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Abstract This chapter completes the survey of the existing frameworks for repre-
senting uncertain and incomplete information, started in the previous chapter of this
volume. The theory of belief functions and the theory of imprecise probabilities
are presented. The latter setting is mathematically more general than the former,
and both include probability theory and quantitative possibility theory as particular
cases. Their respective knowledge representation capabilities are highlighted.

1 Introduction

Usually items of information are neither precise nor always coherent with one an-
other. This chapter presents two uncertainty theories that generalize probability the-
ory while being capable of handing incomplete information in an explicit way, by
including possibility theory as a special case. There are two ways of building such
a generalized framework.

The first idea is to introduce probability theory on top of the basic set-valued
representation of incomplete information. Dempster imagined a set equipped with
a probability distribution and a one-to-many mapping from this set to a space of
interest. Such probabilities can be subjective or frequentist. Upper and lower prob-
abilities are then obtained on the second space. Dempster considered this set-up as
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an extension of the fiducial paradigm for statistical inference, while Shafer inter-
preted these upper and lower probabilities as plausibility and belief functions with-
out reference to an underlying probability space with a one-to-many mapping. The
approach so-obtained was called theory of evidence by Shafer. It is tailored for the
representation and merging of unreliable pieces of evidence. In contrast, upper and
lower probabilities in Dempster set-up may also model ill-known probabilities due
to incomplete observations of random variables.

The second idea is to work with (convex) sets of probabilities, either because
the statistical model is ill-known, or because the usual protocol for generating sub-
jective probabilities is altered, admitting that buying and selling prices of lotteries
attached to risky events may differ. The latter is the basis of Walley theory of lower
previsions and imprecise probabilities. It turns out that the framework of Walley
is mathematically more general than the theory of Dempster-Shafer. This chapter
provides an account of these generalizations of Bayesian probability theory.

2 Theory of Belief Functions

The belief function model [Shafer, 1976, 1990; Yager and Liu, 2008] adds probabil-
ities on top of the set-based approach to imprecision. It replaces a representation of
the form v ∈ A, where A is a set of possible values of v, by a discrete probability dis-
tribution over possible statements of the form v ∈ A (assuming the universe, called
frame of discernment by Shafer, S is finite). We denote by m such a probability dis-
tribution on the power set 2S of S (the set of all subsets of S). As m is a probability
distribution, condition ∑A⊆S m(A) = 1 is verified. Function m is called a mass func-
tion, and m(A) is called the belief mass assigned to subset A. Any subset A of S such
that m(A) > 0 is called a focal set of m. We denote by F the family of focal sets.
In general, we do not assign any positive mass to the empty set, i.e., we assume that
m( /0) = 0; mass function m is then said to be normalized. However, the Transferable
Belief Model (TBM) [Smets and Kennes, 1994] relaxes this constraint: the mass
m( /0) then represents the degree of internal contradiction of the mass function.

In this hybrid representation of uncertainty, it is important to understand the
meaning of the mass function. In particular, the belief mass m(A) should not be
confused with a probability of occurrence of A. According to Shafer [1976], m(A)
is “the measure of the belief committed exactly to A”. More precisely, we can say
that m(A) is the probability that the agent only knows that v ∈ A. There is thus an
implicit epistemic modality in m(A), which is absent from P(A). This is the rea-
son why function m may be non-monotonic with respect to inclusion: we may have
m(A) > m(B) > 0 when A ⊂ B, if the agent is sure enough that what they know is
of the form v ∈ A. In particular, m(S) is the probability that the agent does not know
anything. The vacuous mass function m? defined by m?(S) = 1 thus represents to-
tal ignorance. This epistemic interpretation of mass functions is in line with Shafer
[1981]’s random code metaphor outlined in the next section.
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2.1 Random Code Semantics

A mass function can be interpreted by considering that the information provided
by a source (a piece of evidence) can be assimilated to a coded message whose
meaning is random [Shafer, 1981]. More precisely, assume that the source sends
an encrypted message using a code chosen at random from a set C = {c1, . . . ,cn}
with probabilities p1, . . . , pn. We know the set of codes as well as the chances of
each code to be selected. If we decode the message using code ci, we get a decoded
message of the form v ∈ Γ (ci) = Ai, where Γ is a multivalued mapping from C to
2S. The probability that the meaning of the original message is v ∈ A is thus

m(A) = ∑
{1≤i≤n:Ai=A}

pi. (1)

In particular, the probability that the message is empty, i.e., that it contains no in-
formation about v, is m(S). The triple (C,P,Γ ), where P is a probability measure
on C, defines a random set [Nguyen, 2006]. The formal equivalence between ran-
dom sets and belief functions has been proved for the first time by Nguyen [1978].
However, in random set theory, sets A with m(A) > 0 do not necessarily represent
states of knowledge. They can be objects taking the form of sets [Couso et al, 2014],
contrary to the case of evidence theory illustrated in the following example.

Example: Consider a watch that may be out of order with some known probability ε . The
set C describes the set of states of the watch, C = {working,broken}. Assume that the
watch shows time h. In that case, the multivalued mapping Γ is Γ (working) = {h} (if the
watch is working, it shows the right time), and Γ (broken) = S (if it is out of order, we
do not know what time it is). The mass function induced by S is thus m({h}) = 1− ε and
m(S) = ε .

The mass function obtained in the previous example is said to be simple because
the belief mass is shared between a single subset A of S, and S itself. Such a mass
function arises when a non-reliable source states that v ∈ A, and the agent believes
that the source is irrelevant with probability ε . This probability is committed to S
whereas m(A) = 1− ε .

This way of generating a mass function from a multivalued mapping was first
proposed by Dempster [1967] in the context of statistical inference. Shafer [1976]
renamed the upper and lower probabilities of Dempster plausibility and belief func-
tions, respectively. To quote Shafer [2016b]’s recent intellectual autobiography:

My thought was to surrender the word probability to the objective concept and to build a
new subjective theory using mainly the word belief.

A mass function m models a state of knowledge, whereas the underlying triple
(C,P,Γ ) represents a piece of evidence with uncertain meaning. Among theories of
uncertainty, the theory of belief functions has the particularity of putting emphasis
on the evidence that generates a state of knowledge, as shown by the title of Shafer
[1976]’s seminal book: A Mathematical Theory of Evidence.
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2.2 Basic Set Functions

A mass function m induces two set functions: a belief function Bel (for “belief”) and
a plausibility function Pl, defined, respectively, by

Bel(A) = ∑
E⊆A,E 6= /0

m(E); Pl(A) = ∑
E∩A6= /0

m(E). (2)

Observe that ∀A,Bel(A)≤ Pl(A). When m( /0) = 0, it is clear that Bel(S) = Pl(S) =
1,Pl( /0) = Bel( /0) = 0, and Bel(A) = 1−Pl(A). Consequently, these two functions
are dual, as are necessity and possibility functions. The degree of belief Bel(A) can
be interpreted as the probability of provability of A from the available knowledge
represented by m. In the language of modal logic, we should write Bel(A) = P(�A),
where� represents the modality of provability [Pearl, 1990]. In the same way, Pl(A)
can be seen as the probability of logical consistency of A with m.

