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Abstract

The main goal of this paper is to describe an axiomatic utility theory for Dempster-Shafer
belief function lotteries. The axiomatic framework used is analogous to von Neumann-
Morgenstern’s utility theory for probabilistic lotteries as described by Luce and Raiffa. Un-
like the probabilistic case, our axiomatic framework leads to interval-valued utilities, and
therefore, to a partial (incomplete) preference order on the set of all belief function lotter-
ies. If the belief function reference lotteries we use are Bayesian belief functions, then our
representation theorem coincides with Jaffray’s representation theorem for his linear utility
theory for belief functions. We illustrate our representation theorem using some examples
discussed in the literature, and we propose a simple model for assessing utilities based on
an interval-valued pessimism index representing a decision-maker’s attitude to ambiguity
and indeterminacy. Finally, we compare our decision theory with those proposed by Jaffray,
Smets, Dubois et al., Giang and Shenoy, and Shafer.

Keywords: Dempster-Shafer theory of evidence, von Neumann-Morgenstern’s utility
theory, interval-valued utility function, Jaffray’s linear utility theory, Smets’ two-level
decision theory, Shafer’s constructive decision theory.

1. Introduction

The main goal of this paper is to propose an axiomatic utility theory for lotteries described
by belief functions in the Dempster-Shafer (D-S) theory of evidence [, [39]. The axiomatic
theory is constructed similar to von Neumann-Morgenstern’s (vN-M’s) utility theory for
probabilistic lotteries [51], 29 28| 37, 34, 17]. Unlike the probabilistic case, our axiomatic
theory leads to interval-valued utilities, and therefore to a partial (incomplete) preference
order on the set of all belief function lotteries. Also, we compare our decision theory to
those proposed by Jaffray [30], Smets [48], Dubois et al. [I1], Giang and Shenoy [21], 22],
and Shafer [44].
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In the foreword to Glenn Shafer’s 1976 monograph [39], Dempster writes: “... I believe
that Bayesian inference will always be a basic tool for practical everyday statistics, if only
because questions must be answered and decisions must be taken, so that a statistician must
always stand ready to upgrade his vaguer forms of belief into precisely additive probabilities.”
More than 40 years after these lines were written, a lot of approaches to decision-making
have been proposed (see the recent review in [7]). However, most of these methods lack
a strong theoretical basis. The most important steps toward a decision theory in the D-S
framework have been made by Jaffray [30], Smets [48] and Shafer [44]. However, we argue
that these proposals are either not sufficiently justified from the point of view of D-S theory,
or not sufficiently developed for practical use. Our goal is to propose and justify a utility
theory that is in line with vN-M’s utility theory, but adapted to be used with lotteries whose
uncertainty is described by D-S belief functions.

In essence, the D-S theory consists of representations— basic probability assignments
(also called mass functions), belief functions, plausibility functions, etc.—together with
Dempster’s combination rule, and a rule for marginalizing joint belief functions. The rep-
resentation part of the D-S theory is also used in various other theories of belief functions.
For example, in the imprecise probability community, a belief function is viewed as the lower
envelope of a convex set of probability mass functions called a credal set. Credal set se-
mantics are also referred to in the literature as lower probability interpretation [31], 32 B33,
and as generalized probability [16, 27]. Using these semantics, it makes more sense to use
the Fagin-Halpern combination rule [16] (also proposed by de Campos et al. [4]), rather
than Dempster’s combination rule [27, 42 43]. The utility theory this article proposes is
designed specifically for the D-S belief function theory, and not for the other theories of
belief functions. This suggests that Dempster’s combination rule should be an integral part
of our theory, a property that is not satisfied in the proposals by Jaffray and Smets.

There is a large literature on decision making with a (credal) set of probability mass
functions [23] motivated by Ellsberg’s paradox [I5]. An influential work in this area is the
axiomatic framework by Gilboa-Schmeidler [24], where they use Choquet integration [3, 25]
to compute expected utility. A belief function is a special case of a Choquet capacity.
Jaffray’s [30] work can also be regarded as belonging to the same line of research, although
Jaffray works directly with belief functions without specifying a combination rule. A review
of this literature can be found in, e.g., [I8], where the authors propose a modification of
the Gilboa-Schmeidler [24] axioms. As we said earlier, our focus here is on decision-making
with D-S theory of belief functions, and not on decision-making based in belief functions
with a credal set interpretation. As we will see, our interval-valued utility functions lead to
intervals that are contained in the Choquet lower and upper expected utility intervals.

The remainder of this article is as follows. In Section [2] we sketch vN-M’s axiomatic
utility theory for probabilistic lotteries as described by Luce and Raiffa [37]. In Section
B, we summarize the basic definitions in the D-S belief function theory. In Section ] we
describe our adaptation of vIN-M’s utility theory for lotteries in which uncertainty is described
by D-S belief functions. Our assumptions lead to an interval-valued utility function, and
consequently, to a partial (incomplete) preference order on the set of all belief function
lotteries. We also describe a model for assessments of utilities. In Section [5 we compare our
utility theory with those described by Jaffray [30], Smets [48], Dubois et al. [I1], Giang and
Shenoy [21, 22], and Shafer [44]. Finally, in Section [6] we summarize and conclude.
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2. von Neumann-Morgenstern’s Utility Theory

In this section, we describe vN-M’s utility theory for decision under risk. Most of the
material in this section is adapted from [37]. A decision problem can be seen as a situation
in which a decision-maker (DM) has to choose a course of action (or act) in some set F. An
act may have different outcomes, depending on the state of nature X. Exactly one state of
nature will obtain, but this state is unknown. Denoting by Qx = {x1,...,z,} the set of
states of nature and by O = {Oy, ..., O, } the set of outcomesﬂ an act can thus be formalized
as a mapping f from € to O. In this section, we assume that uncertainty about the state
of nature is described by a probability mass function (PMF) px on Qx. In vN-M’s original
exposition [51], probabilities on Qy are assumed to be objective and to correspond to long-
run frequencies. However, the line of reasoning summarized below is also valid with other
interpretations of probabilities, such as additive degrees of belief, provided that probabilities
are assumed to have been determined beforehand, independently of the decision problem. For
instance, in the constructive approach proposed by Shafer [44], probabilities are constructed
by comparing a given problem with a scale of examples in which the truth is generated
according to known chances?|

If the DM selects act f, they will get outcome O; with probability

pi = Z px (). (1)

{zeQx|f(z)=0:}

To each act f thus corresponds a PMF p = (pi,...,p,) on O. We call L = [O,p] a
probabilistic lottery. As only one state in 2x will obtain, a probabilistic lottery will result
in exactly one outcome O; (with probability p;), and we suppose that the lottery will not
be repeated. Another natural assumption is that two acts that induce the same lottery are
equivalent: the problem of expressing preference between acts then boils down to expressing
preference between lotteries.

We are thus concerned with a DM who has preferences on L, the set of all probabilistic
lotteries on O, and our task is to find a real-valued wtility function u: £ — R such that the
DM strictly prefers L to L' if and only if w(L) > u(L’), and the DM is indifferent between
L and L’ if and only if u(L) = u(L'"). We write O; > O, if the DM strictly prefers O; to O;,
write O; ~ O; if the DM is indifferent between (or equally prefers) O; and O;, and write
O, zZ O, if the DM either strictly prefers O; to O, or is indifferent between the two.

Of course, finding such a utility function is not always possible, unless the DM’s prefer-
ences satisfy some assumptions. We can then construct a utility function that is linear in
the sense that the utility of a lottery L = [O, p] is equal to its expected utility ", p; u(0;),
where O; is regarded as a degenerate lottery where the only possible outcome is O; with
probability 1. In the remainder of this section, we describe a set of assumptions that lead to
the existence of such a linear utility function.

!The assumption of finiteness of the sets Qx and O is only for ease of exposition. It is unnecessary for
the proof of the representation theorem in this section.

2Savage [38] derives both probabilities and utilities from a set of axioms. This approach will not be
considered in this paper.
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Figure 1: A two-stage compound lottery reduced to an indifferent simple lottery

Assumption 2.1 (Weak ordering of outcomes). For any two outcomes O; and Oj, either
O, Z O or O; z O;. Also, if O; 77 O; and O; 7 Oy, then O; 5 Oy. Thus, the preference

relation 2= over O is a weak order, i.e., it is complete and transitive.

Given Assumption [2.1, without loss of generality, let us assume that the outcomes are
labelled such that O; 22 Oy 77 - -+ 77 O,, and to avoid trivialities, assume that O; > O,.

Suppose that L = {LM) ... L™} is a set of s lotteries, where each of the s lotteries
L7 = [0,pY] are over outcomes in O, with PMFs p¥ for j = 1,...,s. Suppose q =
(¢1,---,4s) is a PMF on L such that ¢; > 0 for j =1,...,s, and >°7_, ¢; = 1. Then [L, q]
is called a compound lottery whose outcome is exactly one lottery L® (with probability
), and lottery L® will result in one outcome O; (with probability pg-i)). Notice that the
PMF p® is a conditional PMF for O in the second stage given that lottery L® is realized
(with probability ¢; > 0) in the first stage (see Figure [I). We can compute the joint PMF
for (L, O), and then compute the marginal p of the joint for O. The following assumption
states that the resulting lottery [O, p] is indifferent to the compound lottery [L, q].

Assumption 2.2 (Reduction of compound lotteries). Any compound lottery [L, q, where
L® =10, p"], is indifferent to a simple (non-compound) lottery [O, p], where

Di = pgl) T pz(‘s) (2)

fori=1,...,r. PMF (p1,...,p,) is the marginal for O of the joint PMF of (L, O).

