0.080) |(0.046) |(0.068) |(0.076) |(0.044)
X2 —0.360 | —0.348 | —0.348 | —0.208 | —0.390 | —0.452 | -0.272
(0.075) |(0.079) |(0.047) |(0.067) |(0.077) |(0.046)
i 0.551 0.563 0.581 0.348 — — -
(0.129) |(0.146) |(0.087)
A 0.844 0.832 0.852 0.511 — — —
(0.133) |(0.184) |(0.109)

(continued)
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Table 1 (continued)

Alternative | Regressor | TRUE | Classifier chains Binary relevance
GME Logit Probit | GME Logit Probit
MSE 0.000 0.012 0.043 0.000 0.007 0.032
Uniform error
Vi X 0.318 1.665 1.680 1.008 1.665 1.680 1.008
(0.095) |(0.097) |(0.054) |(0.095) |(0.097) |(0.054)
X2 0 —0.022 | -0.023 | -0.013 | -0.022 | —-0.023 | -0.013
(0.082) |(0.082) |(0.048) |(0.082) |(0.082) |(0.048)
2 X1 —0.223 | —1.284 | —1.351 | —-0.780 |—0.758 | —0.877 | —0.505
(0.148) |(0.173) |(0.096) |(0.103) |(0.124) |(0.069)
X2 —0.659 | —3.812 | —4.011 | —2.320 |—3.353 | —3.769 | —2.172
(0.199) |(0.237) |(0.125) |(0.170) |(0.216) |(0.115)
1 0.243 1.431 1.492 0.859 — - -
(0.184) |(0.293) |(0.160)
3 X1 0.706 3.581 4.488 2.552 1.359 2.801 1.580
(0.183) |(0.347) |(0.188) |(0.068) |(0.184) |(0.097)
X2 —0.360 | —-1.818 | —2.240 | —1.280 | —1.163 | —2.456 | —1.385
(0.182) |(0.288) |(0.155) |(0.072) |(0.168) |(0.089)
y1 0.551 2.811 3.506 1.997 — — -
(0.293) |(0.468) | (0.253)
A 0.844 4.307 5.434 3.085 — — —
(0.294) |(0.533) |(0.288)
MSE 0.047 7.161 1.728 0.017 3.480 0.783

I'Standard deviations in parentheses

of the parameters. However, the parameters in the LP model are not comparable to the
true parameters generated in this Monte-Carlo experiment. It should be noted that the
data simulation process was based on the CC model. When the errors are normally
distributed, the true model is the CC-Probit model. Therefore, the Probit-based mod-
els performed better than the Logit-based models. When the errors are logistically
distributed, the true model is the CC-Logit model and the Probit models performed
better than the Logit models. However, regardless of the error distributions, the GME
models always have the lowest MSE.

Figure 1 shows the prediction regions for an individual’s decision on each alterna-
tive y;; given his or her characteristics x and x; using the CC-GME model. Each of the
three lines represents the combinations of x1 and x; such that Pr{y; = 1|x;;} = 0.5.
Regions (1) to (8) represent the choices y; = (0, 0, 0), (0,0, 1), (0, 1,0), (0, 1, 1),
(1,0,0), (1,0, 1), (1, 1,0) and (1, 1, 1), respectively. Therefore, the result shows
that individuals with high value x; and low value of x; are more likely to choose all
three alternatives. Individuals with lower x| and high x; are likely to choose none of
the alternatives.
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x2

%1

Fig. 1 Prediction regions for all possible sets of alternatives from the CC-GME estimation for the
simulation with logistic errors

Table 2 reports the Hamming Loss, Accuracy, Precision and Recall statistics for
all the CC, BR and LP models. The results show that the forecasting performance
depends on the choice of the problem transformation methods, but not on the choice
of single-label estimation methods. That is, the CC model outperformed the BR and
LP models with respect to all evaluation measures, except Precision. The CC-GME,
CC-Logit and CC-Probit models yielded similar results.

5 Occupational Hazards Empirical Example

Consider a problem in which an individual chooses a job with multiple job attributes.
This problem can be viewed as an individual choosing a set of job attributes. In this
empirical example, the job attributes are a set of occupational hazards. Therefore,
each individual will choose the hazards from which he or she gains the least disutility.
In this section, we apply the CC-GME model to predict a set of occupational hazards
that an individual faces and the factors determining his or her choices of hazards.
For the performance evaluation, we applied the five-fold cross validation method to
compare the out-sample prediction performance between the CC-GME model and
other models [10].