Belief functions Bel are completely monotone, i.e., for any k ≥ 2 and any family
(A1, . . . ,Ak) of subsets of S, the following inequality holds,

Bel

( ⋃
i=1,...,k

Ai

)
≥

k

∑
i=1

(−1)i+1
∑

I:|I|=i
Bel

(⋂
j∈I

A j

)
. (3)

For Shafer [2016b], these inequalities play for belief functions the same role as
Kolmogorov axioms for probability theory. Plausibility functions verify a similar
property (they are completely alternating), changing the direction of the inequality
and switching the ∩ and ∪ operations.

A commonality function
Q(A) = ∑

E⊇A
m(E) (4)

was also introduced in [Shafer, 1976], essentially for computational reasons. It later
appeared that the commonality function is an extension of the guaranteed possibility
function in possibility theory [Dubois et al, 2001] (see the previous Chapter 3 in this
volume).

Conversely, knowing function Bel, we can uniquely recover function m by the
Möbius transform

m(E) = ∑
A⊆E

(−1)|E\A|Bel(A).

Similar identities make it possible to recover m from Pl or Q. The fast Möbius
transform [Kennes, 1992] can perform these operations efficiently.

Belief functions are often defined on finite universes. Yet, thanks to the formal
identity between belief functions and random sets, it is easy to define belief func-
tions on the real line [Dempster, 1968; Strat, 1984; Smets, 2005; Denœux, 2009],
or even on more abstract topological spaces [Shafer, 1973, 1979; Nguyen, 1978,
2006]. We can also extend belief and plausibility functions to fuzzy events [Smets,
1981] by means of Choquet integrals:
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Bel(F) = ∑
E⊆S

m(E) ·min
s∈E

F(s) (5)

and
Pl(F) = ∑

E⊆S
m(E) ·max

s∈E
F(s), (6)

for the finite case. It is also possible to “fuzzify” the theory of belief functions by
allowing either the focal sets to be fuzzy sets [Zadeh, 1979; Yen, 1990], or the belief
masses to be intervals or fuzzy numbers [Denœux, 1999, 2000a].

Two Special Cases

Two remarkable special kinds of belief functions are worth noticing:

1. Probability functions are obtained by assuming the focal sets to be singletons. It
is clear that, if m(A)> 0 implies ∃s ∈ S,A = {s}, then Bel(A) = Pl(A) = P(A) is
the probability function such that P({s}) = m({s}),∀s ∈ S. Conversely, Bel is a
probability function if and only of Bel(A) = Pl(A),∀A⊆ S.

2. Plausibility functions are possibility measures (or, dually, belief functions are
necessity measures) if and only of the focal sets are nested, i.e., if ∀E 6= F ∈
F ,E ⊂ F or F ⊂ E. In that case, Pl(A∪B) = max(Pl(A),Pl(B)) and Bel(A∩
B) = min(Bel(A),Bel(B)). For instance, a simple mass function, as in the above
watch example, yields possibility and necessity measures.

We can associate to m the mapping ϕm : S→ [0,1] called contour function of m
defined by ϕm(s) = Pl({s}), i.e.,

∀s ∈ S, ϕm(s) = ∑
s∈E

m(E). (7)

It is easy to see that function ϕm is normalized in the sense of possibility theory
(ϕm(s) = 1 for some state s ∈ S) whenever the focal sets have a nonempty intersec-
tion (which is the case if they are nested). Recovering the mass function m from
ϕm is only possible when the focal sets are either nested or disjoint. In particular,
if Bel is a probability measure, ϕm coincides with m and is a probability distribu-
tion. Now assume that the focal sets are nested and form an increasing sequence
E1 ⊂ E2 ⊂, . . . ,⊂ En, where Ei = {s1, . . . ,si}; then ϕm is indeed a possibility dis-
tribution π , and (7) reduces to π(si) = ∑

n
j=i m(E j). The possibility measure Π and

the necessity measure N defined from π coincide, respectively, with the plausibility
and belief functions induced by m. The mass function can be recomputed from π as
follows (with the notation π(sn+1) = 0),

mπ(Ei) = π(si)−π(si−1), i = 1, . . . ,n. (8)
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2.3 Combination Rules

The combination of information or evidence from different sources plays a funda-
mental role in the theory of belief functions. The basic tool is Dempster’s rule of
combination [Dempster, 1967; Shafer, 1976], which makes it possible to combine
independent pieces of information. This tool, as well as the precise definition of
independence in this context can be introduced using the random code metaphor
introduced in Section 2.1.

2.3.1 Dempster’s Rule of Combination

Let m1 and m2 be two mass functions on S induced by random sets (C1,P1,Γ1) and
(C,P2,Γ2), where C1 and C2 are, as before, interpreted as sets of codes. Assume
both codes are selected independently at random. For each pair (c1,c2) ∈C1×C2,
the probability that c1 and c2 are jointly selected is P1({c1})P2({c2}); we can then
deduce that v ∈ Γ1(c1)∩Γ2(c2). If moreover we assume the two bodies of evidence
pertain to the same message, we have to restrict to cases where Γ1(c1)∩Γ2(c2) 6= /0.
Consequently, the joint probability distribution on C1×C2 should be conditioned on
the set {(c1,c2) ∈C1×C2|Γ1(c1)∩Γ2(c2) 6= /0}. This line of reasoning leads to the
following rule, called Dempster’s rule or the product-intersection rule,

(m1⊕m2)(A) =
1

1−κ
∑

B∩C=A
m1(B)m2(C) (9)

for any A⊆ S, A 6= /0 and (m1⊕m2)( /0) = 0, where

κ = ∑
B∩C= /0

m1(B)m2(C) (10)

is called the degree of conflict between m1 and m2. If κ = 0, the two bodies of evi-
dence are said to be non-conflicting, i.e., each focal set of m1 intersects all focal sets
of m2. If κ = 1, the two bodies of evidence are logically contradictory and, conse-
quently, they cannot be combined. Mass function m1⊕m2 is called the orthogonal
sum of m1 and m2. The unnormalized version of this rule was introduced by Smets
[1990a]. A general definition of Dempster’s rule in infinite spaces was given by
Shafer [1973, 2016a].