A simple lottery involving only outcomes O; and O, with PMF (u, 1—u), where 0 < u < 1,
is called a reference lottery, and is denoted by [{O1,O,}, (u,1 — u)]. Let Oy denote the set
{017 OT}

Assumption 2.3 (Continuity). Fach outcome O; is indifferent to a reference lottery
O; =[Oy, (u;, 1 — w;)] for some u;, where 0 < u; <1, i.e., O; ~ O;.

Assumption 2.4 (Weak order). The preference relation - for lotteries in L is a weak order,
i.€., it is complete and transitive.



Figure 2: The substitutability assumption [2.5

Assumption [2.4] generalizes Assumption for outcomes, which can be regarded as de-
generate lotteries.

Assumption 2.5 (Substitutability). In any lottery L =[O, p|, if we substitute an outcome
O; by the reference lottery O; = [Os, (u;, 1 — w;)] that is indifferent to O;, then the result is
a compound lottery that is indifferent to L (see Figure @, i.e,

[(017 s 7Oi—170i7 Oi-i—la s 707")7p] ~ [(017 SRR Oi—la 6i70i+17 R Or)ap]

From Assumptions given any lottery L = [O, p], it is possible to find a reference
lottery L = [Os, (u,1 — u)] that is indifferent to L (see Figure . This is expressed by
Theorem 2.1] below.

Theorem 2.1 (Reducing a lottery to an indifferent reference lottery). Under Assumptions
any lottery L =[O, p] is indifferent to a reference lottery L = [Oa, (u, 1 — u)| with

U= Zpi U;. (3)
i=1

Proof. ([37]) First, we replace each O; by O, fori =1,...,r. Assumption (continuity)
states that these indifferent lotteries exist, and Assumption (substitutability) says that
they are substitutable without changing the preference relation. So by using Assumption [2.4
serially, [O, p] ~ [O, p]. Now if we apply Assumption (reduction of compound lotteries),
then [O, p] ~ [Og, (u, 1 — )], where u is given by Eq. (3. O

Assumption 2.6 (Monotonicity). A reference lottery L = [Os, (u,1 — u)| is preferred or
indifferent to reference lottery L' = [Oq, (u',1 — )] if and only if u > u'.

As Oy ~ Oy = [0, (u1,1 — ;)] and O, ~ O, = [O, (u,, 1 — u,)], Assumptions and
imply that u; = 1 and u, = 0. Also, from O; =~ Oy = --- 7 O,, we can deduce that
l=u Z2up >--->u,=0.

Assumptions [2.1H2.6] allow us to define the utility of a lottery as the probability of the
best outcome O in an indifferent reference lottery, and this utility function for lotteries on
O is linear. This is stated by the following theorem.

5



U =Py + ...+ P,

Figure 3: Reducing a lottery to an indifferent compound lottery and then to an indifferent reference lottery

Theorem 2.2 ([37]). If the preference relation 7 on L satisfies Assumptions[2.1{2.6, then
there are numbers u; associated with outcomes O; for v = 1,...,r, such that for any two
lotteries L =[O, p], and L' =[O, p'], L 2z L' if and only if

T T
sz’ u; > ZPZ U;. (4)
i1 i=1

Thus, we can define the utility of lottery L =[O, p| as u(L) =Y ;_, p; u;, where u; = u(0;).
Also, such a linear utility function is unique up to a strictly increasing affine transformation,
i.e., if u; = au;+b, where a > 0 and b are real constants, thenu(L) = >_._, p; u; also qualifies
as a utility function.

3. Basic Definitions in the D-S Belief Function Theory

In this section, we review the basic definitions in the D-S theory of belief functions. Like
various uncertainty theories, D-S belief function theory includes functional representations
of uncertain knowledge, and basic operations for making inferences from such knowledge.
These will be recalled, respectively, in Section [3.1] and 3.2 Conditional belief functions and
the notion of conditional embedding are then introduced in Section 3.3 and the semantics
of belief functions in D-S theory is discussed in Section [3.4, Most of the material in this
section (except Section is taken from [36]. For further details, the reader is referred to
[39] and to [§] for a recent review.

3.1. Representations of belief functions

Belief functions can be represented in several different ways, including as basic probability
assignments, plausibility functions and belief functionsﬂ These are briefly discussed below.

3 Belief functions can also be mathematically represented by a convex set of PMFs called a credal set, but
the semantics of such a representation are incompatible with Dempster’s combination rule [40] 42] [43] 27].
For these reasons, we skip a credal set representation of a belief function.
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Definition 1 (Basic Probability Assignment). Suppose X is an unknown quantity (variable)
with possible values (states) in a finite set Qx called the state space of X. We assume that
X takes one and only one value in Qx, but this value is unknown. Let 2°X denote the
set of all subsets of Qx. A basic probability assignment (BPA) mx for X is a function
mx : 2% — [0,1] such that

> mx(a) =1, and mx(P)=0. (5)

agﬂx

The subsets a C Qx such that mx(a) > 0 are called focal sets of mx. An example of a
BPA for X is the vacuous BPA for X, denoted by tx, such that 1x(Q2x) = 1. We say that
mx is deterministic if mx has a single focal set (with mass 1). Thus, the vacuous BPA for
X is deterministic with focal set Qx. If all focal sets of mx are singleton subsets (of Qx),
then we say that mx is Bayesian. In this case, mx is equivalent to the PMF Px for X such
that Py(x) = mx({z}) for each z € Qy.

Definition 2 (Plausibility Function). The information in a BPA myx can be represented by
a corresponding plausibility function Pl,,, defined as follows:

Pln, (@)= Y mx(b) foralaCQx. (6)
{bCQx [bna£0}

For an example, suppose 2x = {z,z}. Then, the plausibility function PI,,, corresponding
to BPA tx is given by Pl (0) =0, Pl ({z}) =1, Pl,,({Z}) =1, and Pl (Qx) = 1.

Definition 3 (Belief Function). The information in a BPA mx can also be represented by
a corresponding belief function Bel,,, that is defined as follows:

Bel,,(a) = Z mx(b) for allaC Qy. (7)

{bCx|bCa)

For the example above with Qx = {z,z}, the belief function Bel,, corresponding to
BPA (x is given by Bel,, (0) = 0, Bel,, ({z}) = 0, Bel,,,({z}) = 0, and Bel,, (Qx) = 1.
For any proposition a € 2X_ it is easy to see that Bel,,,(a) < Pl,,,(a). Thus, if a DM’s
belief in proposition a is an interval, say [p,p + ¢], where p,q > 0 and p 4+ ¢ < 1, then such
beliefs can be represented by a BPA mx such that mx(a) = p, mx(2x\a) =1—p—gq, and
mx(€2x) = ¢q. For such a BPA, Bel,,,(a) =p <p+q= Pl,(a).

All three representations—BPA, belief and plausibility functions—have exactly the same
information, as any one of them allows us to recover the other two [39].

Next, we describe the two main operations for making inferences.

3.2. Basic operations in the D-S theory

There are two main operations in the D-S theory—Dempster’s combination rule and
marginalization.



Dempster’s Combination Rule. In the D-S theory, we can combine two BPAs m; and msy
representing distinct pieces of evidence by Dempster’s rule [5] and obtain the BPA m; &
mso, which represents the combined evidence. Dempster refers to this rule as the product-
intersection rule, as the product of the BPA values are assigned to the intersection of the
focal sets, followed by normalization. Normalization consists of discarding the mass assigned
to @, and normalizing the remaining values so that they add to 1. In general, Dempster’s
rule of combination can be used to combine two BPAs for arbitrary sets of variables.

Let X denote a finite set of variables. The state space of X is X cx Qx. Thus, if
X = {X,Y} then the state space of {X,Y} is Qx x Qy. Projection of states simply means
dropping extra coordinates; for example, if (x,y) is a state of {X,Y}, then the projection
of (z,y) to X, denoted by (z,y)*¥, is simply x, which is a state of X. Projection of subsets
of states is achieved by projecting every state in the subset. Suppose b € 2%4x¥}. Then
b = {z € Qx : (z,) € b}. Notice that b** € 29x.

Vacuous extension of a subset of states of X} to a subset of states of X5, where Xy O A7,
is a cylinder set extension, i.e., if a € 2%, then a2 = a x Qu,\ x,. Thus, if a € 2°%, then
alt&Y} — 3 x Qy.

Definition 4 (Dempster’s rule using BPAs). Suppose m; and mo are BPAs for X| and X,
respectively. Then my & my is a BPA for X1 UXs = X, say, given by (m1 & mso)(0) =0 and

(m1 @ my)(a) = K > ma (by™) ma(b5™), (8)

{b1,02CQx |b1Nb2=a}

for all a C Qy, where K is a normalization constant given by

K=1- > my(by™) ma(b5™). (9)

{b1,b2CQx|biNb=0}

The definition of Dempster’s rule assumes that the normalization constant K is non-
zero. If K = 0, then the two BPAs m; and my are said to be in total conflict and cannot be
combined. If K =1, we say m; and msy are non-conflicting.

Marginalization. Marginalization in D-S theory is addition of values of BPAs.

Definition 5 (Marginalization). Suppose m is a BPA for X. Then, the marginal of m for
Xy, where X; C X, denoted by m*™, is a BPA for X, such that for each a C Qu,,

mia) = > m(b). (10)

{bCQx|b**1=a}

3.3. Conditional belief functions

In probability theory, it is common to construct joint PMFs for a set of discrete variables

by using conditional probability distributions. For example, we can construct joint PMF for
(X,Y) by first assessing PMF Px of X, and conditional PMFs Py, for each € Qx such
that Px(z) > 0. The pointwise multiplication of Py, for all € Qy is called a CPT, and
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denoted by Py|x. Then, Pxy = Px ® Py|x. We can construct joint BPA for {X,Y} in a
similar manner.