5.1 Data Description

The dataset is from The Informal Worker Analysis and Survey Modeling for Efficient
Informal Worker Management Project, which aims at studying the structure and
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Table 2 Model comparison for the simulated data
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Evaluation Classifier chains Binary relevance Label powerset
Methods GME | Logit |Probit |GME |Logit |Probit |GME |Logit | Probit
Normal error
Hamming loss | 0.304 | 0.303* | 0.303* | 0.341 |0.314 |0.315 |0.326 |0.327 |0.331
(0.008) | (0.009) | (0.008) | (0.008) | (0.008)| (0.008) | (0.009) | (0.009) | (0.010)
Accuracy 0.589 |0.590* | 0.590% | 0.516 |0.581 |0.581 |0.543 |0.541 |0.528
(0.011) | (0.013)| (0.013) | (0.009) | (0.013)| (0.013) | (0.013) | (0.013) | (0.016)
Precision 0.726 |0.725 [0.725 |0.737 [0.713 |0.713 |0.736 |0.737 | 0.745*
(0.010) | (0.009) | (0.009) | (0.011) | (0.008)| (0.008) | (0.013)|(0.013)| (0.015)
Recall 0.757 | 0.760* | 0.760* | 0.633 |0.758 |0.758 |0.674 |0.671 |0.645
(0.009) | (0.017)| (0.017)| (0.008) | (0.017)| (0.017) | (0.017) | (0.017) | (0.025)
Logistic error
Hamming loss | 0.364 |0.363* | 0.364 |0.391 |0.372 |0.372 |0.383 |0.383 |0.388
(0.010) | (0.009) | (0.009) | (0.009) | (0.009)| (0.009) | (0.011)|(0.011)| (0.011)
Accuracy 0.521* | 0.521* | 0.521* | 0.455 |0.516 |0.516 |0.475 |0.473 |0.460
(0.013) | (0.017)| (0.017) | (0.010) | (0.018)| (0.018) | (0.018) | (0.018) | (0.020)
Precision 0.666 |0.659 |0.659 |0.666 |0.648 | 0.648 |0.665 |0.666 | 0.670*
(0.014) | (0.010) | (0.010) | (0.014) | (0.010)| (0.010) | (0.016) | (0.015) | (0.017)
Recall 0.713 |0.714 |0.714 |0.589 |0.717 |0.718* | 0.624 |0.620 |0.596
(0.014) | (0.029) | (0.029) | (0.009)| (0.030) | (0.030) | (0.031) | (0.030) | (0.035)
Uniform error
Hamming loss | 0.156 | 0.155* | 0.155* | 0.216 |0.174 |0.174 |0.184 |0.184 |0.185
(0.005) | (0.006) | (0.006) | (0.006) | (0.007)| (0.007) | (0.006) | (0.006) | (0.006)
Accuracy 0.768 | 0.769* | 0.769* | 0.668 |0.745 |0.745 |0.724 |0.723 |0.719
(0.008) | (0.008) | (0.008) | (0.007) | (0.009)| (0.009) | (0.008) | (0.008) | (0.009)
Precision 0.866 | 0.867 |0.867 |0.879*|0.849 |0.849 |0.867 |0.870 |0.874
(0.007) | (0.005) | (0.005) | (0.008) | (0.006) | (0.006) | (0.007) | (0.007) | (0.008)
Recall 0.871* | 0.871* | 0.871* | 0.736 |0.860 | 0.859 |0.814 |0.811 |0.802
(0.059) | (0.006) | (0.006) | (0.007) | (0.007)| (0.006) | (0.007) | (0.007) | (0.009)

Standard deviations in parentheses.

Statistics with * represent estimation methods that are the
‘best’ with respect to each evaluation metric. Statistics in bold represent estimation methods with
the prediction power not statistically different from the ‘best” estimation method

nature of the informal sector in Chiang Mai, Thailand in 2012. In the survey, each
respondent was asked whether he or she faced each of the three types of occupational
hazards, namely, (1) physical and mechanical hazards, (2) ergonomic and psychoso-
cial hazards and (3) biological and chemical hazards. The survey also provides data
for each individual’s demographic, employment and financial status. Explanatory
variables used in this study include (1) age, (2) number of children, (3) total income
and dummy variables for (4) female, (5) high school, (6) college and (7) agricultural

household.
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Table 3 Model comparison for the occupational hazards data

Evaluation Classifier chains Binary relevance Label powerset
Methods GME | Logit | Probit | GME | Logit |Probit | GME | Logit | Probit
Hamming loss | 0.263* | 0.297 | 0.372 |0.284 |0.382 |0.383 |0.315 |0.325 | —

(0.049) | (0.016) | (0.022) | (0.039) | (0.032) | (0.032)| (0.083)| (0.020)

Accuracy 0.702* [ 0.541 | 0.658 |0.675 [0.652 |0.652 |0.676 0529 |-
(0.065) | (0.012)| (0.041)| (0.055) | (0.053)| (0.053)| (0.080) | (0.015)

Precision 0.753 |0.759+ | 0.758 | 0.755 | 0.748 |0.748 |0.701 |0.723 | —
(0.080) | (0.058)| (0.047)| (0.084) | (0.044) | (0.044) | (0.102) | (0.063)

Recall 0914 |0.848 |0.844 [0.870 |0.849 |0.850 |0.956*|0.883 |-

(0.023)| (0.096) | (0.112)| (0.045)| (0.131) | (0.131) | (0.040) | (0.131)

Standard deviations in parentheses. The LP-Probit model fails to converge. Statistics with * represent
estimation methods that are the ‘best’ with respect to each evaluation metric. Statistics in bold
represent estimation methods with the prediction power not statistically different from the ‘best’
estimation method

5.2 Results

For the choice of problem transforming methods, the results are similar to the simula-
tion exercises in the sense that the CC model outperformed the BR and LP models in
most measures (see Table 3). Specifically, the CC model is superior than the BR and
LP models with respect to the Hamming Loss, Accuracy and Precision criteria. For the
choice of single-label estimation methods, the GME model outperformed the Logit
and Probit models with respect to the Hamming Loss, Accuracy and Recall measures.

6 Concluding Remarks

The empirical results obtained in this study show that the forecasting performance
depends on the choice of the problem transformation methods, but not on the choice
of single-label estimation methods. Specifically, the CC model outperformed the BR
and LP models with respect to all evaluation measures expect the Precision. For the
parameter estimates, the GME-based methods yielded smaller MSE than those of
the Logit and Probit-based methods.

Although the Bayes’ rule implies that Pr{y;|xi} = H]Ail Pr{y; = 11x;}, it does
not imply directly that Pr{y;|x;} = Hj‘i 1 G(%iiB;). The CC-GME model still relies
on the linearity assumption of X;;8; when we set

Priy; = 1|x;} = G(&;iB)). (22)

Therefore, other methods to incorporate the dependency among alternatives into
the multi-label classification problem with weaker assumptions could potentially
improve the performance.
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