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Abstract—The Evidential K-Nearest Neighbor (EK-NN) classi-
fication rule provides a global treatment of imperfect knowledge
in class labels, but still suffers from the curse of dimensionality
as well as runtime and memory restrictions when performing
nearest neighbors search, in particular for large and high-
dimensional data. To avoid the curse of dimensionality, this paper
first proposes a rough evidential K-NN (REK-NN) classification
rule in the framework of rough set theory. Based on a refor-
mulated K-NN rough set model, REK-NN selects features and
thus reduces complexity by minimizing a proposed neighborhood
pignistic decision error rate, which considers both Bayes decision
error and spatial information among samples in feature space.
In contrast to existing rough set-based feature selection methods,
REK-NN is a synchronized rule rather than a stepwise one,
in the sense that feature selection and learning are performed
simultaneously. In order to further handle data with large sample
size, we derive a distributed REK-NN method and implement it
in the Apache Spark. The theoretical analysis of the classifier
generalization error bound is finally presented. It is shown
that the distributed REK-NN achieves good performances while
drastically reducing the number of features and consuming less
runtime and memory. Numerical experiments conducted on real-
world datasets validate our conclusions.

Index Terms—Dempster-Shafer theory, feature selection,
neighborhood rough set model, generalization error bound,
nonparametric classification, Big Data, Apache Spark.

I. INTRODUCTION

S a case-based learning method that does not need any

prior assumptions [1], the voting K-NN classifier [2],
assigning a sample into the class represented by a majority of
K nearest neighbors in the training set, has been widely used in
practice due to its efficiency and simplicity. To further enhance
its performance, the evidential K-NN classifier (EK-NN) [3]
was proposed in the conceptual framework of Dempster-
Shafer theory of belief functions [4]-[10], a powerful tool
for modeling and reasoning with uncertain and/or imprecise
information.

In the EK-NN, each neighbor of a sample to be classified
is considered as an item of evidence that supports certain
hypotheses regarding the class membership of that sample. The
degree of support/belief is defined as a function of the distance
between two samples. The evidence of the K nearest neighbors
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is then pooled by means of Dempster’s rule of combination [7].
In this way, the EK-NN classifier provides a global treatment
of imperfect knowledge regarding the class membership of
training samples, and thus became widely used in the Pattern
Recognition community (see, for example, [6], [11], [12]).

The original EK-NN classifier has been improved in several
ways. The first intuitive way is to optimize some parameters
in the EK-NN by minimizing a certain error function. In
[13], a gradient algorithm was proposed for that purpose, and
more recently evolutionary algorithms were used in [14]. The
second way is to apply different combination rules instead of
Dempster’s rule. One underlying motivation is that Dempster’s
rule assumes independence of the item of evidence, but this
assumption seems hard to be guaranteed in practice. In [15],
Pichon and Denoeux proposed a family of t-norm based
combination rules (t-rules for short), including conjunctive and
cautious rules as its two members [5], to deal with non-distinct
or dependent items of evidence. It was demonstrated that better
performance can be obtained by the EK-NN classifier using
t-rules. Su and Denoeux proposed a class of parametric t-
rules by introducing tunable parameters and functions [12].
The authors showed that better performances can be achieved
for the EK-NN classifier by optimizing these parametric t-
rules. Among other variants of the EK-NN, we can mention
the hybrid classification rule [16], the ensemble enhanced EK-
NN [17], [18] and the contextual discounting-based EK-NN
[19]. Nevertheless, none of these methods address specifically
the classification of data featuring high dimensionality and/or
large sample size.

Dimensionality is known to be a crucial factor affecting the
performance of a classifier, in particular of K-NN classifiers.
As shown in [20], high dimensionality usually causes problems
such as distance concentration and hubness when performing
nearest neighbors search. Hence, applying EK-NN to high
dimensional data is a major issue. Lian, Ruan and Denoeux
[21] proposed to reduce dimensionality of the input space for
the EK-NN classifier by extracting features from initial high-
dimensional feature space. However, in many applications
such as gene selection, users want to know which features
play crucial roles in classification performance. Therefore, it
is interesting to improve EK-NN through feature selection
rather than feature extraction. In [22], the authors implemented
feature selection in the EK-NN method by minimizing a
{0, 1}-binary weighted distance using a genetic algorithm; a
feature is selected when its associated weight equals 1 after
optimization. However, the complexity of this method does not
allow it to be applied to very large data. How to implement
the EK-NN on high-dimensional data with good performance
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through feature selection is still an open issue.

Rough set theory, proposed by Pawlak [23], has proved to
be an effective tool for feature selection as a preprocessing
step for pattern recognition, machine learning and data mining
(see, e.g., [24]-[27] and references therein). In this paper, we
propose a rough EK-NN rule (REK-NN for short) to deal
with classification of data featuring high dimensionality in
the framework of neighborhood rough set theory [24]. More
precisely, a K-NN rough set model is first reformulated to
partition data into positive and boundary regions in a currently
selected feature space; then, to reduce misclassified samples in
the boundary region, a neighborhood pignistic decision error
rate is defined. This criterion evaluates the significance of
inclusion of a new feature. Finally, a forward greedy search
strategy is used to select a minimal feature subset with high
classification performance. As will be shown soon, the REK-
NN is a new rule that synchronizes feature selection and
classification learning simultaneously rather than just a data
preprocessing as most traditional rough set based methods do
in the existing literature, and it also considers both Bayes deci-
sion error and spatial information (distances) among samples
to avoid sensitive and confusing decisions when performing
feature selection.

However, the REK-NN algorithm still explores the K nearest
neighbors of each testing sample in the same way as K-
NN and EK-NN. Hence, REK-NN is not feasible to classify
data with a large number of observations due to runtime
and memory restrictions. Fortunately, the recent MapReduce
paradigm offers an ideal environment to handle this issue [28],
[29]. As an improved MapReduce implementation, Apache
Spark [30], [31] is one of the most flexible and powerful
engines to perform faster distributed computing with big data
using in-memory primitives. Spark-based K-NN rules have
been proposed for big data with limited numbers of features,
for example, [32]-[34]. Motivated by these contributions,
we have implemented REK-NN in the Spark framework by
deriving a distributed version of REK-NN, which makes it
possible to search for K nearest neighbors in a distributed
manner while relaxing the limitation on runtime and memory.

As will be shown in Section IV, both the REK-NN and the
distributed REK-NN have good performances with reducing
dimensionality significantly and outperforms some EK-NN
classifiers as well as the traditional EK-NN taking feature
selection as a data preprocessing in the majority of cases.

The rest of this paper is organized as follows. Some basic
notions of the theory of belief functions and the EK-NN
classifier are first briefly recalled in Section II. In Section III,
the REK-NN and the distributed REK-NN are then introduced,
and a theoretical analysis of their generalization error bounds
is performed. In Section IV, some experiments are reported to
validate the performances of the REK-NN and the distributed
REK-NN classifiers using some real-world datasets. The last
section concludes the paper.