Suppose that there is a BPA for Y expressing our belief about Y if we know that X = z,
and denote it by myy,. Notice that my, : 2*¥ — [0,1] is such that Y, .0, my(s(b) = 1.
We can embed this conditional BPA for Y into a BPA for { X, Y}, which is denoted by m, vy,
such that the following three conditions hold. First, m,y tells us nothing about X, i.e.,
mi)g,(QX) = 1. Second, m,y tells us nothing about Y, i.e., mi’;(Qy) = 1. Third, if we
combine m, y with the deterministic BPA mx_, for X such mx_,({z}) = 1 using Dempster’s
rule, and marginalize the result to Y we obtain myy,, i.e., (ma,y ® My = my|,. The
least committed way to obtain such an embedding, called conditional embedding, was derived
by Smets [46, 47] (see also [41]). It consists of taking each focal set b € 2% of my,
and converting it to a corresponding focal set of m,y (with the same mass) as follows:
({z} x b) U ({z} x Qy), where {z} denotes the complement of {z} in Qx. It is easy to
confirm that this method of embedding satisfies the three conditions mentioned above, and
my is the least committed (minimally informative) BPA verifying this property.

Example 1 (Conditional embedding). Consider discrete variables X and Y, with Qx =
{z,z} and Qy = {y,y}. Suppose that mx is a BPA for X such that mx(x) > 0. If we have
a conditional BPA my |, forY given X = x as follows:

myz(y) = 0.8, and
mY|az(QY) =02, (11)

then its conditional embedding into BPA m,y for {X,Y} is

may ({(z,y), (Z,9),(%,7)}) = 0.8, and
may (Qxyy) = 0.2. (12)

There are some differences with conditional probability distributions. First, in probability
theory, Py|x consists of all conditional distributions Py, that are well-defined, i.e., for all z €
Qx such that Px(z) > 0. In D-S belief function theory, we do not have similar constraints.
We can include only those non-vacuous conditionals my, such that mx({z}) > 0. Also, if
we have more than one conditional BPA for Y, given, say for X = z;, and X = z, (assuming
mx({z1}) > 0, and mx({x2}) > 0), we embed these two conditionals for Y to get BPAs
My, y and my, y for {X, Y}, and then combine them using Dempster’s rule of combination to
obtain one conditional BPA my x = mg, y @My, y, which corresponds to Py |x in probability
theory.

Second, given any joint PMF Py y for {X, Y}, we can always factor this into P)i(); = Py
for X, and Py|x for {X,Y}, such that Pxy = Px ® Py|x. This is not true in D-S belief
function theory. Given a joint BPA myy for {X,Y}, we cannot always find a BPA my/x
for {X,Y} such that mxy = mﬁfy @ my|x. However, we can always construct joint BPA
my,y for {X, Y} by first assessing mx for X, and assessing conditionals my,, for Y for those
x; that we have knowledge about and such that my({z;}) > 0, embed these conditionals
into BPAs for {X, Y}, and combine all such BPAs to obtain the BPA my x for {X,Y}. An
implicit assumption here is that BBAs m,, y are distinct, and it is acceptable to combine
them using Dempster’s rule. We can then construct mxy = mx ® my|x.

9



3.4. Semantics of D-S belief function

In D-S theory, belief functions are representations of an agent’s state of knowledge based
on some evidence. As explained by Shafer [40], such representations can be constructed by
comparing the available evidence with a hypothetical situation in which we receive a coded
message, the meaning of which is random. More precisely, assume that a source sends us
an encrypted message using a code selected at random from a set of codes C' = {¢y,...,¢,}
with known probabilities py, ..., p,. If we decode the message with code ¢;, we get a decoded
message of the form “X € I'(¢;)”, where I' is a multi-valued mapping from C' to 2X. For
any nonempty subset a of 2y, the probability that the meaning of the original message is
“Xea’is

m(a) = Z piI(D(c;) = a),

where I(-) is the indicator function. The random message metaphor thus provides a way
to construct BPAs m. The fundamental assumption of D-S theory is that such metaphors
provide a scale of canonical examples to which any piece of evidence (or, at least, most pieces
of evidence encountered in practice) can be meaningfully compared.

The random set metaphor accounts for the use of Dempster’s rule, which can be easily
derived from the assumption that the two BPAs m; and ms are induced by stochastically
independent randomly coded messages. Two bodies of evidence are considered as indepen-
dent if “(they) are sufficiently unrelated that pooling them is like pooling stochastically
independent randomly coded messages” [40], Section 5.1].

In D-S theory, any belief function can thus be thought of as being induced by a multi-
valued mapping from a probability space to the power set of the frame of discernment.
Such multi-valued mappings were already explicitly constructed from a statistical model in
Dempster’s original application of belief functions to statistical inference [5]. A statistical
model is no more “real” than a random code canonical examples: both are idealizations that
allow us to formalize our knowledge and make inferences based on reasonable assumptions.

4. A Utility Theory for D-S Belief Function Theory

In this section, we describe a new utility theory for lotteries where the uncertainty is
described by D-S belief functions. These lotteries, called belief function lotteried, will be
introduced in Section [{.I] We present and discuss assumptions in Section and state a
representation theorem in Section[4.3] In Section[4.4] we show that an additional assumption
leads to a simpler model and we state the corresponding representation theorem. Finally, in
Section [4.5] we describe an even simpler practical model allowing us to assess the utility of
a belief function lottery based on a limited number of parameters.

4.1. Belief function lotteries

We generalize the decision framework outlined in Section [2| by assuming that uncertainty
about the state of nature X is described by a BPA myx for X. The probabilistic framework
is recovered as a special case when my is Bayesian. The BPA my is assumed to be given,

4This notion was previously introduced in [7] under the name “evidential lottery.”

10



and is assumed to be a meaningful representation of the DM’s state of knowledge about X
at a given time, with the semantics described in Section As before, we define an act as
a mapping f from Qx to the set O of outcomes. Mapping f pushes myx forward from Qx
to O, transferring each mass my(a) for a € 2% to the image of subset a by f, denoted as
fla] = {f(z) : x € a}. The resulting BPA m for O is then defined as

mbo)= )  mx(a) (13)

{a€2%x | f[a]=b}

for allb C O [§]. Eq. clearly generalizes Eq. (1)). The pair [O, m] will be called a belief
function (bf) lottery. It is a representation of the DM’s subjective beliefs about the outcome
that will obtain as a result of selecting act f. As noted in [7], a bf lottery can also arise
from a BPA myx on Qx and a nondeterministic act f, defined as mapping from Qx to 2°.
This formalism may be useful to account for under-specified decision problems in which, for
instance, the set of acts or the state space {1y are too coarsely defined to allow for a precise
description of the consequences of an act [19].

As before, we assume that two acts can be compared from what we believe their outcomes
will be, irrespective of the evidence on which we base our beliefs. This assumption is a form
of what Wakker [52] calls the principle of complete ignorance (PCI). It implies that two
acts resulting in the same bf lottery are equivalent. The problem of expressing preferences
between acts becomes that of expressing preferences between bf lotteries.

Remark 1. As a consequence of the PCI, preferences between acts do not depend on the
cardinality of the state space Q2x in case of complete ignorance. For instance, assume that
we define Qx = {x1, 22}, and we are completely ignorant of the state of nature, so that our
belief state is described by the vacuous BPA mx(Qx) = 1. Consider two acts fi and fy that
yield $100 if, respectively, w1 or xs occurs, and $0 otherwise. These two acts induce the
same vacuous bf lottery m(0) = 1 with O = {$100,30}: consequently, they are equivalent
according to the PCI. Now, assume that we decide to express the states of nature with finer
granularity and we refine state x1 into two states x11 and x15. Let Qxr = {11, 212, 22} denote
the refined frame. We still have mx/(2x/) = 1 and m(O) = 1, so that our preferences
between acts f1 and fy are unchanged. We note that a Bayesian DM applying Laplace’s
principle of indifference (PI) would reach a different conclusion: before the refinement, the PI
implies px (1) = px(x2) = 1/2, which results in the same probabilistic lottery p = (1/2,1/2)
on O = {$100,30} for the two acts, but after the refinement the same principle gives us
px(x11) = px(T12) = px(xa) = 1/3; this results in two different lotteries p; = (2/3,1/3) for
act fi and py, = (1/3,2/3) for act fo, which makes f, strictly preferable to fo. Considering
that the granularity of the state space is often partly arbitrary (as discussed by Shafer in [39)),
we regard this property of invariance to refinement under complete ignorance as a valuable
feature of a decision theory based on D-S belief functions.

We are thus concerned with a DM who has preferences on Ly, the set of all bf lotteries.
Our task is to find a utility function u : £,y — [R], where [R] denotes the set of closed real
intervals, such that the u(L) = [u,1 — v] is viewed as an interval-valued utility of L. The
interval-valued utility can be interpreted as follows: u and v are, respectively, the degrees of
belief of receiving the best and the worst outcome in a bf reference lottery equivalent to L
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(and 1 — v is, consequently, the degree of plausibility of receiving the best outcome). Given
two lotteries L and L', L is preferred to L’ if and only if v > ' and v < ¢’. This leads to
incomplete preferences on the set of all bf lotteries. If we assume v = 1 —w for all bf lotteries,
then we have a real-valued utility function on Ly, and consequently, complete preferences.

Example 2 (Ellsberg’s Urn). Ellsberg [15] describes a decision problem that questions the
adequacy of the vN-M axiomatic framework. Suppose we have an wrn with 90 balls, of which
30 are red, and the remaining 60 are either black or yellow. We draw a ball at random
from the urn. Let X denote the color of the ball drawn, with Qx = {r,b,y}. Notice that
the uncertainty of X can be described by a BPA myx for X such that mx({r}) = 1/3, and
mx({b,y}) = 2/3.