Dempster’s rule is commutative, associative and it admits the vacuous mass func-
tion m? as neutral element. It can be easily computed using the commonality func-
tion (4). Denoting by Q1, Q2 and Q1⊕Q2 the commonality functions associated,
respectively to m1, m2 and m1⊕m2, the following relation holds,

Q1⊕Q2 =
1

1−κ
Q1 ·Q2. (11)
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2.3.2 Dempster’s Rule of Conditioning

Conditioning in evidence theory, referred to as Dempster’s rule of conditioning, was
proposed by Shafer [1976]. It is a special case of Dempster’s rule of combination
(cf. Section 2.3.1), mass function m being combined with a logical mass function
mC such that mC(C) = 1. The idea is to transfer all the mass from each focal set E
to E∩C 6= /0, since mC states that the truth lies in C, and to renormalize the obtained
result. The new information C can then be viewed as a revision of the original belief
function so as to ensure that Pl(C) = 0: the situations in which C is false are now
considered as impossible. Denoting by Pl(A ‖C) the revised plausibility, we have

Pl(A ‖C) =
Pl(A∩C)

Pl(C)
, (12)

which clearly constitutes an extension of probabilistic conditioning. The conditional
belief function is then obtained dually as Bel(A ‖C) = 1−Pl(A ‖C). We can remark
that, with this rule of conditioning, the size of focal sets decreases: consequently, in-
formation becomes more precise, and the intervals [Bel(A),Pl(A)] become narrower
(up to the normalization factor). Especially, when Bel(C) = 0 and Pl(C) = 1 (total
ignorance about C), conditioning on C by Dempster’s rule increases the precision
of the resulting mass function. Indeed, Dempster’s conditioning corresponds to a
revision process leading to information enrichment. Revision is here viewed as the
combination between a body of uncertain evidence and a sure piece of information.

2.3.3 Other Combination Rules

Dempster’s rule tends to concentrate belief masses on smaller focal sets: it thus has
a conjunctive behavior. We can define a disjunctive counterpart to Dempster’s rule
[Dubois and Prade, 1986; Smets, 1993] as follows,

∀A⊆ S, (m1∪m2)(A) = ∑
B∪C=A

m1(B)m2(C). (13)

This combination rule assumes that at least one of the two information sources is
reliable, contrary to Dempster’s rule, which assumes that they both are reliable. The
disjunctive rule is commutative, associative, and admits as neutral element the mass
function m such m( /0) = 1. It can be expressed from belief functions using product:

(Bel1∪Bel2) = Bel1 ·Bel2, (14)

which can be compared to (11). Note that the weighted average of belief functions
is still a belief function It offers yet another alternative combination rule. The set of
belief functions is thus closed under product and weighted average.
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2.3.4 Approximations by Reducing the Number of Focal Sets

Both Dempster’s rule (9) and its dual disjunctive rule (13) have the effect of increas-
ing the number of focal sets. To avoid combinatorial explosion, a useful strategy is
to approximate each mass function by a simpler one with fewer focal sets. Sev-
eral methods with different degrees of complexity have been proposed for this pur-
pose [Lowrance et al, 1986; Tessem, 1993; Bauer, 1997; Harmanec, 1999; Denœux,
2001]. The simplest, yet quite effective approach, is the Summarization algorithm
[Lowrance et al, 1986], which works as follows. Let F1, . . . ,Fn be the focal sets of m
ranked by decreasing mass, i.e., m(F1)≥m(F2)≥ . . .≥m(Fn). If n exceeds some the
maximum allowed number k of focal sets, then the n−k focal sets Fi, i = k+1, . . . ,n
with the smallest masses are replaced by their union, and m is approximated by the
mass function m′ defined as

m′(Fi) = m(Fi), i = 1, . . . ,k, (15a)

m′
(

n⋃
i=k+1

Fi

)
=

n

∑
i=k+1

m(Fi). (15b)

A more sophisticated algorithm for grouping focal sets while minimizing informa-
tion loss, based on the principle of hierarchical clustering, was proposed by Denœux
[2001].

When Equations (11) or (14) are used, the complexity depends no longer on
the number of focal sets, but on the cardinality of the universe S. An efficient ap-
proximation algorithm based on the search for a coarsening (grouping of focal sets)
minimizing information loss was proposed by Denœux and Ben Yaghlane [2002].
Using a completely different approach, the combination of several belief functions
can also be performed by Monte-Carlo simulation (see, e.g., [Moral and Wilson,
1994, 1996]).

2.3.5 Conflict Management

The management of conflict between information sources in an important practical
problem, which has drawn a lot of attention over the years [Lefèvre et al, 2002;
Smets, 2007; Martin et al, 2008; Destercke and Burger, 2013]. When a high conflict
between pieces of information is detected, two strategies are possible: we can either
revise the way information has been formalized, or we can use a robust combination
rule yielding a consistent result in case of conflict.

An example of such rule is the Dubois and Prade [1986] rule defined as follows,

(m1~m2)(A) = ∑
B∩C=A

m1(B)m2(C)+ ∑
{B∩C= /0,B∪C=A}

m1(B)m2(C), (16)

for any A ⊆ Ω , A 6= /0, and (m1~m2)( /0) = 0. When the degree of conflict κ be-
tween m1 and m2 is zero, we get m1~m2 = m1⊕m2: in the absence of conflict, the
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Dubois-Prade rule is equivalent to Dempster’s rule. In contrast, when the degree of
conflict is equal to 1, we have m1~m2 = m1 ∪m2: in that case, the Dubois-Prade
rule boils down to the disjunctive rule. In all other cases, the behavior of the ~ op-
erator is intermediate between conjunctive and disjunctive modes: it is an adaptive
combination rule. We can remark that this rule is commutative but it is not associa-
tive. However, an n-ary version can easily be defined, based on maximal consistent
subsets of focal sets [Dubois and Prade, 1986]. More complex ways of distributing
the conflict among focal sets have been proposed (see, e.g., [Lefèvre et al, 2002;
Martin et al, 2008]). See also Chapter 14 in this volume, for more details on fusion
operations.

2.3.6 Combination of Dependent Information

Dempster’s rule (9) and its disjunctive counterpart (13) both make an independence
assumption about the pieces of information to be combined. While it is often pos-
sible to break down a body of evidence into independent pieces [Shafer, 2016c],
this is not always the case, especially in sensor fusion applications. It is then use-
ful to have a well-justified rule allowing us to combine non independent pieces of
evidence.

Such a rule, called the cautious rule, was proposed by Denœux [2008]. It is
based on the weight function representation, which we will now introduce. A mass
function m is said to be separable [Shafer, 1976] if it the orthogonal sum of simple
mass functions (see Section 2.1). Denoting a simple mass function with focal sets A
and S as Aw(A), where w(A) is the mass committed to S (so, 1−w(A) is committed
to A), a separable mass function can thus be written as

m =
⊕

/0 6=A⊂S

Aw(A). (17)

Considering the negation m of a mass function m, defined by ∀A,m = m(A) [Dubois
and Prade, 1986], there is a De Morgan duality between the disjunctive rule (14)
and the non-normalized variant of Dempster’s rule (9) that has been exploited by
Denœux [2008] to define a disjunctive decomposition of belief functions.