II. PRELIMINARIES

A. Dempster-Shafer theory

Given a frame of discernment Q = {wy,wa, - ,w.}, a
mass function is defined as a mapping from 2 to [0, 1] such

that

Z m(A) = 1.

ACQ

(D

Each number m(A) denotes a degree of belief assigned to
the hypothesis that “w € A”. The subsets A of € such that
m(A) > 0 are called the focal sets of m. A mass function
is said to be Bayesian if it all its focal sets are singletons.
In this case, it is equivalent to a probability distribution. A
mass function is non-dogmatic if €2 is a focal set; in particular,
the vacuous mass function, verifying m({2) = 1, corresponds
to total ignorance. Finally, a mass function is normalized if
the empty set is not a focal set; otherwise, it is said to be
unnormalized.

There are other equivalent representations of a mass func-
tion such as the belief and plausibility functions defined,
respectively, as

Bel(A)= Y m(B), 2)
0#£BCA

Pl(A)= > m(B), 3)
ANB#0)

for all A C Q. Bel(A) indicates the degree to which the
evidence supports A, while PI(A) denotes the degrees to
which the evidence is not contradictory to A. Functions Bel
and Pl are linked by the relation PI(A) = 1 — Bel(A),
where A is the complement of set A. They are in one-to-one
correspondence with mass functions.

Let m; and msy be two mass functions. The conjunctive
combination of m; and ms yields the unnormalized mass
function

mim(A) = > mi(B)ma(C), VAC Q. (4)
BNC=A
If necessary, the normality condition m () = 0 can be

recovered by dividing each mass min(A4) by 1 — myn2(0).
The resulting operation, denoted by @, is called Dempster’s
rule of combination. 1t is defined by m; gy2 () = 0 and

mm2(A)

ml@Q(A) 1 — mﬂ_ﬁ(@)
for all A C Q such that A # (). Both rules are commutative,
associative and admit the vacuous mass function as a unique
neutral element.

After all pieces of evidence have been combined, the
pignistic probability distribution associated to a mass function
m can be defined by

(&)

m(A)

BetP({w}) = A

(6)

>

{ACQ|weA}

for all w € Q.

B. EK-NN: evidential K-NN classifier

Let us consider a collection of n training samples TR =
{(zj,w(z;)) | i = 1,2,--- ,n}, where z; € RP is a feature
vector with class label w(z;) € Q = {w1,wa, - ,w.}. Let
x4 be a testing vector to be classified and Nk (z;) be the set



IEEE TRANSACTIONS ON FUZZY SYSTEMS

of K nearest neighbors of x; in T'R. Each neighbor x; with
label w(x;) = {wy} in Nk (x;) constitutes a distinct item of
evidence regarding the class membership of z;. This item of
evidence can be described using the following mass function

{mt({wq}lxi) = avexp(—fByllzi — z:?),

7
me(@r) =1 aexp(—Byllas —z?),

where « is a constant such that 0 < o < 1 and 8, (¢ =
1,2,---,c) are positive parameters associated to class {wg}.
Usually, o = 0.95, and f3, are optimized [13]. In our method,
we prefer fixing o = 0.95 and 8, = 1 for all ¢ for simplicity.

Eq. (7) means that vectors z; and x; are believed to belong
to the same class if x; is “close” to x;; otherwise, x; leaves
us in a situation of almost complete ignorance concerning
the class of z;. With Dempster’s rule (5), all the K items
of evidence in N (z;) can be combined as

B |z ®)

z;ENK (zt)

my = F(xy) =

From the above final mass function, the lower and upper
bounds for the belief of any specific hypothesis are then quan-
tified by the belief (2) and plausibility (3) values, respectively.
In the case of 0 — 1 losses, the final decision on the class
label of z; can be made, alternatively, through maximizing the
belief, the plausibility, or the pignistic probability [35], [36].
When maximizing pignistic probability in case of complete
ignorance, i.e., m;(2) ~ 1, we have BetP({w,}) ~ 1/c for
all q. In this case, the class of sample x; is unknown and it
may be assigned to €.

III. REK-NN AND DISTRIBUTED REK-NN

In this section, we first propose a rough EK-NN classifier
with attribute reduction in the framework of rough set theory,
referred to as REK-NN, and then we scale up it in the Apache
Spark framework in order to handle very large datasets.

Both REK-NN and its distributed version can be formulated
as an optimization problem that consists in evaluating features
and searching for optimal neighborhood size K* and minimal
feature subset B*. Formally, we want to solve the problem

max J(K,B), )

where J(-,-) is an objective function to be determined.

The form of objective function in (9) as well as the feature
evaluation function based on it will be discussed and defined
in Section III-B after reformulating the K-NN rough set model
in Section III-A. In Section III-C, the procedure of REK-NN
is first presented, and the distributed REK-NN is consequently
discussed in Section III-D. In Section III-E, the generalization
error bound of REK-NN and the distributed one is discussed.

A. Reformulation of the K-NN rough set model

The training set can be represented as a decision table,
denoted by DT = (U, AU D,V x Q,f), where U =
{z1,29, - ,2,} is a set of samples called the universe or
sample space; A is the set of conditional attributes (features);
V is the value domain of attributes A; D is the decision

attribute (the class) and f is an information function: f :
UXAXD—=VxQ.

A neighborhood of sample z; is a subset of samples close
to x;. From a concept of neighborhood, we define the K-NN
granule as follows.

Definition 1: Let Ag be a metric (e.g., the Euclidean metric)
with features B C A, and let N E(l‘z) denote the K-NN of
sample x; in U. Then, we call {NE(z;)Ux; | ; € U,i =
1,2,-+- ,n} the K-NN granules on the universe.

The family of granules {NE(x;) Uz; | z; € U} forms a
covering of U, as we have

1) Vo, € U, NEB(z;) # 0;

2) UL WE (@) Uay) =U.

Meanwhile, the operator N2 (z;) generates a binary K-nearest-
neighborhood relation over the universe, denoted by K =
(kij) and defined as
kij = {L zj € {NE(%) Ui}, (10)
0, otherwise.

Definition 2: Given arbitrary subset X of the sample space
and a family of K-NN granules {NZ (z;) Ux; | 2; € U}, we
define the lower and upper approximations of X with respect
to relation Kp as

KpX = {x cU | (WB(z))Uzi) C X}7
KsX = {x cU | WB(z)Uz)NX # @}.

Definition 3: Given DT = (U, AUD,V x Q, f), let X1,
Xa,- -+, X, be subsets of samples with classes {w1 } to {w}.
The lower and upper approximations of decision D with
respect to attributes B are defined, respectively, as

KD = O KsXq, KsD = O ’CﬁBXqv

q=1

Y

q=1

where the lower and upper approximations Kz X, and KX,
of X, are defined according to Definition 2.