First, we are offered a choice between Lottery Ly: $100 on red, and Lottery Lo: $100
on black, i.e., in Ly, you get $100 if the ball drawn is red, and $0 if the ball drawn is black
or yellow, and in Lo, you get $100 if the ball drawn is black and $0 if the ball drawn is
red or yellow. Choice of Ly can be denoted by alternative f1 : Qx — {$100,%0} such that
fi(r) = $100, f1(b) = fi(y) = $0. Similarly, choice of Ly can be denoted by alternative
fa : Qx — {$100,30} such that fo(b) = $100, fo(r) = fo(y) = $0. Ly can be represented
by the BPA my for O = {$0,$100} as follows: mq({$100}) = 1/3, m;({$0}) = 2/3. L,
can be represented by BPA my for O as follows: mo({$0}) = 1/3, mo({$0,$100}) = 2/3.
Notice that Ly and Lo are bf lotteries. Ellsberg notes that a frequent pattern of response is
Ly preferred to Ls.

Second, we are offered a choice between Lz: $100 on red or yellow, and Ly: $100 on
black or yellow, i.e., in Lz you get $100 if the ball drawn is red or yellow, and $0 if the
ball drawn is black, and in Ly, you get $100 if the ball drawn is black or yellow, and $0 if
the ball drawn is red. Ls can be represented by BPA ms as follows: m3({$100}) = 1/3, and
m3({$0,$100}) = 2/3, and L4 can be represented by the BPA my as follows: my({$0}) = 1/3,
m4({$100}) = 2/3. L3 and Ly are also belief function lotteries. Ellsberg notes that Ly is
often strictly preferred to Ls. Also, the same subjects who prefer Ly to Lo, prefer Ly to Ls.
Table (1] is a summary of the four bf lotteries.

Thus, if the outcomes of a lottery are based on the states of a random variable X, which
is described by a BPA myx for X, then we have a belief function lottery. In this example,
we have only two outcomes, $100, and $0. L, and L, can also be regarded as probabilistic
lotteries as the corresponding BPAs are Bayesian. Lo and Ls have BPAs with non-singleton
focal sets. Thus, these two lotteries can be considered as involving “ambiguity” as the exact
distribution of the probability (of 2/3) between outcomes $100 and $0 is unknown. Regardless
of how the probability of 2/3 is distributed between b and y, the preferences of subjects violate
the tenets of vN-M utility theory.

4.2. Assumptions of our framework

As in the probabilistic case, we will assume that a DM’s preferences for bf lotteries are
reflexive and transitive. However, unlike the probabilistic case (Assumption , we do not
assume that these preferences are complete. In the probabilistic case, incomplete preferences
are studied in [I], and in the case of sets of utility functions, in [13].

Our first assumption is identical to Assumption [2.1]
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Table 1: Four belief function lotteries in Example

Lottery m;({$100}) m;({$0}) m;({$100,$0})
L, ($100 on r) 1/3 2/3

Ly ($100 on b) 1/3 2/3

Ls ($100 on 7 or y) 1/3 2/3

L, ($100 on b or y) 2/3 1/3

Assumption 4.1 (Weak ordering of outcomes). The DM’s preferences 7 for outcomes in
O ={0,...,0,} are complete and transitive.

This allows us to label the outcomes such that
01 ?\: 02 ,>\'J tee i: OT, and 01 - Or. (14)

Let Ly denote the set of all bf lotteries on O = {0y, ... O, }, where the outcomes satisfy
Eq. (14). As every BPA m on O is a bf lottery, Ly is essentially the set of all BPAs on
O. As the set of all BPAs include Bayesian BPAs, the set Ly is a superset of L, i.e., every
probabilistic lottery on O can be considered a bf lottery.

Consider a compound lottery [L,m|, where L = {Ly,...,Ls}, m is a BPA for L, and
L; = [O,my1,] is a bf lottery on O, where m;z, is a conditional BPA for O in the second
stage given that lottery L; is realized in the first stage. We thus have s 4 1 pieces of
evidence represented by BPAs m and myz,, ..., my,. Assuming these pieces of evidence to
be independent, they can be combined by Dempster’s rule (), after conditionally embedding
the conditional BPAs m; 1, (see Section. Marginalizing the orthogonal sum on O, we get
a BPA m’. Assumption below posits that the resulting simple lottery [O,m/] is equally
preferred to the original compound lottery [L,m], i.e., we can reduce the compound lottery
to a simple bf lottery on O using the D-S calculus.

Assumption 4.2 (Reduction of compound lotteries). Suppose [L,m] is a compound lottery
as described in the previous paragraph. Then, [L,m] ~ [O,m'], where

s 10
m' = <mEB <@ij,j>> ; (15)

and my, ; is a BPA for (L, O) obtained from my ., by conditional embedding, forj =1,...,s.

Example 3. Consider two urns: Urn 1 contains 90 balls, 30 of which are black, and 60 are
red or yellow. Urn 2 is identical to Ellsberg’s urn in Example[d: it contains 90 balls, 30 of
which are red, and 60 are black or yellow. Assume that, in the first stage, you are allowed
to draw one ball By from Urn 1:

o [f By is black or red, then you will be allowed to draw one ball from Urn 2 in the second
stage, and you will get $100 if it is red, and $0 otherwise (lottery Ly of Example[d);
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Um 1

30 r

60 {b, y}
90 Total

U 2

Figure 4: A 2-stage compound belief function lottery. Bj is drawn from Urn 1, and Bs is drawn from Urn 2.
The corresponding BPAs are shown on the right. In the first stage, m is a BPA for {L1, Lo}. In the second
stage, mq)z, and myr, are BPAs for {$100,$0}.

e [f By is yellow, you will be allowed to draw one ball from Urn 2, and you will get $100
if it is black, and $0 otherwise (lottery Lo of Example @)

Here, we have a compound bf lottery with outcome space L = {Ly, Ls}. We get Ly or Lg
depending on the color Xy of ball By drawn from Urn 1. We have mx, ({b}) = 1/3 and
mx,{r,y}) = 2/3, and the act f defined by f(b) = f(r) = L1, f(y) = Ls. The BPA on
L is, thus, m({L1}) = 1/3 and m({L1, Ls}) = 2/3. Now, L, and Ly are bf lotteries on
O = {$100,$0}, with BPAs

majz, ({8100}) = 1/, myyz, ({80}) = 2/3

and
moL,({80}) = 1/3,  mag1,({$0,$100}) = 2/3.

Here, mj ., is a conditional BPA on O, given that L; is obtained in the first stage (see Figure
. The conditional embeddings of myr, and mgjr, are BPAs on L x O equal, respectively,
to

mr, 1({(L1,$100), (Lo, $100), (Lo, $0)}) = 1/3,
mp,1({(L1,%0), (La, $100), (L2, $0)}) = 2/3,

and

mL272<{<L2, $O), (Ll, $100), (Ll, $0)}) = 1/3,
mLQ,z(L X 0) = 2/3,
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Their orthogonal sum s

(mr, 1@ mr,2)({(L1,$100), (L2, $0)}) = 1/9,
(mry1 ® mi,2)({(L1,90), (L2, $0)}) = 2/9,
(mp, 1@ mp,2)({(L1,$100), (La, $100), (La, $0)}) = 2/9,
(mr, 1@ mp,2)({(L1,$0), (La, $100), (Lo, $0)}) = 4/9.
Combining it with m, we get
(m@mp, 1 ®mp,2)({(L,$100)}) = 3/27,
(m @ mp, 1 @ mr,2)({(L1,%0)}) = 6/27,
(m@&mp, 1 ®mp,2)({(L1,$100), (Lo, $0)}) = 2/27,
(m@mp, 1 ®mp,o)({(L1,30), (Lo, $0)}) = 4/27,
(m@&mp, 1 ®mp,o)({(L1,$100), (Lo, $100), (Lo, $0)}) = 4/27,
(m@&mp, 1 ®myp,2)({(L1,3%0), (La, $100), (La, $0)}) = 8/27

Marginalizing on O, we get m' = (m & mz, 1 ® my,2)*0 equal to
m/({$100}) = 3/27 = 1/9,
m/({$0}) = 10/27,
m/({$100,$0}) = 14/27.
According to Assumption[{.9, a rational DM should be indifferent between receiving the com-
pound bf lottery [L,m], or receiwving the bf lottery [0, m], i.e., a prize about which the only
information he has is given by a randomly coded message whose meaning can be “The value

of the prize is $100” with probability 1/9, “The value of the prize is $0” with probability
10/27, and “The value of the prize is unknown” with probability 14/27.

The following proposition states that Assumption generalizes Assumption 2.2

Proposition 1. Let L = {Ly,..., L} be a set of bf lotteries, with L, [O mjiL,), m which

myL, is a Bayesian conditional BPA for O such that mj 1, ({O0:}) = pl ) and o 1p2 =1
for j =1,...,s. Let [L,m] be a compound lottery in which m is a Bayesian BPA for L
such that m({Lj} =gq; forj=1,...,s with 2;21 ¢; = 1. Then BPA m/ defined by is

Bayesian and it verifies
m'({0;}) = Z g0y (16)
fori=1,....r
Proof. The conditional embedding of myr, is given by
mr, ({(Lj, O)}yU{L;} x O) =7, i=1,...,r
Let mo = @j_, myz, ;- It is a BPA for L x O defined by

mo ({(L1,04,),- ., (Ls, 0:)}) = p ..
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for all (iy,...,is) € {1,...,7r}*. Combining mo with m, we get a Bayesian BPA my on L x O
such that '

mh({(L;, 00)}) = 4.
After marginalizing on O, we finally get Eq. . O

Next, we define a bf reference lottery [Oy,m] as a bf lottery on Oy = {O1,0,}. A bf
reference lottery has three parameters v = m({O1}), v = m({O,}), and w = m(O,), which
are all non-negative and sum to 1. It can be equivalently denoted as [Oq, (u,v,w)]. The
first and second elements of the triple are, respectively, the degrees of belief of receiving
the best and worst outcomes, while the third element can be seen as a degree of ignorance.
Obviously, the degrees of plausibility of receiving the best and the worst outcomes are,
respectively, 1 — v and 1 — u. The following assumption states that any deterministic bf
lottery is equally preferred to some bf reference lottery.