Given a separable mass function m with commonality function Q such that
m(S)> 0, the weights w(A) can be recovered from Q as

lnw(A) =− ∑
B⊇A

(−1)|B|−|A| lnQ(B), ∀A⊂ S, A 6= /0. (18)

The mapping w : 2S \ { /0,S} → [0,1] defined by (18) is called the weight function
associated to m. When m is not separable but still verifies m(S) > 0 (it is then said
to be non dogmatic), we can still define the weight function w from (18), but we
can now have w(A) > 1 for some A [Smets, 1995]. Mass function m can then still
computed from w using (17), where Aw(A) with w(A)> 1 is no longer a proper mass
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function but a generalized mass function assigning “masses” w(A) > 1 to S and
1−w(A)< 0 to A.

Given two non dogmatic mass function m1 and m2 with weight functions w1 and
w2, their orthogonal sum can be written as:

m1⊕m2 =
⊕

/0 6=A⊂Ω

Aw1(A)w2(A),

i.e., the weight function of m1⊕m2 is the product of those of m1 and m2. In contrast,
the cautious rule is defined as

m1 ?m2 =
⊕

/0 6=A⊂Ω

Amin(w1(A),w2(A)), (19)

i.e., the weight function of m1 ? m2 is the minimum of those of m1 and m2. The
cautious rule is commutative, associative and idempotent, which makes it suitable
to combine dependent pieces of evidence. It can be justified by the Least Commit-
ment Principle (see Section 2.4). A disjunctive counterpart of ?, called the bold
disjunctive rule, can also be defined [Denœux, 2008]. With Dempster’s rule and the
disjunctive rule (13), the cautious and bold rules can be seen as particular elements
of infinite families of rules based on triangular norms and on uninorms [Pichon and
Denœux, 2010]. Other idempotent, but non associative rules have been defined and
studied by Destercke and Dubois [2011] and Cattaneo [2011].

2.3.7 Taking Into Account Metaknowledge About Sources

When combining information from several sources, it is often useful to take into
account not only the information provided by the sources, but also metaknowledge
about their properties (such as their reliability or truthfulness). The discounting op-
eration [Shafer, 1976; Smets, 1993] makes it possible to account for the reliability
of a source by transferring a fraction α of each mass m(A) for A ⊂ S to S. The
discounted mass function, denoted by α m, is then given by

α m = (1−α)m+α m?,

where, as before m? denotes the vacuous mass function and α is called the discount
rate. The contextual discounting operation, introduced by Mercier et al [2008], gen-
eralizes discounting by allowing one to take into account the source’s reliability
in different contexts. Pichon et al [2012] have proposed a very general mechanism
for “correcting” and combining mass functions, taking into account the relevance
and truthfulness of information sources; they have shown that all connectives of
Boolean logic can be interpreted in the light of these two properties. Other belief
function correction mechanisms have been proposed by Mercier et al [2012, 2016],
and Pichon et al [2016].
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2.4 Imprecision, Specialization and Information Measures

Like any information items, it is interesting to compare belief functions accord-
ing to their information content. This makes it possible, in particular, to apply the
maximum uncertainty ([Klir and Wierman, 1999]) or least commitment ([Smets,
1993]) principle, which serves the same purpose as the maximum entropy principle
in probability theory and the principle of minimal specificity in possibility theory.
According to this principle, when several belief functions are compatible with a set
of constraints, the least committed should be selected. In order to apply this princi-
ple, we need to define a partial order on the set of belief functions. For that purpose,
we may either define a degree of imprecision or of uncertainty of a belief function,
or we may adopt a more qualitative approach and directly define an informational
ordering relation on the set of belief functions.

2.4.1 Quantitative Approach

As belief functions model both imprecise and uncertain information, we may be
willing to measure imprecision and uncertainty separately. A natural measure of
imprecision is the expected cardinality of the random set defined by the mass func-
tion,

Imp(m) = ∑
E⊆S

m(E) · card(E). (20)

It is clear that Imp(m?) = card(S), where m? is the vacuous mass function, and
Imp(m) = 1 when m is a probability mass function. It can be checked that Imp(m) =

∑s∈S Pl({s}). An alternative measure of imprecision is nonspecificity [Dubois and
Prade, 1985], defined for a normalized mass function m as

N(m) = ∑
E⊆S

m(E) log2 card(E). (21)

Nonspecificity was shown by Ramer [1987] to be the only measure of imprecision
satisfying some rationality requirements.

The degree of uncertainty of a belief function can be measured by generalizing
the well-known Shannon entropy of a probability measure P defined by

H(P) =−
card(S)

∑
i=1

pi · ln pi. (22)

Several extensions of H(p) to belief functions have been proposed, of the form

D(m) =− ∑
E⊆S

m(E) · lng(E), (23)

where g can be, e.g., Pl or Bel [Dubois and Prade, 1987; Klir and Wierman, 1999].
For g = Pl, we get a measure of dissonance (or internal conflict), which is maxi-
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mized by uniform probability measures, and reaches its minimum (zero) when the
intersection of focal sets is non empty :

⋂
{E : m(E) > 0} 6= /0. For g = Bel, we

rather have a measure of confusion, which is minimal (zero) for logical mass func-
tions verifying m(E) = 1 for some unique focal set E (imprecise but certain and
clear information), but high for uniform mass functions over subsets of S with car-
dinality Card(S)/2 [Dubois and Ramer, 1993]. See also [Ramer and Klir, 1993; Klir
and Wierman, 1999].

Another approach, proposed by Smets [1983], is to define a measure I of infor-
mation content that relies on the pivotal role of Dempster’s rule in the theory of
belief functions, namely, it is natural to impose an additivity property with respect
to this rule, such as I(m1⊕m2) = I(m1)+ I(m2) for any two non-conflicting mass
functions m1 and m2. As shown by Smets [1983], this requirement, together with a
few additional natural conditions, lead to the following definition: 1

I(m) =− ∑
E⊆S

lnQ(E). (24)

Other quantitative criteria attempt to measure imprecision and uncertainty simul-
taneously. For instance, aggregate uncertainty [Maeda and Ichihashi, 1993; Har-
manec and Klir, 1994] is defined as follows, for a normalized mass function m:

AU(m) = max
P∈P(m)

H(P), (25)

where H is the Shannon entropy, and P(m) is the set of probability measures on S
compatible with m:

P(m) = {P,P(A)≤ Pl(A),∀A⊆ S}. (26)

It is clear that AU(m) is maximal both for the vacuous mass function m = m? and
for the uniform Bayesian mass function m such that m({s}) = 1/card(S) for all
s ∈ S; these two mass functions correspond, respectively, to maximal imprecision
and to maximal uncertainty. Aggregate uncertainty can be shown to meet a number
of reasonable requirements [Klir and Wierman, 1999]. However, the debate on what
should be a “natural” measure of total uncertainty in the theory of belief functions
is not settled: see, for instance, the recent proposal and discussion by Jiroušek and
Shenoy [2016].