If gD = KgD, we say that decision D is Kg—definable;
otherwise, it is said to be Kz—rough. In the X z—rough case,
the difference between KD and KgD is called the boundary
of decision D: BN (D) = KgD\KpD. The decision boundary
is composed of the K-NN granules whose samples belong
to more than one class. Hence, the samples in the boundary
region are inconsistent. In contrast, the lower approximation
of decision, also called positive region of decision, denoted
by POSg(D), is the union of granules whose samples con-
sistently belong to one decision class. It is defined as

POSB(D) = U;:1POSB({Wq}) = ngngq.

The neighborhood dependency degree (NDD) of D to B is
defined as the ratio of consistent samples
_ |POSs(D)

U]
The NDD defined in (12) reflects the description capability

of attributes B to approximate decision D. If samples are
separable or consistent, the dependency degree equals one;

v8(D) (12)
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Fig. 1. [Illustration of the K-nearest neighbor rough set model in a two-
dimensional numerical feature space, circles: class {w1 }, squares: class {w2}.

otherwise we have (D) < 1. Using the NDD, one can define
the minimal feature subset 13 of the whole feature set A by
the following two conditions:

1) v58(D) = v4(D), and

2) Va € B, v8(D) > y5-a(D).

In the rest of this section, we present an example to illustrate
the reformulated K-NN rough set model described above, and
to explain why we reformulate it.

Example 1: Fig. 1 illustrates an example of binary classifi-
cation in a two-dimensional numerical feature space B, where
circles and squares indicate, respectively, sets X; and X5 of
samples with decisions {w1 } and {w-}. Taking samples x1, z2
and 3 as examples with K = 3, we have (N?(xl)le) Xy
and (NVB(z2) Uxs) C X, while (NMB(z3) Uxs) N Xy # 0
and (NVB(z3)Ux3) N Xy # (). According to above definitions,
x1 € KXy, 2 € KpXs and 23 € BN(D). All samples are
partitioned into three regions: Regions 1 and 3 are decision
positive, whereas Region 2 is the decision boundary. O

Remark 1: There are several ways to determine the neigh-
borhood of a sample. Some authors define it by fixing a radius
from the prototype sample. This approach has some nice prop-
erties [24]. One of them is monotonicity, which can guarantee
the convergence of a greedy search algorithm. However, this
definition cannot guarantee the existence of neighbors inside
the neighborhood of the prototype sample, which is very
important for the REK-NN algorithm. Furthermore, REK-NN
requires the K-NN granules of a prototype sample to contain
itself, while the traditional K-NN rough set model does not.
This is why the K-NN rough set model is considered and needs
to be reformulated in this paper.

B. Feature evaluation using neighborhood pignistic decision

Based on the reformulated K-NN rough set model, an
evaluation function should be defined before solving problem
(9) to measure the significance of the inclusion of a feature.
In this section, we define such an evaluation function by first
defining a neighborhood pignistic decision error rate.

As already stated in the previous section, the NDD reflects
the size of the overlapping region between classes. In particu-
lar, in the strong overlap case, the neighborhood dependency
degree tends to zero. In fact, the samples in the boundary
region are better categorized into two groups: samples from

U] O ]
(] ]
Pag
x6 x()
K=3 ] K=4

Fig. 2. Illustration of neighborhood decision in boundary with different K

minority classes and samples from majority classes. According
to the Bayes rule, only the samples with minority classes could
be misclassified. In this way, the neighborhood decision for
sample x; can be defined as [37]:

ND(r;) = arg max P({w,} | NE@))  (13)
with neighborhood probability P({w,} | NE(z;)) = niy/K,
where n;, is the number of samples from class {w,} in
NE(x;). Note that, when making either the neighborhood
decision or the neighborhood pignistic decision that will be
introduced in this section, it is not reasonable to take into
account the decision label of sample x; when evaluating itself.

In the example shown in Fig. 1, we have P({w;} |
Nf(w3)) = P{we} | N&(za)) = P({wr} | Nf(xs))
= 2/3, which implies that ND(z3) = ND(z5) = {w1} #
{ws}, ND(z4) = {w2} # {w1}. Hence, according to the
neighborhood decision, only samples x3,r4 and x5 are mis-
classified. This example shows the ability of the neighborhood
decision rule to reflect the classification complexity in complex
decision boundary. However, it is still insufficient to be directly
used to derive REK-NN. The reasons are presented below.

Firstly, the neighborhood decision rule (13) does not take
into account spatial information among samples in the neigh-
borhood of a prototype sample. This may lead to a confusing
decision or a sensitive decision. For instance, as shown in Fig.
2, sample xg will be difficult to assign to a class if K = 4,
because the number of nearest neighbors in N2 (x4) belonging
to class {w1} and {ws} are equal. If K = 5, x¢ will be
misclassified in class {w2}. In fact, the samples (e.g., dashed
squares in Fig. 2) situated far away from the prototype sample
do not provide as useful information as those located nearby.

Secondly, it is important to distinguish outliers from regular
samples when performing feature selection for classification. A
decision rule should be able to identify outliers. As illustrated
in Fig. 1, sample z7 can be seen as an outlier because it is
located far away from other samples. In this case, a good
decision rule should not make precise decision on outliers and
then ignore them when evaluating the significance of features.

Finally, and most importantly, it is difficult to perform
feature selection and EK-NN classification simultaneously
using rule (13), because this rule corresponds to the K-NN
classifier rather than the EK-NN classifier.

Motivated by above statements, we define the neighborhood
pignistic decision rule as follow.
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Definition 4: Given decision table DT = (U, AU D,V x
Q, f), let m; be the final mass function obtained by combining
the evidence provided by the neighbors in NE(z;). The
neighborhood pignistic decision of sample x; in feature space
B C A is defined as

bet (kB (w;) =

Q if m;(Q) =1,
{arg fpax. BetP({w,} | NE(x;)) otherwise, (14)
where BetP({w,} | NB(z;)) is the pignistic probability (6)
associated to the final combination m,;. In practice, when
implementing (14), we set m;(2) > n = 0.9 instead of
m;(Q) ~ 1. As will be seen, n = 0.9 can achieve appropriate
performance in our experiments.

In Definition 4, each item of evidence provided by each
neighbor in NVZ(x;) can be directly established according to
(7) and then be pooled to get a final mass function according
to (8). When bet g g)(wi) = w(x;) = {wy}, we say that
sample x; can be correctly recognized with zero loss even
if NB(z;) ¢ X, the subset of samples with decision class
{wg}. If bet (i ) (x:) # w(x;) or bet(x p)(x;) = €2, sample
x,; will be misclassified with unit loss. Define a 0 — 1 loss
function A(- | -) such that Aw(x;) | bet(gx g)(xz:)) = 0
if bet(x,p)(z:) = w(z;) and Nw(z;) | bet(r p)(z:)) = 1
otherwise. We can now define the following neighborhood
pignistic decision error rate:

1 n
Loem = Y. Mw(@) | betre s (@0)).