Assumption 4.3 (Continuity). Any subset of outcomes @ C O (considered as a deter-
ministic bf lottery) is indifferent to a bf reference lottery @ = [Oy, (ua, v, w,)] for some
Ug, Va, Wa > 0 such that ug + va + wa = 1. Furthermore, wa = 0 if @ = {O;} is a singleton

subset.

For singleton subsets, the equivalent bf reference lottery is Bayesian: this ensures that As-
sumption 4.3|is a generalization of Assumption 2.3 For non-singleton subsets a of outcomes,
we may have wy > 0, i.e., the bf reference lottery may not be Bayesian. In other words,
we do not assume that ambiguity can be resolved by selecting an equivalent probabilistic
reference lottery.

Example 4. Consider lottery Ly = [{$100, %0}, mo] in Ezample [3, where mo({$0}) = 1/3,
and my({$100,$0}) = 2/3. Suppose we wish to assess the utility of focal set {$100,$0}
using a probabilistic reference lottery [{$100, 30}, (p,1 — p)]. A DM may have the following
preferences. For any p < 0.2 she prefers {$100,$0} to the probabilistic reference lottery, and
for any p > 0.3, she prefers the probabilistic reference lottery to {$100,$0}. However, she is
unable to give us a precise p such that {$100, $0} ~ [{$100, $0], (p, 1 — p)]. For such a DM,
we can assess a bf reference lottery [{$100,$0}, (0.2,0.7,0.1)] such that Bel,,,({$100}) = 0.2
and Pl,,,({$100}) = 0.3.

Assumption 4.4 (Quasi-order). The preference relation 2 for bf lotteries on Lys is a quasi-
order, i.e., it is reflexive and transitive.

In contrast with the probabilistic case (Assumption , we do not assume that - is
complete. There are many reasons we may not wish to assume completeness. It is not
descriptive of human behavior. Even from a normative point of view, it is questionable
that a DM has complete preferences on all possible lotteries. The assumption of incomplete
preferences is consistent with the D-S theory of belief functions where we have non-singleton
focal sets. Several authors, such as Aumann [I], and Dubra et al. [I3] argue why the
assumption of complete preferences may not be realistic in many circumstances.

The substitutability assumption is similar to the probabilistic case (Assumption — we
replace an outcome in the probabilistic case by a focal set of m in the bf case.
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Assumption 4.5 (Substitutability). In any bf lottery L = [O, m], if we substitute a focal
set @ of m by an equally preferred bf reference lottery @ = [Oy,my], then the result is a
compound lottery that is equally preferred to L.

It follows from Assumptions that given any bf lottery, we can reduce it to an
equally preferred bf reference lottery. This is stated as Theorem below.

Theorem 4.1 (Reducing a bf lottery to an indifferent bf reference lottery). Under As-

sumptions any bf lottery L = [O, m] with focal sets ay, ..., a is indifferent to a bf
reference lottery L =[Oy, m|, such that

m({O01}) Zm ) Ua;, (17a)
m({0,}) = Zm a;)va, and (17b)

Z m(&;) wa;, (17¢)

where ug,, Vg, and wg, are the masses assigned, respectively, to {O1}, {O,} and Oy by the bf
reference lottery @ equivalent to &;.

Proof. From Assumption (continuity), we can replace each focal set @; of m one at a
time by an indifferent bf reference lottery a; = [Oo, my5,], yielding a sequence of compound
lotteries. From Assumptions (substitutability) and (quasi-order), these compound
lotteries are all indifferent to L (see Figure [f]). Let L' = [L,m’] be the compound lottery
obtained after all focal sets @; have been substituted, with m/({a;}) = m(a;). From As-
sumption 2| (reduction of compound lotteries), L’ can be reduced to a reference bf lottery

=[O, ] by considering each BBA \ My, as a conditional BPA and applying the rules of

D-S calculus. The reduced bf lottery L = [O2,m] is then given by

" 105
e (m (@m)> ,
=1

where mg; is the BPA for O, obtained from m;3, by conditional embedding. If we have
Mz, ({O1}) = ua,, My, ({0 }) = va, and m; 5, (02) = w,,, then after conditional embedding
BPA my, ; is as follows:
mgi,l({(/éi) Ol)} U ({52} X 02)) = Ug,
mz, . ({(@,0,)} U ({&;} x 02)) = vy,
m’é“l(L X 02) = Wy,

Let mq denote @le mg, ;- The focal sets of mg are of the form

A1y, 12,15) = (U a; % {Ol}> U <U a; x {Or}> U (U L; x OQ) )

el 1€ls i€l3
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W= pillg, + ..+ Prlig,

V=P1Vg, + AP Vg @

W=p\Wa, + .. +PpWg,

Figure 5: Reducing a bf lottery to a bf reference lottery

for all partitions (I3, I, I3) of {1,...,k}, and the corresponding value of my is:

m0<a(l1,12,13)> - (H Uai> (H Uai> (H wai> .
i€y i€l i€l3

Next, we combine Bayesian BPA m’ for L with mg. The focal sets of m’ & mq are of the
form {a;} x {O;}, {a;} x {O,}, and {a;} x O, depending on whether i € I or i € I, or
i € I3, respectively, with mass m(a;)mo(a(s, 1,,1,))- Finally we marginalize m’ ® mg to O,.
The mass assigned to each focal set {2;} x {O1} is ma,ua,. Thus, m({01}) = S5 m(a;)ua,.
Similarly, m({O,}) = 2%, m(a;)va,, and m(0z) = S5 m(a,)w,. O

Next, we formulate a monotonicity assumption to generalize Assumption Given two
bf reference lotteries, if any of them assigns a higher degree of belief to the best outcome
O and a lower degree of belief to the worst outcome O, (or, equivalently, higher degrees of
belief and plausibility to O;), then it should arguably be preferred. If this is not the case,
i.e., if the best and the worst outcomes both have a higher degree of belief for one lottery (or,
equivalently, if the belief-plausibility intervals for O; in the two lotteries are strictly nested),
then there does not seem to be any solid ground for preference, and the two lotteries can be
considered as incomparable. This line of reasoning is formalized in Assumption below.

Assumption 4.6 (Monotonicity). Suppose L = [Os, (u,v,w)] and L' =[Oy, (v/,v",w’)] are
bf reference lotteries. Then, L 7~ L' if and only if u > u' and 1 —v >1—1'".

It is clear that 7~ as defined in Assumption is reflexive and transitive. The corre-
sponding indifference relation is L ~ L’ if and only if u = v’ and v = ¢/, i.e., if and only if
L = L’. Also, the preference relation 77 on the set of all bf reference lotteries is obviously
incomplete: two lotteries L and L’ are incomparable if not L - L' and not L' 7 L, i.e., if
the intervals [u, 1 — v] and [u/, 1 — ¢/] are strictly nested.

The preference relation defined in Assumption [4.6]can equivalently be expressed as L 77 L’

if and only if Bel,,({01}) > Bel,y({O:}) and Pl,,({O1}) > Pl,y({O1}) (meaning that the
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best outcome O; is deemed both more credible and more plausible under L than it is if under
L.

We note that a stronger notion of preference would be to prefer L over L’ if and only if
Bel,,({O1}) > Pl ({01}), i.e., if and only if w > 1 —o’. This alternative preference relation
is arguably too strict, which would lead to a more incomplete preference order on lotteries.

To conclude this section, we note that Assumptions [4.1] [£.3] and .6 imply the following

consistency constraints between the reference bf lotteries equivalent to single outcomes:
1= U{Ol} Z U{O2} Z .. Z U{OT} = 0. (18)

4.3. Representation theorem

Theorem 4.2 (Interval-valued utility function). Suppose L = [O,m| and L' =[O, m'] are
bf lotteries on O. If the preference relation 7 on Lys satisfies Assumptions @ then

there are intervals [ug, 1 — v,] associated with nonempty subsets @ C O such that L 77 L' if

and only if
> m@ua> Y m(a)u, (19a)
0#£ac o P#aCc O

and

Y m@uva< Y m'(a)va (19b)

P+£ac o0 P+£ac o0
Thus, for a bf lottery L =[O, m], we can define
[u] (L) = [u,1 =] (20)
as an interval-valued utility of L, with
u= Z m(a)us and v= Z m(a) va. (21)
P+#ac o P#ac O

Also, such a utility function is unique up to a strictly increasing affine transformation,
ie., ifu'=au+0b, and v =av+ b, where a > 0, and b are real constants, then

[W)(L) = [u',1 =]
also qualifies as an interval-valued utility function.
Proof. The proof is immediate from Theorem and Assumption (monotonicity). [

A special case of Theorem [£.2]is if we use Bayesian bf reference lotteries for the continuity
assumption, i.e., wy = 0 for all focal sets a of m. In this case, Theorem implies Corollary
below where we have a real-valued utility function and a complete ordering on L.

Corollary 4.1 (Real-valued utility function). Suppose L = [O,m] and L' = [O,m'] are
bf lotteries on O. If the preference relation 77 on Lyy satisfies Assumptions and if

wg = 0 for all focal sets a of m and m’, then there are numbers ug associated with nonempty
subsets @ C O such that Ly 7= Ly if and only if

Z m(a) ug > Z m'(a) u,.