2.4.2 Comparative Approach

The second approach to comparing the informational contents of belief functions
consists of directly defining a partial order on the set of belief functions. Given
two normalized mass functions m1 and m2, m1 is said to be more precise than m2

1 Considering the disjunctive rule instead of the conjunctive rule would lead to replace Q by Bel
in (24).
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(denoted by m1 vPl m2) iff, for any subset A of S, the interval [Bel1(A),Pl1(A)] is
included in the interval [Bel2(A),Pl2(A)]. Because of the duality of Bel and Pl, this
condition can be simplified to: ∀A,Pl1(A)≤ Pl2(A). In term of imprecise probabil-
ities, the condition m1 vPl m2 means that P(m1) is a subset of P(m2) [Dubois
and Prade, 1986; Yager, 1986]. Mass function m is thus maximally precise when it
coincides with a single probability measure, and minimally precise if m = m?. It is
also clear that, if m1 vPl m2, then AU(m1)≤ AU(m2). Note that this approach is in
agreement with the imprecise probability interpretation of belief functions.

An alternative method for comparing the informativeness of belief functions con-
sists in generalizing relative specificity, viewed as set inclusion, to random sets. A
normalized mass function m1 is a specialization of a normalized mass function m2
(denoted by m1 vs m2) if and only of the following three conditions hold:

1. Any focal set of m2 contains at least one focal set of m1;
2. Any focal set of m1 is included in at least one focal set of m2;
3. There exists a stochastic matrix W whose element wi j is the proportion of

the mass m1(Ei) assigned to Fj ⊇ Ei in order to reconstruct mass m2(Fj), i.e.,
m2(Fj) = ∑i wi j ·m1(Ei).

This relation is stronger than the previous one: if m1 is a specialization of m2,
then m1 is also more precise than m2 (but the converse is not true in general, see
[Dubois and Prade, 1986]). It is also obvious that, if m1 is specialization of m2, then
Imp(m1)≤ Imp(m2).

As noted in Section 2.2, in the consonant case, mπ and π contain the same in-
formation, i.e., Pl = Π and Bel = N. Accordingly, for possibility measures, the pre-
cision and specialization orderings both coincide with the specificity ordering for
possibility distributions: mπ1 is a specialization of mπ2 iff Π1(A) ≤ Π2(A),∀A ⊆ S
iff π1(s)≤ π2(s),∀s ∈ S [Dubois and Prade, 1986].

Other informational orderings have been proposed. For instance, m1 is said to be
more informative than m2 according to commonalities (denoted by m1 vQ m2) iff
Q1 ≤ Q2 [Dubois and Prade, 1986; Yager, 1986]. This property can be interpreted
from Eq. (11): as numbers Q1(A) get closer to 1, the influence of m1 when com-
bined by Dempster’s rule with another mass function m2 becomes smaller, which
means that m1 becomes less informative. Relation vQ is weaker than vs, but it is
not comparable with vPl . Obviously, m1 vQ m2 implies that I(m1)≥ I(m2).

Yet another ordering relation was proposed by Denœux [2008], based on the
weight function (18). Mass function m1 is said to be more informative than m2
according to the weights (denoted by m1 vw m2) iff w1 ≤ w2. This means that m1 is
the orthogonal sum of m2 and a separable mass function m that has no conflict with
m2: m1 = m2⊕m. The cautious rule (19) can be derived from the least commitment
principle based on relation vw.
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2.5 Criteria for Decision Under Uncertainty

Consider a set A = {a1, . . . ,ar} of acts, a set S = {s1, . . . ,sn} of states of nature, and
a payoff matrix U of size r×n, whose element ui j is the utility of choosing act ai if
state s j occurs. Assuming the uncertainty about the state of nature to be modeled by
a mass function m on S, which act should be chosen? To answer this question, the
classical Maximum Expected Utility (MEU) principle [von Neumann and Morgen-
stern, 1944] can be generalized in a number of ways in the belief function setting
(see also Chapter 17 in this volume).

2.5.1 Lower and Upper Expected Utilities

According to Dempster [1967] and Shafer [1981], the lower and upper expected
utilities of act ai are defined, respectively, as the following Choquet integrals (further
studied in Chapter 17 of this volume) similar to (5):

EU(ai) = ∑
E⊆S

m(E)min
s j∈E

ui j (27a)

EU(ai) = ∑
E⊆S

m(E)max
s j∈E

ui j. (27b)

The lower and upper expected utilities can be shown to be, respectively, the lower
and upper bounds of the expected utility with respect to all probability measures
P on S compatible with m [Shafer, 1981]. An optimistic decision-maker (DM) will
typically maximize the upper expected utility, while a pessimistic DM will max-
imize the lower expected utility. These two decision rules can be generalized by
considering a convex sum of the lower and upper expected utility [Jaffray, 1989;
Strat, 1990], which generalizes Hurwicz criterion (see Chapter 17 in this volume for
a detailed discussion of its aximatization due to Jaffray):

EUα(ai) = ∑
E⊆S

m(E)
(

α min
s j∈E

ui j +(1−α)max
s j∈E

ui j

)
(28a)

= αEU(ai)+(1−α)EU(ai), (28b)

where α can be seen as a pessimism index. An even more general approach, pro-
posed by Yager [1992], combines the utilities in each set {ui j | s j ∈E} by an Ordered
Weighted Average (OWA) operator.

2.5.2 Pignistic Probability

Following a different line of reasoning and putting emphasis on the avoidance of
Dutch books (i.e., sequences of bets ensuring a sure loss), Smets [1990b] advo-
cated a two-level mental model: the credal level, where uncertainty is represented
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by a belief function, and the pignistic level, where belief functions are transformed
to probabilities for decision-making. The pignistic transformation [Smets, 1990b]
consists in distributing each mass m(E) equally to all elements of E, resulting in the
probability distribution betp defined as

betp(s) = ∑
E:s∈E

m(E)
card(E)

. (29)

This transformation had been earlier proposed by Dubois and Prade [1982] as a gen-
eralization of Laplace’s principle of insufficient reason to belief functions. Smets
[1990b] justified it axiomatically, by imposing a linearity property (the pignistic
probability of a convex sum of belief functions should be the convex sum of the
pignistic probabilities) and an anonymity property (the pignistic probability of an
event E should not change after permuting the elements of E). In fact, the pignistic
probability was already known in the theory of cooperative games since the 1950’s
as the Shapley value, and Smets’ axioms are mathematically the same as those pro-
posed by Shapley [1953], albeit in a different context. The pignistic probability is
also the center of gravity of the convex set of probabilities that dominate the belief
function.

We can also search for the least informative belief function, according to the
commonality ordering vQ defined in Section 2.4.2, corresponding to a given pig-
nistic probability distribution. As shown by Dubois et al [2008], it is unique and
consonant; consequently, it induces a possibility distribution.

Having defined the pignistic distribution betp, we can evaluate each act ai by its
expected utility with respect to betp,

EUbetp(ai) = ∑
s j∈S

betp(s j)ui j = ∑
E⊆S

m(E)

(
1

card(E) ∑
s j∈E

ui j

)
, (30)

which can be compared to (27) and (28a). The pignistic criterion is a special case of
Yager’s OWA criterion [Yager, 1992], as the average is a particular OWA operator.