The neighborhood pignistic decision error rate depends
on the size and complexity of overlap among classes, and
therefore it is related to the NDD. We have the following
proposition.

Proposition 1: Given decision table DT = (U, AUD,V x
Q, f), the neighborhood pignistic decision error rate satisfies:

D) Likp = %ZwkeUfPOSB(Q) Mw(zk) | betr,m)(Tr));

2) ﬁ([gB) < 1-— ’)/B(D).

Proof: The whole proof consists of following two steps:

15)

1) For any z, € POSg(D), we have zero loss, i.e.,
AMw(zr) | bet(x p)(xr)) = 0. Hence, only samples xy,
in U — POS(D) may be misclassified. Consequently,
Lik,8) = 3 Yowpev—prosso) MW (@) | betxp)(@r))-

2) Let us dividing the universe U into subsets X, Xo,

-+, and X, according to decision D. For all xj in
POSp(D), there is some X, such that (VB (z),)Uzy) C
X,. Hence, we have BetP({w,} | NE(z)) = 1 and
betkBy(rr) = w(wy) = {wg}, which implies that
all the samples in decision positive region have zero
decision error. Therefore, y5(D) is not greater than
1-— ,C(Kﬁ), i.e., ,C(Kﬁ) < 1-— ’}/B(D)

|

Proposition 1 indicates that, on the one hand, the decision
positive region can simplify the computation of the neighbor-
hood pignistic decision error rate (as well as the evaluation
of a new testing sample as will be remarked later). On the
other hand, the neighborhood pignistic decision error rate is

not greater than the loss induced by the NDD (i.e., 1—v5(D)).
Furthermore, L g 5y can be viewed as an estimation of the
Bayes decision error with consideration of spatial information
among samples. Hence, it is suitable for feature selection by
minimizing £k ) or maximizing 1—L g ). In the consistent
case, i.e., when POSg(D) = U, zero error rate can be
achieved, i.e., y5(D) = 1 and Lk 5) = 0.

Using neighborhood pignistic decision error rate, the objec-
tive function J (K, B) in (9) for the REK-NN classifier can
be defined as

J(K,B) =1~ Lk p)- (16)

Traditionally, the significance of a feature a relative to
feature subset 3 can be defined as a feature evaluation function
using the NDD, ie., SIG(a,B,D) = v5ua(D) — v8(D).
However, as remarked above, SIG(a,B,D) cannot reflect
classification complexity well in the decision boundary. In
contrast, the neighborhood pignistic decision error rate is better
with consistent to classification complexity. Hence, we define
the significance of a feature a relative to B according to

SIG(a,B,K) = J(K,BUa) — J(K,B). (17

The feature evaluation function (17) indicates that sig-
nificance increases when adding an informative feature. A
minimal feature subset is achieved if SIG cannot be im-
proved. Here, the STG(a, B, K) cannot be guaranteed to be
monotonous with respect to the order of selected features.
Therefore, the explored minimal feature subset according to
(17) may be suboptimal. Fortunately, it will be shown that
good performance can be achieved with the selected minimal
feature subset.

C. REK-NN classification procedure and time complexity

To solve problem (9), we still need a search strategy.
There exist a number of candidate search strategies to find
a minimal feature subset, e.g., the greedy search strategy such
as sequentially forward selection (SFS), sequentially backward
selection (SBS) [24], branch-and-bound search strategy [38],
and genetic algorithm-based feature selection [39]. In this
paper, we mainly focus on synchronizing EK-NN classification
with feature reduction for high dimensional data rather than
exploring an efficient search strategy for selecting features.
For the sake of simplicity, the SFS procedure is adopted. As
will be seen, good performance can be achieved using SFS.

Based on SFS, the REK-NN classifier can be realized by
Algorithm 1. As can be seen, REK-NN consists of two parts:
learning and evaluation. When feature subset 5* has been
selected, the computational time in learning part is

|5

o( ()t ke 1)+ (- 1Y),

j=0
in which the first term is time complexity used to explore the K
nearest neighbors, while the second and third terms are times
consumed by pooling evidence of the K nearest neighbors
and sorting STG, respectively. To evaluate samples x;, the
computational time is

O(nnt|8*| + (s — npos)K*(c + 1)),
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Algorithm 1: REK-NN classifier

Input: DT = (U, AU D), termination ¢, bound [K, K|
for K and testing samples x;,t = 1,2,--- ,ng.
Output: Optimal K*, minimal feature subset B*
(|B*| < p) and estimations &(x¢) of ;.

1 % Learning part
2 K*=K,B*«0,J*=0
sfor K=K to K do
4 B+ 0,
5 while A — B # () do
6 for each a; € A — B do
7 Determine positive region POSpgyq, (D)
8 Compute
SIG(a;, B,K)=J(K,BUa;) — J(K,B)
9 Select the feature a; such that
SIG(ag, B, K) = max;{SIG(a;, B, K)}
10 if SIG(ag,B,K) > e then
1 | B+ BUay
12 else
13 | break
14 if 7(K,B) > J* then
15 LB*<—B,K*<—K,J*<—](K,B)

16 % Evaluation part

17 Find the K™ nearest neighbors for each x; in space B*
18 if N2 (2;) € POSs-({w,}) then

v | o) = {wg}

20 else

21 Derive evidence of K*-NN in N5, (z;) using (7)

22 Combine K™ items of evidence using rule (8)

23 Estimate w(x;) from the final combination using (14)

where npog is the number of testing samples x; such that
NE.(z;) € POSs-(D).

Obviously, the learning part consumes more computational
time than the evaluation. Fortunately, the REK-NN can be
learnt off-line and the evaluation is more computationally
efficient than EK-NN because |B*| < p.

Remark 2: Algorithm 1 shows that the REK-NN goes
beyond traditional feature selection methods based on rough
set theory: it is not just a data preprocessing method such as,
e.g., the method described in [40], but it synchronizes feature
selection and Leave-One-Out (LOO) classification learning
in a single procedure. Besides, REK-NN can also perform
sample selection that can be used to simplify evaluation. More
precisely, if all K nearest neighbors of a testing sample are
located in a decision positive region with class {w,}, such
testing sample can be assigned directly to class {w,} without
pooling evidence of its K nearest neighbors. Finally, as a
mass function can be viewed as a generalized random set, a
probabilistic or fuzzy partition can be obtained from a credal
partition [41], [42]. With this viewpoint, a probabilistic or
fuzzy K-NN classification can be achieved in a similar way
from the credal classification by the REK-NN.