P+£ac O P+£ac O
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Thus, for a bf lottery L = [O, m], we can define

u(L)= > m(a)u, (22)

P+£ac O

as the utility of L. Also, such a utility function is unique up to a strictly increasing affine
transformation, i.e., if u, = aug + b, where a > 0, and b are real constants, then

P+£ac o0
also qualifies as a utility function.
Proof. The result in Corollary [£.1] follows trivially from Theorem [4.2] O

The utility function in Eq. has exactly the same form as Jaffray’s linear utility [30].
This is discussed further in Section 5.1l

Next, we illustrate the application of Theorem to some examples: Ellsberg’s urn
problem described in Example , the one red ball problem described in [35], and the 1,000
balls urns described in [2].

{r.y} $100
30 r $0
60 {b, y}
90 Total @< % $100
{";y} $O r $0
@% {$100} @2 (50} @2 {8100} .2 ($100}
23 180 573" {8100, 30} 53> 18100, S0} 13 180}

Figure 6: Ellsberg’s urn, choice of lotteries, and the corresponding belief function lotteries

Example 5 (Ellsberg’s urn). Consider the four bf lotteries described in Example[d (also in
Table []] and in Figure[6]). Given a vacuous bf lottery [{$100, $0}, ], where ¢ is the vacuous
BPA on O = {$100, %0}, what is an indifferent bf reference lottery? For an ambiguity-averse
DM,

[{$100, $0}, (1/2,1/2,0)] > [{$100, $0}, ¢].
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For such a DM, we thus have 1 — vis100, 301 < 1/2.

For the first choice problem between Ly ($100 on 1) and Ly (3100 on b), using Eq. ([22),
[u](Ly) = [1/3,1/3], and

2
[u](Lo) = 3 [U{$100, s0), 1 — U{$100,$0}} .

Thus, an ambiguity-averse DM would choose Ly. This result is valid as long as 1—vig100, 50y <
1/2 and is consistent with Ellsberg’s findings. For the second choice problem between Lz ($100
onr ory), and Ly ($100 on b or y),

1 2

[u](L3) = 5(1> + 3 [U{$100, $0}, 1 — V{s100, $0}] ;

and [u](Ls) = [2/3,2/3]. An ambiguity-averse DM would choose Ly, as

1 2

Sifn- <
3 + 3( V{$100,$0} )

Wl N

as long as 1 — visio0,50) < 1/2, a result that is also consistent with Ellsberg’s empirical
findings.

$100

$0

1 r {b’ &, 0, way}

n—11{b g,0,w,y}

n Total balls m, b $100

{’; 8,0, W;y} $0

{80} (n—1)/n > {$100, $0}

n—1D/n

Figure 7: One red ball urn, choices, and the corresponding belief function lotteries

Example 6 (One red ball). Consider the following example called “one red ball” in [35] (see
Figure[7). An urn possibly contains balls of siz colors: red (r), blue (b), green (g), orange
(0), white (w), and yellow (y). One ball is drawn at random from the urn. We are informed
that the urn has a total of n balls, where n is a positive integer, and that there is exactly
one red ball in the urn. Suppose random variable X denotes the color of the ball drawn from
the urn. Then Qx = {r,b,g,0,w,y}, and my is a BPA for X such that mx({r}) = 1/n,
and mx({b,g,0,w,y}) = (n — 1)/n. First, you choose a color, and then you draw a ball
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at random from the urn. You win $100 if the color of the ball drawn from the urn matches
the color you chose, and you win $0 if it doesn’t. What color do you choose? In [35], the
authors describe some informal experiments where all respondents chose red forn <7, and
for n > 8, several respondents preferred a color different from red.

Suppose you choose r. The bf lottery L, based on mx is as follows: [{$100,%0},m,],
where m,.({$100}) = 1/n, and m,({$0}) = (n — 1)/n. If the color you pick is b, then the
bf lottery Ly is [{$100,$0}, my)|, where my({30}) = 1/n, and my({$100,$0}) = (n — 1)/n.
Thus, we have [u](L,) = [1/n,1/n], and

n—1

[u](Ly) = [U{$1oo,$0}, 1 — vys100, $0}} .

So, Ly 1s strictly preferred to L, whenever

n—1 1
U{$100,$0} =~
n

i.e., whenever ugsioo,s0y > 1/(n — 1), and L, is strictly preferred to L, whenever

1

n—1
(1 - U{$100,$0}) < o

n

i.e., whenever 1 — vgi100,30y < 1/(n —1). Hence, Ly is increasingly preferred to L, when n
increases, which is consistent with the findings reported in [35]. In our model, when

1
U < ——<1-w ,
{8100,80} < {$100, 50}
the two lotteries L, and Ly are incomparable. If forced to choose, the DM might just choose
arbitrarily. As the experiment reported in [35] did not allow the respondents to express
inability to choose between the two lotteries, it does not provide any evidence for or against
our model.

Example 7 (Urns with 1,000 balls). The following example is discussed in [2], where it is
credited to Ellsberg in an oral conversation (with the authors of [2]). It is also discussed in
[T)]. There are two urns, each with 1,000 balls, numbered from 1 —1,000. Urn 1 has ezxactly
one ball for each number, and there is no ambiguity. Urn 2 has unknown number of balls of
each number, and there is much ambiguity. One ball is to be chosen at random from an urn
of your choosing. If the number on the ball matches a specific number, e.q., 687, you win
$100, and if not, you win nothing ($0). Which one of the two wrns will you choose? This
choice problem is shown in Figure|[§,

It is reported in [2] that many respondents chose Urn 2. Why? Urn 1 has only one
ball numbered 687, and therefore, the probability of winning $100 if the choice is Urn 1 is
very small, 0.001. Urn 2 could possibly have anywhere from 0 to 1,000 balls numbered 687.
Thus, the choice of Urn 2, although ambiguous, is appealing. Let’s analyze this problem using
Theorem A2

Let X, denote the number on the ball chosen Urn 1, and let Xy denote the number on the
ball chosen Urn 2. Qx, = Qx, = {1,...,1000}. Function my, is a BPA for X, as follows:
myx,({1}) = ... = mx,({1000}) = 0.001. BPA my, is vacuous, i.e., mx,({lx,) = 1.
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1 ball numbered 1 ? ball numbered 1
1 ball numbered 2 ? ball numbered 2
1 ball numbered 1000 ? ball numbered 1000
1000 Total 1000 Total
U1 U2

@% {$100}
$0 0.999 ™ {30}

m, 687 $100 |
@< (my)——— (5100, 50}
not 687~ $0

Figure 8: Two urns with 1,000 balls, choices, and the corresponding belief function lotteries

Lottery Ly corresponding to choice of Urn 1 (say, alternative fy) is [{$100,$0}, m4], where
my is a BPA for {$100,$0} such that m,({$100}) = 0.001, and m,({$0}) = 0.999. L; is a
bf reference lottery, and thus, [u|(Li) = [0.001,0.001]. Lottery Lo corresponding to choice of
Urn 2 (say, alternative f5) is [{$100,$0}, ms], where msy is a vacuous BPA for {$100, $0}.
The utility of Ly is

[u](Ls) = [ugsi00,s0}, 1 — Vis100,50}] -

Consequently, Ly is preferred to Ly as long as
ugs100,30} = 0.001,

a condition that is easily satisfied. This may explain why many DMs appear to be ambiguity-
seeking in this context, i.e., prefer Ly to Ly.

4.4. An additional assumption and the corresponding representation theorem

Whereas Theorem guarantees the existence of an interval valued utility function for
bf lotteries, there remains the problem of practical elicitation of utilities. The maximum
number of utilities to be elicited increases exponentially with the number r of outcomes. As
the utilities of the worst and the best outcomes are, by construction, 0 and 1, and wp,; =0
for each other single outcome O;, the actual number of utilities to be elicited is, at most,
22" —1—7r)+r—2=2"" —r —4. By making one more reasonable assumption, we can
drastically limit the number of parameters to be elicited.

Assumption [£.7] below has no counterpart in the vN-M theory, but it is rooted in decision-
making under ignorance [30, 52]. For any nonempty subset of consequences a C O, let O,
and Oy denote, respectively, the worst and the best outcome in a. To simplify the notations,
we assimilate a deterministic BPA with its focal set, and we write @ 7~ b to mean that the
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Table 2: Acts in Example

wp Wy w3 Wy
fi 0O 1 1000 1000
fo 0 0 999 1000
o0 1 1 1000
fé 0 999 1000 1000

deterministic lottery with focal set a is preferred or indifferent to the deterministic lottery
with focal set b. Then our last assumption can be stated as follows.

Assumptlon 4.7 (Dominance). For all nonempty subsets @ and b of O, if O, 77, Op and
O, Op, then a- b.

Assumption [£.7 implies that the preference between two deterministic lotteries with focal
sets @ and b is determined only by the best and worst outcomes in a and b. In particular,
when O, = Op and O, = Oy, then a ~ b. Although counterintuitive at first glance, this
assumption cannot be avoided if we accept the PCI, i.e., if we accept that any two acts
yielding the same bf lottery are equivalent, as shown by the following example.

Example 8. Assume that the set of outcomes is O = {$0,%$1,$999,$1,000}. According
to Assumption [4.7, a DM would be indifferent between receiving one of the prizes in a =
{$0,$1,$1,000}, without any further information, and receiving one of the prizes in b =
{$0,%$999, $1,000}. It may be argued that most DMs would strictly prefer b to a. Yet,
assume that the state space is Qx = {w1, we, w3, wy}, we are in a state of complete ignorance,
i.e., mx(Qx) = 1, and the deterministic lotteries @ and b are generated by the acts fi and fo
shown in Table . It is clear that fy dominates fo (it yields at least as desirable consequences
for all states of nature, and strictly preferred consequences for some states of nature), so
it would be paradoxical to strictly prefer fo over fi, i.e., to strictly prefer b over a. But a
and b might also have been generated by acts f{ and f} in Table [3 and, as f5 dominates
f1, it would also be paradozical to strictly prefer f| over f, i.e., to strictly prefer a over b.
Consequently, indifference between a and b seems to be the only rational option in this case.