2.6 Applications to Statistical Learning and Data Analysis

In Artificial Intelligence, the theory of belief functions has been used, until the early
1990’s, to model uncertainty in expert systems [Shafer, 1987; Shenoy, 1989]. Since
the 1990, we have seen the development of another application area: statistical learn-
ing (see Chapter 12 of Volume 2). The theory of belief functions has proved to be
an efficient formalism for combining models, modeling uncertainty in the outputs
of classifiers or clustering algorithms, and learning from uncertain data. In the fol-
lowing, we review some of the recent developments in this area.
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2.6.1 Classifier Combination

A first way of applying the theory of belief functions to classification is to consider
classifier outputs as items of evidence and to merge them using Dempster’s rule,
or any other combination rule (see Section 2.3). Given the flexibility of the belief
function formalism, this approach can be applied to classifiers of various types, the
outputs of with can be converted into belief functions.

For instance, Xu et al [1992] proposed to use a confusion matrix to convert a
classifier’s decision into a mass function. They obtained good results for a hand-
writing recognition problem. A similar approach was used by Mercier et al [2009]
for postal address recognition. More recently, Bi et al [2008] proposed to represent
classifier scores as “triplet” mass functions with three focal sets. Bi [2012] studied
the influence of classifier diversity and the combination rule on the accuracy of the
ensemble. Quost et al [2011] considered a parametrized family of combination rules,
including Dempster’s rule and the cautious rule (see Section 2.3.6), and proposed a
method to find the best rule in this family.

From a different perspective, Quost et al [2007] considered the combination of
binary classifiers as a way to solve multi-class classification problems. For instance,
in the “one-against-one” approach, binary classifiers are trained using data from
only two classes; consequently, their outputs can be interpreted as conditional mass
functions. The problem is then to construct an unconditional mass function on the
whole set of classes, as consistent as possible with the conditional mass functions
provided by the binary classifiers.

2.6.2 Evidential Classifiers

An evidential classifier is a classifier whose output is a mass function over a set of
classes Ω = {ω1, . . . ,ωc}. Two main approaches have been proposed for construct-
ing such a classifier from training data.

The first approach, first introduced and justified axiomatically by Appriou [1991,
1998], is to construct a mass function m on Ω from the likelihoods p(x|ωk), where
x is the feature vector. One of the two methods proposed by Appriou is identical to
the solution resulting from the application the Generalized Bayes Theorem (GBT)
introduced by Smets [1993]. The mass function has the following expression:

m =
c⊕

k=1

{ωk}
αk p(x|ωk), (31)

where the αk’s are coefficients ensuring that αk p(x|ωk) ≤ 1 for k = 1, . . . ,c, and
the notation Aw stands for the simple mass function µ such that µ(A) = 1−w and
µ(Ω) = w (see Section 2.3.6). A major advantage of this method is that it can be
used without prior class probabilities, or with only weak prior information encoded
as a belief function. However, when prior probabilities are given, the GBT yields
the same solution as the Bayesian approach. Appriou [1991] showed the robustness
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of this method, in particular when the test data distribution differs from the learning
distribution due, e.g., to different data acquisition methods or to sensor malfunction.

Another approach, referred to as the evidential k-nearest neighbor (NN) rule,
was introduced by Denœux [1995]. It consists in considering each training instance
(or only each of the k nearest instances in the training set) as a piece of evidence
about the class of the new object to be classified. The different pieces of evidence
are represented by mass functions and are combined using Dempster’s rule. In the
most general form of this method, we consider a training set

L = {(x(1),m(1)), . . . ,(x(N),m(N)),

where x(i) is the feature vector of instance i and m(i) is a mass function on Ω rep-
resenting partial knowledge about the class of that example. In the fully supervised
case, each mass function m(i) is certain, i.e., we have m(i)({ω j}) = 1 for some ele-
ment ω j of Ω . In the general case, we have a partially supervised learning problem.
Partial knowledge about the class of training instances may be provided by an ex-
pert or derived from indirect observation. We also assume a distance or dissimilarity
measure δ between feature vectors.

The mass function representing the evidence of the training example e(i) =
(x(i),m(i)) is defined as

m(A | e(i)) = ϕ

(
δ (x,x(i))

)
m(i)(A), ∀A⊂Ω (32a)

m(Ω | e(i)) = 1− ∑
A⊂Ω

m(A|e(i)), (32b)

where ϕ is a decreasing function verifying ϕ(0) ≤ 1 and limd→∞ ϕ(d) = 0. Mass
function m(·|e(i)) is thus obtained by discounting m(i) (see Section 2.3.7), with a
discount rate that gets closer to one when the dissimilarity between vectors x and x(i)

goes to infinity. The condition limd→∞ ϕ(d) = 0 ensures that mass function m(·|e(i))
becomes vacuous when the dissimilarity between vectors x and x(i) goes to infinity.

Let us now consider a new object described by a known feature vector x̂ and an
unknown class label y ∈Ω . Having computed mass functions (32) for each of the K
nearest neighbors of x̂, the combined mass function on Ω is

m(· |L ) =
⊕

{i|xi∈NK(x̂)}
m(· | e(i)), (33)

where NK(x̂) denotes the set of the K nearest neighbors of x̂. The choice of a best
class ŷ ∈ Ω can then be made using one of the decision rules described in Section
2.5 and in Chapter 17 of this volume. Denœux [1997] describes several decision
strategies with different reject options.

Zouhal and Denœux [1998] have proposed a method for choosing function ϕ

within a parametric family by minimizing an error function. The evidential neural
network classifier introduced by Denœux [2000b] is a variant of this method, in
which the training set is summarized as a set of prototypes. Both the evidential k-
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NN rule and the evidential neural network classifier have been implemented in the R
package evclass [Denoeux, 2017]. Denœux and Zouhal [2001] have studied an-
other variant of the evidential k-NN rule in which partial information about the class
of training instances is given as possibility distributions. Petit-Renaud and Denœux
[2004] have extended the approach to regression problems, where variable y is nu-
merical. Recently, Lian et al [2015] proposed a feature selection method based on
the evidential k-NN rule, and Lian et al [2016] described an algorithm for learning
the distance function δ in (32).

The evidential k-NN rule has also been extended to multi-label classification
problems, in which each object may belong simultaneously to several classes [De-
noeux et al, 2010]. In this case, the universe is the power set 2Ω of the set of classes.
To prevent double exponential complexity in the manipulation of mass functions,
belief functions can then be defined on a lattice of subsets of Ω (the intervals with
respect to the ordering relation ⊆). A general presentation of this approach (with
applications not only to classification, but also to preference elicitation and to clus-
tering) can be found in [Denœux and Masson, 2012]. See also [Grabisch, 2009] for
the general theory of belief functions on lattices.

The likelihood-based and distance-based evidential classification methods out-
lined above have been compared experimentally by Fabre et al [2001], and theoreti-
cally by Denœux and Smets [2006], who showed that they can both be derived from
the GBT.