Map Phase Reduce Phase
Combination . H
KNN search Sl Join M splits
- value
split1 | EEI SR
1 ] ot 1| <o)~
B2 T 2 | <maleel)> H
n/M [ /M
value
Split 2 key #-1 - #j=k |l key value |
1 o= ot d 1| <muAel)>
2 o]+ 2 | <madoch)> H
n/M = n/M
8 value
Split M key = #=1 - #=K key  value
1 |+ [retda 1| <miA@il)>
2 -] 2 | <madtal)> H
T M =it
Forward selection

SiGlay,B,K)>E?
BUa,—B

Optimal K*, objective
J* feature subset B*

Fig. 3. The workflow of distributed REK-NN (learning part) in Apache Spark

D. Scaling up REK-NN in the Apache Spark

As discussed above, the greatest part of the runtime con-
sumed by REK-NN is spent searching for the K nearest
neighbors of each sample, i.e., O(leliol % (p—j)). When
processing a dataset with large sample size n, the runtime
and memory requirements become excessively demanding. To
alleviate the bottleneck of computation and storage, we now
present a distributed REK-NN method implemented in Apache

Spark [31] in this section.

Spark parallelizes the calculation transparently through a
distributed data structure, called Resilient Distributed Datasets
(RDD) [31]. RDD allows data structures stored in main mem-
ory to persist and be reused. The workflow of the distributed
REK-NN in Spark is illustrated in Fig.3. By comparing Fig. 3
and Algorithm 1, we can see that the main difference between
the distributed REK-NN and REK-NN lies in the search for
the K nearest neighbors for each sample. More specifically,
after creating a RDD object in feature space B, the distributed
REK-NN performs the following two phases:

e Map phase: all n samples in RDD are partitioned into
M splits, TRy, TRo,--- , TRy, with approximately the
same number n/M of samples; the exploration of K
nearest neighbors, evidence combination and decision
making are performed in each split in a distributed
manner;

e Reduce phase: all losses L1, La,--- , L,, are joined from
all splits to calculate the final objective function 7 (K, B).

As can be seen from Fig. 3, the distributed REK-NN proce-
dure applies a divide-and-conquer approach, where each local
split/map does not know the samples in the other splits. From
this viewpoint, the distributed REK-NN is an approximate
nearest neighbor technique with parallel computation when
learning the classifier. The computational time in the learning
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part for the distributed algorithm is now decreased to
|8
n(n+ M) . ,
O( DA (0 — i) +nK(e+ D) + (- j)}),
j=0
which suggests that much runtime can be reduced once more
splits have been partitioned.

In contrast to learning, the distributed REK-NN performs
evaluation similarly as the REK-NN: it first explores the exact
K* nearest neighbors for each testing sample in each split, and
then pools the evidence of the final K* nearest ones selected
from the M K* nearest neighbors that have been explored.

E. Generalization error bound of the (distributed) REK-NN

In this section, we determine the generalization error bound
(GEB for short) of the REK-NN and the distributed REK-NN
classifiers, as similarly do in [43].

Suppose p(z) is the density function of the input variable
x, and F(k py(x) is an approximation of the truth F(z) in
operation (8). The expected risk or loss of the approximation
F(x,B)(x) with parameters (K, B) can be defined as

R(F) = /)\(w(ac) | bet (k) (x))p(m)dw

Because the density p(x) is unknown in practice, the empirical
risk corresponding to (18) can be calculated as

(18)

n

RF) = -3 A (wle) | bet ) (x)).

n -
=1

19)

Minimizing the empirical risk means finding (K*, B*) such
that Fx- g+) = argmin R(F).

In both the REK-NN and the distributed REK-NN methods,
we are interested in finding an upper bound of the expected
risk when selecting an arbitrary pair (K,B). We have the
following proposition.

Proposition 2: The expected risk of the REK-NN and
its distributed variant satisfies the following inequality with
probability 1 — %:

R(f) S L"(K*,B*) + - E?K*,B*)’ (20)

4 Vs
Vi — 1V TERED
where § is the level of significance, ¢s is the critical value of
Student distribution 7, and L~ 5+) is the minimal total loss
by maximizing problem (9) based on training set.

Proof: Denote Y = Aw(z) | betxp(x)). Hence,
Yi = Mw(zi) | bet(k py(z;)) can be viewed as a sample
drawn from the random variable Y. According to (19), we have
R(F) = L3 Y; =Y. From the Central Limit Theorem,
the empirical risk follows asymptotically a normal distribution
when n — 00, ie., R(F) =Y ~ N(R(F), %2), which results
in

~ N(0,1).

Hence, with a critical value i3, we have p(R(F) < R(F) +
ths ﬁ) =1- g. Namely, the following inequality holds with
probability 1 — g:

R(F) < R(F) +n

NS

EA

As the true variance o is unknown, we replace it by the sample
standard derivation S = \/ LS (Vi —Y)? and we get

n—1

R(F) - R(F)
S/v/n
where 7 (n — 1) denotes the Student distribution with n — 1
degrees of freedom. Using (19), we get

~T(n-1),

R(F) gR(f)ngﬁ
R ts
< R(F) + Z__x
n—1

1 — .
- SN2 (w(a) | bet ey (x:) — RA(F). (1)
=1

In the case of O-1 losses, - 57" A*(w(x) | bet(x p)(x)) =
L (x,5)- When finding the minimum empirical risk based on
training, we have R(]—') = L~ p+). In this way, (21) can be
transformed into (20), which completes the proof. [ ]

Remark 3: Proposition 2 states that the generalization error
bound is a function of training loss and sample size with a
certain probability. It will become small if one can obtain
sufficiently enough samples and/or a small training loss. In
fact, the error bound in (20) is derived in a general way from
the probabilistic point of view, and thus it could be adequate
for any classifiers rather than just the (distributed) REK-NN.

IV. EXPERIMENTAL RESULTS

In this section, some numerical experiments are reported to
validate the (distributed) REK-NN by comparing with some
other well-known methods based on some real-world datasets,
as described in Table I. These datasets were selected from
the UCI Machine Learning Repository [44], the Keng Ridge
Biomedical Data set Repository [45], and the KEEL dataset
repository [46].

All numerical attributes of samples in Table I were nor-
malized into the interval [0, 1]. The server used to implement
the distributed REK-NN had the following configurations and
software set-ups:

o Processor: Intel(R) Xeon(R) CPU E5-2630 v3 @2.4GHz;

e Cores: 12 cores (24 threads);

¢ RAM: 24 GB;

o Network: Gigabit Ethernet (1Gbps);

e Cache: 15MB;

o Operative System: Windows Server 2016;

o Apache Spark version: 2.4.3;

e Scala version: 2.11.8.

A. An illustrative example

In this section, we use the seeds dataset to intuitively
illustrate the results of REK-NN classifier, including feature
selection, sample selection, global treatment of imperfect
knowledge in labels and an insight of classification.