Generalizing Example , Jaffray [30] shows that, whenever O, >~ O, and O, = Oy, we can
always construct a state space {x and two acts f; and f; such that fi[Qx] = a, f2[Qx]=b
and, for any w € Qx, fi(w) 75 fo(w). As f; yields at least as desirable outcomes as f, under
any state of nature, it should be preferred whatever our beliefs on (2x, and in particular
when mx(Q2x) = 1. Hence, we should have a 7 b.

Assumption implies that a =~ O, and O, = a. From Assumption we thus have
ua > up, and 1 — vy < ug,. Consequently, the utility bounds u, and 1 — v, of subset a can
be written as convex combinations of the utilities of its worst and best outcomes:

a—Oé<

04, 0a) uo, + (1 — (04, 0a)) ug, (23a)
1 —va = B(O,, @)

a) Uo, + ( 5(Qaa @) )) Up,; (23b)
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where a(0,,0,) and B(0,, Oa) are two coefficients depending only on the best and worst
outcomes in &, such that 0 < a(0,, 0a) < B(0,, Oa) < 1. In Jaffray’s framework [30], wa = 0
(see Section and a(Q,, Oy) is called a local pessimism index. In our framework, we can
see the interval [a(O,, Oa), B(Q,, Oa)] as an interval-valued local pessimism index reflecting
both the DM’s attitude to ambiguity and indeterminacy. Assumption thus brings the
maximum number of parameters to be elicited from 2" —r—4 down to r(r—1)+r—2 = r?-2.
The above discussion can be summarized in the form of the following representation theorem
(generalizing Theorem 2 in [30]).

Theorem 4.3 (Interval-valued local pessimism index). Suppose L =[O, m] and L' =[O, m/]
are bf lotteries on O. If the preference relation 77 on Lyy satisfies Assumptions then
there are numbers up associated with outcomes O € O and two mappings o and 5 from

0={0,0)ec 0°:0' 0}
to [0,1], with o < 3, such that L 22 L' if and only if

> m(a) [0, Oa)uo, + (1 — (O, 0a))up,| >

P#ac o0

and

S m(a) [B(0a 0a)uo, + (1 — (0, O0a))ug,] >

P+£ac o0

3" w/(a) [A(Qa Oa)uo, + (1 — B(Q4 0a))ug,] ,

where O, and O, are, respectively, the worst and the best outcomes in @ C O. Thus, for a
bf lottery L =[O, m], we can define

[u](L) = [u, 1 — 2]
as an interval-valued utility of L, with
u= Y m(a) [0z Oa)ug, + (1 — (04, 04))ug,]
0#ac o0

and

1—v= Z m(a) [B(Qa,aa)uQa +(1—-5(0,,0 ))U’Oa:|

P+£ac O

Also, this utility function is unique up to a strictly increasing affine transformation.
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4.5. A simpler model

Strat [50] proposes independently, but without any axiomatic justification, a criterion
similar to that of Theorem but with a constant parameter a(O,, Og) = $(0,,0a) = «
that does not depend on the subset a. In a similar way, we can assume that the lower and
upper pessimism indices take on constant values: (0,4, 0a) = a and B(0,, Oa) = 3, with
0 < a < B < 1. This simple model depends on only r parameters: the utilities of the single
outcomes ugp,} for ¢ =2,...,r — 1 and the two coefficients o and 3. It allows us to recover
some existing decision criteria as special cases:

e When a = 3, the utility interval [u](L) is reduced to a point u(L) and we get Strat’s
criterion, also called the generalized Hurwicz criterion in [7], which is a special case of
the real-valued utility in Corollary ;

e In particular, when a = = 0, then

u(L) = Z m(a) minuop, (24)

O€a
aco

which is the lower expected utility u,, with respect to m [5], 140} [6]. As shown by Gilboa
and Schmeidler [25], w,, is also the Choquet expected utility [3] with respect to the
belief function Bel,, corresponding to m. The preference relation between bf lotteries
then corresponds to the maximin criterion, which reflects a pessimistic attitude of the
DM.

e Similarly, when a = g =1, we get

u(L) =Y m(a) max o, (25)
aco

which is the upper expected utility w,,, or the Choquet expected utility with respect
to the plausibility function Pl,, corresponding to m [25]. The corresponding decision

strategy corresponds to the maximax criterion, which models an optimistic attitude of
the DM.

e When o = 0 and # = 1, then the interval-valued utility is equal to the lower-upper
expected utility interval

[u](L) = [ty U] -

The corresponding preference relation is then the interval bound dominance relation
[10] [7], defined by
L= L < (u, >u, and WUy, > Up). (26)

In the general case, we have

U, <u<l—uv< Uy, (27)

“m =

where u and w are as in Eq. (21]). Thus, the interval-valued utility [u](L) of lottery [O,m] as
defined in Theorem is always included in the lower-upper expected utility interval, and
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the preference relation induced by our interval-valued utilities compares more bf lotteries
than the interval dominance relation . The lower and upper expectations defined by
Eqgs. — can thus be seen as lower and upper bounds of the interval utility of a lottery
L =[O, m] and could be used as conservative estimates if parameters o and  cannot be
elicited.

Example 9. Assume that the set of outcome is O = {$0,$10, $50,$100}. The full model
(without Assumption requires the assessment of 24 parameters: ugsioy, Ussoy, and the u
and v values for the 11 subsets of O with cardinality strictly greater than 1. With Assumption
the number of parameters to be elicited is down to 14: uggioy, Ugssoy, and the a and (3
values for the following pairs of worst and best outcomes: ($0,$10), ($0,$50), ($0,$100),
(%10, $50), ($10,$100) and ($50,$100). Assuming o and 3 to be constant brings the number
of parameters to only 4.

A practical elicitation procedure. Whatever the simplifying assumptions made, the trickiest
part for eliciting the interval-valued utility of a bf lottery resides in the determination of
the equivalent bf reference lottery for any non-singleton focal set a (if @ and § are assumed
to be constant, this determination needs to be done for only one non-singleton focal set).
Let @ = [Oq, (ua, va, wa)] be the bf reference lottery equivalent to a (assumed to exist from
Assumption [£.3). For any a probabilistic reference lottery L = [Oo, (u,1 — u)], there are
three cases:

1. If u>1— v, then L > a;
2. If u < ug, then a > L;
3. Ifug <u <1 —wvg0r ug <u<1—wy, then a and L are incomparable.

To determine u, and v,, we can thus start with = 0 and gradually increase v until a and
L become incomparable, which gives us u,, and then gradually decrease u from v = 1 until
a and L become incomparable, which gives us v,. Parameters a and 3 are then obtained by
solving Egs. . This procedure was used implicitly in Example .

5. Comparison with Some Existing Decision Theories

In this section, we compare our utility theory to Jaffray’s linear utility theory [30], Smets’
two-level decision theory [48], decision theories for possibility theory [I1), 21] and partially
consonant belief functions [22], and Shafer’s constructive decision theory [44].

5.1. Comparison with Jaffray’s aziomatic theory

Jaffray’s axiomatic theory is based on considering the set of all belief functions on O as

a mixture set as follows. Suppose m; and msy are BPAs for O, and suppose A € [0,1]. Then
m defined as:

m(a) = Amy(a) + (1 — A\)my(a) (28)

for all a € 29, is a BPA for O. BPA m can be written as m = Amy + (1 — X\)my, and called
a mizture of m; and msy. Using the Jensen-version [34] of vN-M axiom system, Jaffray uses
the following axioms, all of which are expressed using mixture BPA functions:
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Assumption 5.1 (Completeness and transitivity). The relation 7 is complete and transitive
over Lys.

Assumption 5.2 (Independence). For all Ly = [O,my] and Ly = [O,ms] in Ly, and
A€ (0,1), Ly > Ly implies [O, Amq + (1 — A)m] > [0, Ama + (1 — X\) m].

Assumption 5.3 (Continuity). For all L; = [O,m4], Ly = [O,ms], and L3 = [O,m3] in
Ly such that Ly = Lo > L3, there exists X and p in (0,1) such that

[0, Amy + (1 — X)mg] =[O, ma] =[O, pmy + (1 — p) ms).

Theorem 5.1 (Jaffray’s representation theorem [30]). The preference relation - on Lyy
satisfies Assumptions if and only if there exists a utility function u : Lyy — R such
that for any lottery L =[O, m] in Ly,

u(L)= > m(a)u, (29)

P#£aCc O
where ug = u([0,md]), and m< is a deterministic BPA for O such that md(a) = 1.

Thus, Jaffray’s axioms result in the same solution as that of Corollary [4.1I, which is a
special case of Theorem As Jaffray’s axioms do not use Dempster’s rule explicitly, it
is not clear whether Eq. applies to the D-S framework or not. The mixture BPA m
derived from BPAs m; and msy using Eq. is not Dempster’s combination rule, although
Eq. can be derived from a belief function model using Dempster’s rule. In [32], Jaffray
writes:

“It has been shown by [30, 31] that, in the lower probability interpretation of
belief functions, the axioms of von Neumann-Morgenstern linear utility theory
could be justified with the same arguments as in the case of risk (probabilized
uncertainty)” (emphasis added).

Also, in [33], Jaffray and Wakker write:

“Given the widespread use of belief functions, it is remarkable that only recently
were decision criterion for the above-mentioned type of situations proposed and
axiomatized in [30]. He uses as a primitive axiom the independence condition with
respect to mixtures of belief functions over the outcomes to generalize expected
utility: [31] justifies this condition by means of a lower-probability interpretation
of belief functions.” (emphasis added).