2.6.3 Evidential Clustering

The theory of belief functions has also been applied to clustering, which consists
in finding groups (or clusters) in data (see Chapters 12 and 14 of Volume 2). Here,
belief functions can be used to quantify the uncertainty about the group membership
of each particular object. Given a set of n objects O = {o1, . . . ,on} and a set of c
clusters Ω = {ω1, . . . ,ωc}, Denœux and Masson [2004] defined a credal partition
as an n-tuple M = (m1, . . . ,mn) of (not necessarily normalized) mass functions on
Ω , where mi quantifies the uncertainty about the cluster membership of object oi. A
credal partition boils down to a hard partition when all mass functions are precise
(i.e., when they focus on only one singleton). Most other “soft” clustering notions
such as fuzzy, possibility and rough clustering are also recovered as special cases
[Denoeux and Kanjanatarakul, 2016]. For instance, if all mass functions correspond
to probability distributions (i.e., their focal sets are singletons), then we can identify
each mass mi({ωk}) with the degree of membership uik of object oi to cluster ωk, and
we have a fuzzy partition [Bezdek, 1981]. If each mass function mi is categorical
(i.e., it has only one focal set Ai), then we can define the lower approximation of
cluster ωk as the set of objects oi that surely belong to ωk, i.e., such that Ai = {ωk},
and the upper approximation of cluster ωk as the set of objects oi that may belong
to ωk, i.e., such that ωk ∈ Ai. We then have a rough partition as defined by Lingras
and Peters [2012]. A general credal partition can also easily be summarized into a
hard partition or any type of soft partition. For instance, we obtain a fuzzy partition
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by replacing each mass mi by its pignistic probability distribution (29), and we get a
rough partition by selecting, for each mass function mi, the focal set with the largest
mass [Denoeux and Kanjanatarakul, 2016].

An evidential clustering algorithm is a procedure that constructs a credal partition
from a dataset. Several such algorithms have been proposed over the years:

• The EVCLUS algorithm, introduced in [Denœux and Masson, 2004], applies
ideas from multidimensional scaling to clustering: given a dissimilarity matrix, it
finds a credal partition such that the degrees of conflict (10) between mass func-
tions match the dissimilarities, dissimilar objects being represented by highly
conflicting mass functions; this is achieved by iteratively minimizing a stress
function. A variant of EVCLUS allowing one to use prior knowledge in the form
of pairwise constraints was later introduced in [Antoine et al, 2014], and sev-
eral improvements to the original algorithm making it capable of handling large
dissimilarity datasets have been reported in [Denœux et al, 2016] and [Li et al,
2018].

• The Evidential c-means (ECM) algorithm [Masson and Denœux, 2008] is a c-
means-like algorithm that minimizes a cost function by searching alternatively
the space of prototypes and the space of credal partitions. Unlike the hard and
fuzzy c-means algorithms, ECM associates a prototype not only to each cluster,
but also to each nonempty set of clusters. The prototype associated to a set of
clusters is defined as the barycenter of the prototypes of each single cluster in the
set. The cost function to be minimized insures that objects close to a prototype
have a high mass assigned to the corresponding set of clusters. A variant with
adaptive metrics and binary constraints was introduced in [Antoine et al, 2012],
and a relational version for dissimilarity data (called RECM) has been proposed
in [Masson and Denœux, 2009]. A version of ECM taking into account spatial
constraints and suitable for image segmentation was introduced by Lelandais et al
[2014].

• The Ek-NNclus algorithm [Denœux et al, 2015] is a decision-directed clustering
procedure based on the evidential k-NN rule described in Section 2.6.2. Start-
ing from an initial partition, the algorithm iteratively reassigns objects to clusters
using the evidential k-NN rule, until a stable partition is obtained. After conver-
gence, the cluster membership of each object is described by a mass function on
Ω assigning a mass to each cluster and to the whole set of clusters. The mass
assigned to the set of clusters can be used to identify outliers. The procedure can
be seen as searching for the most plausible partition of the data.

All these algorithms have been implemented in the R package evclust [Denœux,
2016].
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3 Imprecise Probabilities

Imprecise probability theory [Walley, 1991] relies on an approach opposite to the
one of belief functions. Instead of randomizing the set-based approach to incom-
plete information, incompleteness is injected in probability theory. Under the fre-
quentist view, epistemic uncertainty goes on top of a probabilistic model. Under the
subjectivist view, the betting protocol is relaxed, by no longer enforcing the equality
between buying and selling prices. In the area of economics, Gilboa and Schmei-
dler [1989] already showed that by suitably relaxing Savage axioms for decision
under uncertainty, it is possible to formally justify the idea that an agent’s epistemic
state consists of a set of probability distributions on the set S of possible states of
the world: in order to hedge against uncertainty, when evaluating a decision, the
cautious agent picks the probability distribution that minimizes its expected utility.

3.1 Basic Definitions and Interpretations

An imprecise probability model comes down to specifying a family P of proba-
bility functions over S. However, there are several approaches to come up with this
family according to the understanding of probability (frequentist or subjectivist),
and to the available data in the specific application context.

3.1.1 Incomplete Information About Frequentist Probability

Under a frequentist view, P is an epistemic set reflecting incomplete information
about an otherwise precise mathematical model of a random process: a probabil-
ity distribution in P is the right one. The family P thus represents an imprecise
probabilistic model. There are several situations that lead to such a model:

• The most common situation is when several probability measures are compatible
with the available information, for instance in the case of scarce data. In the para-
metric case, the parameters of the model are ill-known, because the confidence
intervals for these parameters are too wide. Bayesians then often assume a prior
probability distribution on the parameter range or the set of possible probabil-
ity functions. This is precisely what is not assumed in the imprecise probability
setting. Some authors may still use the Bayesian paradigm, but assume impreci-
sion about the prior probability (they are called robust Bayesians [Huber, 1981;
Berger, 1994]), resulting in an imprecise posterior distribution.

• Imprecise information can be obtained by an expert or from empirical data about
statistical parameters (like support, mean, mode, median, some fractiles) but the
type of probabilistic model is otherwise ill-known [Baudrit and Dubois, 2006]
(e.g., you know the empirical mean and variance but you do not know if the
process is Gaussian or not). It may be that the expert provides probability bounds
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on some events (intervals, quantiles, etc.). In the finite case, an expert may assign
a probability interval to each outcome instead of a precise value [de Campos et al,
1994].

• A usual setting for getting upper and lower probabilities is the one of imprecise
statistical information, that corresponds to Dempster [1967]’s setting for belief
functions. The mass value of a focal set is the frequency of observing this incom-
plete information item. In that case, belief and plausibility functions are lower
and upper probabilities, respectively, with a frequentist flavor. See the book by
Couso et al [2014] for a presentation of this approach to imprecise statistics.

• Some authors have even questioned the basic assumptions that frequencies con-
verge toward limit probabilities. For instance it is only known that frequencies
eventually remain inside an interval [Walley and Fine, 1982].