REK-NN was implemented on the seeds dataset with in-
creasing K from 3 to 40. For a given K, there are two stopping
criteria for the REK-NN. The search stops if all candidate
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TABLE I
DATASET DESCRIPTION
Data Samples | # Attributes | # classes

1 Seeds 210 7 3
2 | Wine 178 13 3
3 | Wdbc 569 30 2
4 | Wpbc 198 33 2
5 | Iono 351 34 2
6 Soybean 47 35 4
7 Sonar 208 60 2
8 | LSVT 126 309 2
9 | DLBCL 77 5469 2
10 | Leukemia 72 11225 3
11 | MLL 72 12582 3
12 | Prostate 136 12600 2
13 | Tumors 327 12558 7
14 | APS 60000 171 2
15 | Covtype 581012 54 7
16 | Kddcup 494020 41 2
17 | Poker 1025010 10 10

features have been selected or the inclusion of any new feature
into the current feature subset does not improve the SIG. In
either case, we set ¢ = 0, which will be assumed in what
follows unless when otherwise specified.

Fig. 4 shows that the contour surface of objective function
J (K, B) increases rapidly with the order of selected features
and achieves appropriate performance in most cases when
selecting two or three features. The global best performance
J(K,B) = 0.9619 is achieved with K = 8 and B = {2, 7}
(i.e., the 2nd and 7th features). Correspondingly, the contour
surface of classification accuracy using REK-NN is shown in
Fig. 5, from which we can see that the REK-NN gives some
samples a class membership with uncertainty rather than a
crisp one. According to the maximum pignistic probability
rule, all samples have been partitioned into two groups:
the misclassified and correctly classified samples. Some of
these correctly classified samples belong to decision positive
regions. These decision positive regions are shown by closed
bold lines.

Finally, we can see from Fig. 5 that there are eight mis-
classified samples, outlined by plus signs with numbers. To
have an insight of these misclassified samples, we plotted the
distribution of eight nearest neighbors for each misclassified
sample in Fig. 6. We can see that the samples 20, 62, 198 and
202 are misclassified, while the samples 9, 24, 125 and 136
can be viewed as noisy samples because their eight nearest
neighbors belong to another one class.

For the misclassified sample 202 in the bottom right subplot,
we can see that there are four neighbors in each of two classes.
In this case, the four nearest neighbors belonging to class
{ws} play a less important role because they are located far
away from sample 202. Note that this does not mean that

10.94

10.92

10.9

0.88

0.86

Neighborhood size K

1 2 3 4 5 6 7
Order of selected features

Fig. 4. Contour surface of the objective function J( i ) for the seeds dataset.
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The 7th feature
o
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The 2nd feature

Fig. 5. Contour surface of class membership of REK-NN for seeds dataset
where circles: class {w1}, squares: class {w2}, triangles: class {ws}, bold
line: boundary of decision positive regions, plus signs: misclassified samples.

this misclassified sample can be correctly classified using the
neighborhood decision rule, because it is “left out” when
evaluating itself. Hence, it is difficult for the neighborhood
decision rule to make a decision in this confusing case.

B. Performance evaluation

a) Performance of feature selection on the entire dataset:
This case study aims to show the selected features as well as
the generalization error bound with REK-NN on each entire
dataset. For each K € [3,40], the feature subset was selected
according to the search strategy such that the inclusion of
any new feature into the current subset does not improve the
SIG(a, B, K). Then, we obtained 38 values of the objective
function J for each dataset and the largest objective value
indicates the best performance. Note that, 7 is in fact the
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Fig. 6. Distributions of eight nearest neighbors of misclassified samples for seeds dataset. The meanings of all symbols are the same as in Fig. 5.

TABLE 11
OPTIMAL K, J, MINIMAL FEATURES SUBSETS AND GENERALIZATION
ERROR BOUND WITH é = 0.1 FOR THE REK-NN ON THE WHOLE

DATASETS.

Data K* | Selected features B* J* GEB
Wine 34 | 7,1,3,4,10, 13, 11 0.9944 | 0.0149
Wdbc 23 | 24,25,21,1,2,27,3,23 0.9789 | 0.0310
Wpbc 23 | 13,2, 14, 29, 10, 19 0.8384 | 0.2049
Tono 3 6,5, 16 0.9373 | 0.0841
Soybean 3 21, 22 1.00 0
Sonar 8 11, 18, 37, 27, 49, 51, 45, 3, 2 0.9183 | 0.1132
LSVT 18 | 126, 1, 86, 153, 112,91, 19 0.9206 | 0.1195
DLBCL 3 409, 2840, 773 1.00 0
Leukemia | 3 1939, 2903, 59, 3912 1.00 0
MLL 3 2592, 3712, 7081, 693 1.00 0
Prostate 3 8965, 8306, 11858, 8636, 10234 | 0.9853 | 0.0319

8642,11368,3264,9833,2721,5909
Tumors 6 3324,10402,4497,9920,295,7087, | 0.9541 | 0.0650

5737,1925,1235,8625,10958

approximate accuracy of REK-NN based on LOO learning.
The optimal K™, selected feature subsets and generalization
error bound for each dataset are shown in Table II. The values
of the objective function 7 for various number of (partial)
selected features are shown in Fig. 7 for the optimal K*.
From Table II and Fig. 7, we can see that the approximate
accuracy J increases rapidly in most cases when several
features have been included into the feature subset. Note
that the selected feature subsets are minimal and optimal
in most cases. In some cases, such as with the LSVT and
Sonar datasets, the selected feature subsets are minimal but
suboptimal because much higher approximate accuracies can

be obtained with the inclusion of much more new features into
the feature subset, as indicated by the curves of objective J
of these two datasets shown in Fig 7.

More interestingly, zero bounds of generalization error
have been achieved for the Soybean, DLBCL, Leukemia and
MLL. In other words, all samples can be correctly classified
by the REK-NN in this case. Nevertheless, it will be seen
that training losses will be inevitable when applying other
validation strategy such as ten-fold cross validation.

b) Comparing REK-NN to EK-NN with feature selection:
We compared REK-NN with EK-NN by considering feature
selection as a data preprocessing. Namely, we first selected
features for the EK-NN, and then we implemented EK-NN
in the selected feature space for each dataset. Here, the
neighborhood rough set (NRS) model [24] was used to select
feature subsets with the following three feature evaluation
methods:

1) Neighborhood dependency degree method (NDD) [24];
2) Neighborhood mutual information method (NMI) [47];
3) Fuzzy information entropy method (FINEN) [48].

Note that these NRS model-based feature selection methods
are considered mainly for the sake of fairness, because they are
based on similar principles as REK-NN. Comparisons between
NRS model-based feature selection methods and some other
popular feature selection methods can be found, for example,
in [24], [37].

To implement the above three NRS model-based feature
evaluation methods, the neighborhood size, i.e., the radius
from the prototype sample to its neighbors, should be predeter-
mined. As suggested in [24], we varied the neighborhood size
from 0.02 to 0.4 with step 0.02 in order to get different feature
subsets, and then we evaluated the selected features according
to the performances of EK-NN. To terminate NRS-NDD and
NRS-NMI, a termination threshold as € in Algorithm 1 was
preset to 0.001. To implement EK-NN, we selected av = 0.95
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Fig. 7. Objectives J(k 1) vs. the order of (partial) selected features for each dataset in the case of optimal K™ as shown in Table II. The shaded areas are
used to indicate the numbers of selected features as well as the searching step after which the REK-NN will be terminated.

and we initialized 3, to the inverse of the mean distances
among all training samples with decision class {w, }. The value
of K for the EK-NN method was the same as the value found
by REK-NN for each dataset.