Thus, it is clear that Jaffray has in mind the credal set semantics of belief functions,
which are inconsistent with Dempster’s combination ruld’}

In comparison, our representation theorem is based on a set of axioms making use of the
basic constructs of DS theory (namely, Dempster’s combination rule, marginalization, and

5Tt is possible that in 1989, it was not well understood that credal set semantics of belief functions were
incompatible with Dempster’s combination rule. This was apparently clarified in the early 1990s by Shafer
in [42, [43] and also by Fagin and Halpern in [16, 27]
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conditional embedding), we provide more compelling arguments supporting Eq. (29) as a
natural definition of the real-valued utility of a bf lottery in the D-S theory.

Also, there is no explicit notion of a bf reference lottery in Jaffray’s framework. Thanks
to our continuity axiom (Assumption [4.3), the interval-valued utility [ua, 1 — va] in our
framework receives a simple interpretation as an interval-valued probability of a best outcome
Oq, in a bf reference lottery [Og,my] that is indifferent to @ and such that ma({O1}) = ua,
ma({0,}) = va, and ma(02) = 1 — uy — va. We believe that this simple interpretation can
be very helpful when eliciting utilities from DMs, as discussed in Section [4.5]

5.2. Comparison with Smets’ decision theory

Smets’ decision theory [48] is a two-level framework where beliefs, represented by belief
functions, are held at a credal level. When a DM has to make a decision, the marginal belief
function for a variable of interest is transformed into a PMF, and the Bayesian expected
utility framework is then used to make a decision.

Smets uses a transformation called the pignistic transform to transform belief functions
into PMFs. This transform is justified in [49] using a mixture property as follows. Let T
denote the belief-PMF transformation. Smets [49] argues that this transformation should be
linear, i.e., we should have, for any A € [0, 1],

T(Amy + (1= XN)ma) = AT(my) + (1 — \)T(ma). (30)

The unique transformation T verifying is the pignistic transformation defined as 7'(m) =

BetP,, with

BetP,(0) = 3" ™ 10 c a) (31)

=5 1Al
for all O € O. The pignistic PMF BetP,, is mathematically identical to the Shapley value
in cooperative game theory [45]. In [49], Smets attempts to derive Eq. from the
maximum expected utility principle. The argument, however, is quite technical and not very
compelling.
Given the definition in Eq. (31]), the expected utility of a bf lottery L = [O, m] according
to the pignistic PMF is

upap(L) =Y BetP,,(0) uoy (32a)
0€0
=) (Z % 10 € a)) U0y (32b)
0€0 \aCcoO
=> m(a) (é > u{o}> . (32c)
aco O€a

It is a special case of Eq. , with

1

Oe€a
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Smets’ decision theory thus amounts to assuming that a DM is indifferent between a bf
lottery that gives them an outcome in a for sure, and a bf reference lottery in which the
probability of the best outcome is equal to the average utilities of the outcomes in a. This
is consistent with our Assumptions [£.1IH4.6| but it is inconsistent with Assumption For
instance, in Example [8, a DM using the pignistic criterion would strictly prefer b to a, even
though the act f; generating a dominates the act fy generating b. Moreover, this restricted
model does not have any parameter to represent a DM’s attitude toward ambiguity. As a
result, it is unable to explain Ellsberg’s paradox and the ambiguity aversion of human DMs
as described, e.g., in the examples presented in Section 1.3

5.3. Comparison with other axiomatic theories

In this subsection, we compare our axiomatic decision theory with other axiomatic deci-
sion theories for D-S belief functions.

Dubois et al. [II] describe an axiomatic decision theory for the case where uncertainty
is described by a possibility distribution, which is a special case of a belief function with
nested focal elements (such a belief function is said to be consonant). Dubois et al.’s decision
theory consists of two sets of axioms, one for the pessimistic case, and one for the optimistic
case. In contrast, Giang and Shenoy [2I] propose an axiomatic theory for possibility theory
with one set of axioms, and the utility function is binary-valued (binary-valued utilities are
possibility distribution values of O; and O, for possibilistic reference lotteries). The two
axiomatic theories for possibility theory are compared in detail in [2I]. The latter theory
is generalized in terms of partially consonant belief functions in [22]. A partially consonant
belief function is a belief function where the set of focal elements can divided into groups
such that (a) the focal elements in different groups are disjoint, and (b) the focal elements
in the same group are nested. The family of partially consonant belief functions include
Bayesian belief functions and consonant belief functions.

Giang [20] compares the Giang-Shenoy decision theory for partially consonant belief
functions with Jaffray’s axiomatic decision theory for general belief functions. Similar to
Jaffray’s theory, our decision theory is for the case of general belief functions. While our
utility is interval-based, leading to incomplete preferences, Jaffray’s theory for general belief
functions, and Giang-Shenoy’s theory for partially consonant belief functions based on binary
utility, result in complete preferences, which is a special case of our theory. Walley [53]
argues that partially consonant belief functions is the only class of D-S belief functions that
is consistent with the likelihood principle of statistics, but this argument applies only to
statistical inference, and not to uncertain reasoning in general.

5.4. Comparison with Shafer’s constructive decision theory

Shafer [44] argues for a decision theory that allows us to construct both goals and beliefs
in response to a decision. In the vN-M utility theory, we start with a probabilistic lottery, and
construct a utility function that reflects a DM’s risk attitude. Thus, probabilities and utilities
are separate constructs that are then combined for the computation of expected utility. In
many situations, we have neither objective nor subjective probabilities. For such situations,
Shafer argues for constructing belief functions from available evidence, and constructing a
set of consistent and monotonic goals. Given a set of actions, we examine which goals each
of the actions will achieve. We use belief functions to make judgments based on evidence

30



about what will happen if an action is taken. We then use these belief functions to compute
the expected number of goals that an action will satisfy, and pick an action that satisfies the
most goals. This can be generalized to the case where not all goals are equally weighted,
some are weighted more than others.

Our utility theory is more in line with vN-M utility theory than Shafer’s constructive
decision theory. There is considerable literature in many domains about the use of utility
theory for decision making. While Shafer’s constructive decision theory is intriguing and
may indicate an interesting direction to explore, there is much to be done before we can
apply it in many domains for which we have a decision theory in the vN-M style.

6. Summary and Conclusions

In this section, we summarize our proposal and sketch some future work. We start
with Luce and Raiffa’s version of the vN-M utility theory for probabilistic lotteries. We then
consider bf lotteries, lotteries when our beliefs about the state of the world is described by DS
belief functions. We use a similar set of axioms as vIN-M, but first we replace each singleton
outcome in a probabilistic lottery by a focal set of a BPA. Second, we replace the reduction of
compound lotteries with a corresponding axiom that uses Dempster’s combination rule and
belief function marginalization in place of probabilistic combination (pointwise multiplication
followed by normalization) and probabilistic marginalization (addition). Third, we use a bf
reference lottery with two independent parameters. The axioms lead to a decision theory
that involves assessing the utility of each focal element of a BPA as an interval-valued utility.
Interval-valued utilities lead to a partial preference relation on the set L¢ of all bf lotteries. If
we use Bayesian bf reference lotteries with a single parameter, then our axiomatic framework
leads to a real-valued utility function that is exactly the same as in Jaffray’s linear utility
theory [30].

The decision theory that results from our axioms is more general than that proposed by
Jaffray [30], which can be construed as a decision theory for belief functions interpreted as
generalized probabilities. Jaffray’s axiomatic theory is based on a set of mixture BPAs. A
mixture of two BPAs is not the same as a Dempster’s combination of two BPAs, although we
could construct a belief function model where the mixture BPA is obtained by Dempster’s
rule. Thus, it is not clear if Jaffray’s linear utility theory is applicable to D-S belief function
lotteries or not. Our utility theory confirms that this is indeed the case. Our bf reference
lotteries lead to interval-valued utilities, and consequently, a partial preference relation on
the set of all bf lotteries.

We also compare our axiomatic theory to Smets’ two-level framework [48, [49], and note
that his framework is too constrained to explain ambiguity-aversion or ambiguity-seeking
behavior of human DMs. Other axiomatic decision theories proposed by Dubois et al. [11]
and Giang and Shenoy [21], 22] are restricted to consonant or quasi-consonant belief func-
tions. Shafer [44] has recently published his constructive decision theory where he rejects
the separation of beliefs and utilities. He proposes, instead, constructing a set of consistent
and monotonic goals, and measuring the utility of each choice by the number of goals (or
weighted goals) achieved by the choice. Shafer’s constructive decision theory needs to be
fleshed out before it can be applied to practical decision-making situations.
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In practice, implementing the most general form of our axiomatic theory may need as-
sessment of 2 k parameters, where k is the number of focal sets of a bf lottery. In the worst
case, k can be as large as 2/°1 — 1. Based on additional assumptions, we propose a model
based on only two parameters, which can be interpreted as reflecting both the DM’s attitude
to ambiguity and their indeterminacy. This model, as well as others, will have to be fur-
ther studied and developed. More generally, a rigorous methodology to elicit interval-valued
utilities remains to be designed and validated experimentally.

Finally, in this paper, we start from the assumption that the D-S formalism is an adequate
model of an agent’s state of knowledge, and we derive a corresponding decision theory from
a set of rationality requirements. Thus, a belief function on the state space is assumed to be
given, and we generate interval-valued expected utilities for bf lotteries. A further step would
be to justify not only utilities, but also the D-S calculus itself (including belief functions and
Dempster’s rule) from properties of the DM’s preference relation over acts, similar to what
Savage [38] did to provide a foundation for decision-making with probability theory, similar
to what Dubois et al. [I2] did to justify decision-making with qualitative possibility theory,
and similar to what Gul and Pesendorfer [26], and Zhou et al. [54] did for decision-making
with a theory of belief functions where the belief functions are interpreted as credal sets.
This task remains to be done.
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