The experimental comparison was conducted using ten-fold
cross-validation. For each dataset ,we randomly divided the
samples in the selected feature space (in Table II or III) into
ten subsets, and used nine of them as training set and the rest
one as the test set. After ten rounds, we computed the average
value as the final performance for each method. The ten-fold
cross-validation was repeated ten times for each dataset.

To gain insight into the selected features based on NRS with
NDD, NMI and FIENE, we listed the selected feature subsets
for all datasets in Table III for EK-NN. The selected feature
subsets in Table III, together with those in Table II, show that,

on the one hand, the selected feature subsets using NRS-NDD,
NRS-NMI and NRS-FINEN are different from those obtained
by the REK-NN; on the other hand, REK-NN selected fewer
features in the majority of cases. In particular, the significance
of each feature evaluated by REK-NN is also different from
NRS-NDD, NRS-NMI and NRS-FINEN, as indicated by the
order of selected features for each dataset. The main reason is
that the neighborhood pignistic decision error rate reflects well
the classification complexity and considers spatial information
among samples.

Table IV presents the performances of EK-NN in the feature
space selected by NRS with NDD, NMI and FINEN. We
can conclude from Table IV that the performances of EK-NN
can be enhanced through feature selection as a preprocessing
step. However, it was still outperformed by the REK-NN
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TABLE 11l
SELECTED FEATURES FOR EK-NN BASED ON NEIGHBORHOOD ROUGH SET MODEL WITH NDD, NMI AND FINEN METHODS
Data NRS-NDD NRS-NMI NRS-FINEN
Wine 13,10, 11, 1,7, 5, 2, 12, 3 7,10, 13, 11, 1 7.1,10,13, 5, 2, 12, 8,11, 3,9, 4, 6
Wabe 23,28, 12, 22, 25, 19, 21, 10, 9, 7, 30, | 28, 21, 22, 23, 8, 29, 11, 5, 16, 27, 12, | 23, 28, 22, 11, 21, 7, 25, 12, 9, 26, 19,
2,16, 18,29, 15, 1, 3, 4, 5 24,3, 13, 30, 19, 25, 2, 10, 26, 9, 184 | 2,27, 30, 8, 5, 16, 29, 10, 15
Wpbe 2, 13,33, 4 2,33,7,9 2,13, 29, 4
5.6, 8, 28, 33, 24, 25, 10, 20, 21, 3, 17
. LS 1318 34243 1
ono >3, 13,18, 34,24, 3, 16 568093 34, 12, 30, 23, 22, 19, 15, 31, 1, 32, 29
Soybean | 22, 4 2,4 2, 21
12, 27, 21, 37, 32, 30, 54, 15, 24, 39,
Sonar 1,17, 11, 37, 31, 23, 34, 26, 12,22, 2 | 11, 17, 37, 48, 27, 22, 24, 40, 1 2 34 11 57, 16, 10, 46. 6. 36 45, 33
86,153,87,4,84.42,80,94,53,93,68,100
LSVT 8 84
S 85, 82, 84, 53 80. 85, 84,42, 53, 113, 96. 108, 246, 19| | o 6 108
DLBCL | 3127, 5452, 10 3127, 3988, 3942, 59 3127, 5452, 1259, 534
Leukemia | 10038, 1285, 5555, 10712, 6998, 731, 2| 2833, 6720, 6322, 4583, 4223 11071,9682,788, 2295,6839,3839,9192
MLL 11297, 6565, 12026, 11, 11234, 318 3634, 11643, 5265, 12391, 3249 12418, 7347, 2776, 10274, 7106, 1228
6185, 6615, 9850, 1087,11529,6367,316,
6155, 12067, 8458, 1529, 6615, 6367, | [t s 032
5920, 1792, 6181, 9850, 2358, 1196, | 9850, 5314, 6390, 9626, 2580, 2358, L LTE9,0815,2629, 201, 7008,9092,
Prostate 6993, 9068,6390,363,6359,351,5648,749,
7121, 11640, 6390, 55 4855, 7121, 8073, 10968, 2862, 2896, | | >
4761, 10143, 3415, 2799 3651, 10096,8594,10745,7705,5314,1819
11776,6493,1466,7843,6275,327,45,4483
Tumors | 6320, 7648, 5811, 8904, 11169, 6149, | 5411, 63207648, 32643324, 7121, ;gg’ ?3?;%7?3?6163421?5; 1;;2(;799’82;1’
3264,12148,5718,12319,6639,6547,18 | 12319, 9668, 2450, 5234, 7252, 364 10540, 6311, 9220, 8745, 6306, 8251
TABLE IV
AVERAGE ACCURACIES WITH 95% CONFIDENCE INTERVALS BASED ON NRS MODEL WITH NDD, NMI AND FINEN
Data EK-NN NRS-NDD based EK-NN | NRS-NMI based EK-NN | NRS-FINEN based EK-NN REK-NN
Wine 0.9794 + 0.0078 0.9814 + 0.0045 0.9843 + 0.0073 0.9793 + 0.0106 0.9896 + 0.0064
Wdbc 0.9655 + 0.0041 0.9680 + 0.0026 0.9682 + 0.0056 0.9645 + 0.0048 0.9721 + 0.0043
Wpbe 0.7409 + 0.0180 0.7912 + 0.0106 0.7794 + 0.0193 0.7789 + 0.0129 0.8193 + 0.0083
Tono 0.8954 + 0.0079 0.9211 + 0.0058 0.9182 + 0.0045 0.9059 + 0.0102 0.9331 + 0.0079
Soybean | 0.9967 + 0.0128 1.0000 + 0.0000 1.0000 + 0.0000 1.0000 + 0.0000 1.0000 + 0.0000
Sonar 0.8024 + 0.0253 0.8207 + 0.0215 0.8396 + 0.0231 0.8247 + 0.0241 0.8988 + 0.0185
LSVT 0.8120 + 0.0209 0.8769 + 0.0159 0.9077 + 0.0139 0.8792 4 0.0174 0.9085 + 0.0166
DLBCL 0.8603 + 0.0308 0.9896 + 0.0092 0.9948 + 0.0112 0.9921 + 0.0150 0.9827 + 0.0316
Leukemia | 0.8654 + 0.0290 0.9621 + 0.0200 0.9727 + 0.0028 0.9666 + 0.0162 0.9950 + 0.0150
MLL 0.8454 + 0.0222 0.9716 + 0.0130 0.9641 + 0.0235 0.9691 + 0.0098 0.9914 + 0.0192
Prostate 0.7888 + 0.0258 0.8727 + 0.0157 0.9332 + 0.0141 0.8812 + 0.0212 0.9768 + 0.0141
Tumors 0.8249 + 0.0148 0.8193 4+ 0.0111 0.8645 + 0.0059 0.8295 + 0.0130 0.9360 & 0.0117

in the majority of cases. This indicates that a synchronized
rule can usually achieve better performances than a stepwise
one. Furthermore, it is easy to obtain the error bounds cor-
responding to the 95% confidence intervals of the average
accuracies, and they are within the generalization error bounds
given in Table II in the majority of cases except for three
datasets: DLBCL, Leukemia and MLL. This indicates that
over-fitting may occur and/or when performing the ten-fold
cross validation the training samples in the nine folds may
not contain sufficient numbers of samples to distinguish some
samples in the remaining fold.

Finally, we computed the ratio of evaluation times con-
sumed respectively by the EK-NN and REK-NN, i.e.,
timegk —NN/timerEk —NN, for each dataset in each experi-
ment. We collected a set of ten ratios of evaluation times for
each dataset. We show the mean and the associated standard
deviation of the ten ratios of evaluation times for each dataset
in an ascending way according to a proportion of the size of
that dataset (i.e., log(np)) in Fig. 8. We can see that, on the
one hand, the evaluation times consumed by REK-NN on each
dataset is smaller than that consumed by the EK-NN; on the
other hand, the larger the size of a dataset, the bigger is the
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Fig. 8. Ratio of evaluation times consumed by EK-NN and REK-NN.

ratio of evaluation times.

c) Comparing distributed REK-NN with other Spark-
based K-NN classifiers: In this experiment, we compared
the distributed REK-NN with following two Spark-based K-
NN classifiers: Spark-based K-NN and Spark-based EK-NN.
The latter was derived directly from the distributed REK-
NN by implementing the distributed REK-NN in the whole
feature space without feature selection, whereas the former
was obtained from the Spark-based EK-NN by replacing the
the EK-NN rule by the voting K-NN rule.

The last four datasets with large sample size in Table I were
considered in this experiment. To maximize the parallelism
and reduce communication overhead simultaneously, three
kind of maps were considered, i.e., M € {12,18,24}, and
the interval [K, K] was set to [8,12]. The parameter K in
the Spark-based K-NN and Spark-based EK-NN was set to
the optimal K* found by the distributed REK-NN. When
performing evaluation, we used LOO cross-validation instead
of ten-fold cross validation because of the large sample size.

Table V shows the optimal K*, J*, the selected feature
subsets and the generalization error bounds of the distributed
REK-NN for different numbers of maps. Table VI reports the
classification accuracies among the Spark-based K-NN, Spark-
based EK-NN and the distributed REK-NN classifiers.

We can conclude from Tables V and VI that the distributed
REK-NN achieves better performance with less features in the
majority of cases, and better performances are obtained with
larger number of maps. This means that irrelevant features
can be removed from large high-dimensional data to improve
classification performances. In particular, we can achieve a
comparable performance for the Poker dataset by selecting
only one feature with 12 and 24 splits. Furthermore, we
find that the selected feature subsets are usually different
when taking different number of maps. This suggests that the
partition of sample space sometimes destroys the data structure
when applying approximate nearest neighbor strategy, and thus
poor results may be obtained on some datasets. To avoid the

TABLE V
OPTIMAL K, J, MINIMAL FEATURES SUBSETS AND GENERALIZATION
ERROR BOUND WITH § = 0.1 FOR THE DISTRIBUTED REK-NN

Data M | K* | Selected features B* J* GEB
12 8 113, 123, 100, 8, 42 0.9813 | 0.0196
APS 18 12 | 113, 36, 33, 35, 90, 34 0.9804 | 0.0205
24 9 7, 113, 33, 35, 90 0.9827 | 0.0182
12 8 21, 49, 14, 50 0.8890 | 0.1117
Covtype | 18 8 21, 49, 14, 50 0.8890 | 0.1117
24 8 21, 47, 14, 50 0.8889 | 0.1118
12 | 10 | 21,31,8,2,30,34,6,10 | 0.9976 | 0.0025

Kddcup 21, 31, 8, 2, 30, 34, 33,
18 9 0.9977 | 0.0024

6, 10, 36
24 | 12 | 21,31,8,2,30,34,6,10 | 0.9976 | 0.0025
12 8 8 0.4464 | 0.5544
Poker 18 10 | 8 0.4448 | 0.5560
24 | 10 | 8,2,4,6 0.5098 | 0.4910
TABLE VI

AVERAGE ACCURACIES OF SPARK-BASED K-NN, SPARK-BASED EK-NN
AND THE DISTRIBUTED REK-NN

Data M Spark-based | Spark-based | The distributed

K-NN EK-NN REK-NN

12 0.9615 0.9708 0.9807

APS 18 0.9603 0.9723 0.9814
24 0.9612 0.9722 0.9817

12 0.8765 0.8865 0.8903

Covtype | 18 0.8743 0.9043 0.8896
24 0.8657 0.8857 0.8885

12 0.9958 0.9962 _0.9979

Kddcup | 18 0.9957 0.9965 0.9981
24 0.9961 0.9966 0.9973

12 0.4463 0.4478 0.4467

Poker 18 0.4466 0.4475 0.4449
24 0.4467 0.4472 0.5099

influence of partitions on classification, the distributed REK-
NN can be an exact nearest neighbor method by sacrificing
runtime, as suggested and done in [33].

Finally, we can remark that we did not get the 95%
confidence intervals of classification accuracies due to appli-
cation of the LOO cross-validation, but we believe they could
be bounded by the generalization error bounds presented in
Table V with a certain probability in the majority of cases.
Furthermore, we did not compare the runtime between the
distributed REK-NN and Spark-based EK-NN, as done in Fig.
8, because they are approximately equal when the sample
volume is large enough.

V. CONCLUSIONS

In this paper, we introduced a new rough evidential K-
nearest neighbor classifier for large sample size and/or high-
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dimensional data, which performs feature selection and clas-
sification simultaneously.

Besides making it possible to represent imperfect knowl-
edge on class membership in the form of mass function,
the rough EK-NN can reduce redundant input features and
thus the classification complexity of decision boundary. In
contrast to the evidential K-NN classifier with feature selection
as a preprocessing step, the new rough EK-NN has better
performance for some real-world datasets, in particular with
high dimensionality.

In order to further handle data with large sample size, we
implemented the rough EK-NN in the Spark framework and
derived a distributed rough EK-NN, which inherits all the
merits of the rough EK-NN but is an approximate nearest
neighbor method. Based on the distributed rough EK-NN, we
have also derived the Spark-based EK-NN and Spark-based
K-NN rules in an intuitive way. Compared to the Spark-based
EK-NN and Spark-based K-NN rules, the distributed rough
EK-NN has better performances with fewer features for some
large datasets.

Several avenues for further research are currently consid-
ered, such as extending the classifier to deal with data with
uncertain decision labels, and improving feature selection
using more sophisticated search strategies.
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