Suppose one comes up to a probability family P via some of the above scenarii.
Then one can assign to each event lower and upper bounds for the probability of this
event [Smith, 1961]:

P∗(A) = inf
P∈P

P(A); P∗(A) = sup
P∈P

P(A). (34)

Functions P∗ and P∗ are monotonic with respect to inclusion and satisfy the du-
ality property P∗(A) = 1−P∗(A). We call set functions P∗ and P∗ lower and up-
per envelopes respectively, after [Walley, 1991]. The additivity property of P en-
forces the following conditions for such envelopes [Good, 1962]: ∀A,B ⊆ S, such
that A∩B = /0,

P∗(A)+P∗(B)≤ P∗(A∪B)≤ P∗(A)+P∗(B)≤ P∗(A∪B)≤ P∗(A)+P∗(B). (35)

The width of the interval [P∗(A),P∗(A)] represents the amount of ignorance of the
agent as to the truth of proposition A. Total ignorance is when this interval is [0,1].
When this interval reduces to a singleton, full probabilistic knowledge is obtained.
Probability envelopes are more general than belief and plausibility functions, hence
more general than necessity and possibility measures [Walley, 1996].

It is important to notice that in general, it is impossible to reconstruct the original
set P from the knowledge of these intervals [P∗(A),P∗(A)] for all events A. Indeed,
these intervals correspond to particular projections of P . Namely, let P(P∗) = {P :
∀A ⊆ S,P(A) ≥ P∗(A)}, it is easy to see that P(P∗) is convex (if P1 ∈P(P∗) and
P2 ∈P(P∗) then, ∀λ ∈ [0,1],λ ·P1+(1−λ ) ·P2 ∈P(P∗)) and contains the convex
hull of P even if P and P(P∗) have the same upper and lower envelopes.

A characteristic property of an upper envelope (induced by a non-empty set of
probabilities) was found by Giles [1982]. Viewing a set A as its {0,1}-valued char-
acteristic function (A(s) = 1 if s ∈ A and 0 otherwise). A set-function g is an upper
envelope if and only if for any tuple A0,A1, . . . ,Ak of subsets of S, and any pair of
positive integers (r,s) such that ∑

k
i=1 Ai(·)≥ r+ s ·A0(·), it holds that

k

∑
i=1

g(Ai)≥ r+ s ·g(A0). (36)
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3.1.2 The Subjectivist Point of View

The subjectivist approach to imprecise probability was fully developed by Walley
[1991]. It is powerful enough to encompass all convex sets of probabilities. In this
approach the agent proposes buying prices for gambles. A gamble is a function f
from S to the real line that expresses losses ( f (s)< 0) or gains ( f (s)> 0). The gam-
ble associated to an event is its characteristic function. The agent is not committed
to selling such gambles at the same prices as the ones he or she accepts to buy them.

Informally, the approach relies on so-called desirable gambles [Walley, 1991]
that the agent would agree to buy for a positive price. The set of desirable gambles
contains at least all positive gambles. Moreover the sum of two desirable gambles is
desirable, and a desirable gamble remains desirable when multiplied by a positive
constant. The lower prevision LP( f ) of a gamble f is the maximal value α such
that f −α is desirable. It can be shown that given a set of gambles fi ∈ G and their
lower previsions LP( fi), there is a convex set of probabilities P , called credal set,
such that LP( fi) is the lower expectation of fi according to P , for all fi ∈ G . One
important point is that any convex set of probabilities can be represented by lower
previsions on some family of gambles.

In this setting, the upper prevision UP( f ) of a gamble f is provably equal to
−LP(− f ). The value LP( f ) is thus the maximal buying price for a gamble f , and
the upper prevision UP( f )(≥ LP( f )) is the minimal selling price of f . If the credal
set attached to a set of gambles and its lower previsions is empty, then the proposal
is inconsistent and the agent incurs a sure loss after buying and resolving these gam-
bles. Moreover, due to the interaction between gambles, it may be that the consistent
buying prices proposed by the agent for gambles fi ∈ G are too low and could be
raised without altering the credal set. A set of buying prices pr( fi), fi ∈ G is said to
be coherent if and only if LP( fi) = pr( fi),∀ fi ∈ G . In other words, letting EP( f ) be
the expectation of f with respect to probability P, a set of buying prices for a set of
gambles G is coherent if and only if for any fi ∈ G , inf{EP( fi) : P ∈P} = pr( fi),
where P is the credal set induced by the gambles fi ∈ G , and their buying prices.
Clearly, Giles condition (36) is easily interpreted in terms of coherence of gambles.
It expresses the coherence of a set of upper probabilities assigned to subsets of S
(minimal selling prices of 0-1 gambles), protecting an agent who sells k+1 lottery
tickets corresponding to events A0,A1, . . . ,Ak from losing money while proposing
optimal selling prices g(Ai).

The gamble approach leads to a decision rule that is specific to the imprecise
probability setting, namely a gamble f is preferred to a gamble g if and only the
gamble h = f −g is desirable, i.e., if the lower expectation of the latter gamble with
respect to the corresponding credal set P is positive. It gives a partial ordering on
gambles. It implies that ∀P ∈P,EP( f )≥ EP(g). See Chapter 17 in this volume for
other decision rules with credal sets
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3.1.3 Special Cases

A monotonic set-function g : 2S→ [0,1] is said to be a Walley-coherent lower prob-
ability if the following property holds:

g(A) = inf{P(A) : P(A)≥ g(A),∀A⊆ S}.

In that case, the credal set P = {P : P(A) ≥ g(A),∀A ⊆ S} is characterized by
the set-function g, that is, it can be described by assigning optimal buying prices to
events (viewed as 0-1 gambles) only. Mind that not all credal sets can be character-
ized in this way. They generally require the assignment of buying (or selling) prices
to general gambles. A sufficient condition for a monotonic set function to be Walley-
coherent is the supermodularity condition: g(A∪B)+g(A∩B)≥ g(A)+g(B). Such
a function g is a called a convex capacity. So it is clear that other set-functions
met in this chapter and the previous one are Walley-coherent as well, such as belief
functions (equivalently plausibility functions) and necessity measures (equivalently
possibility measures), which can represent specific credal sets.

Interestingly, Walley-coherence can be viewed as a generalization of deductive
closure to families of weighted propositions. Let K be a consistent set of proposi-
tions A0,A1, . . . ,Ak, and suppose we assign the buying prices pr(Ai) = 1, i = 0, ...k,
then P∗(A) = 1 if and only if K |= A.

More about imprecise probability theories can be found in Walley [1991]’s book
and their relevance for uncertainty management in artificial intelligence is discussed
in [Walley, 1996], where the position of belief functions and possibility measures in
the landscape is pointed out. More recent books on the topics are the collection of
introductory papers edited by Augustin et al [2014], and the mathematically oriented
monograph on lower previsions by de Cooman and Troffaes [2014].

3.2 Two Types of Conditioning

In the framework of imprecise probabilities, there are several ways of extending the
Bayesian conditioning of probability theory. It reflects the fact that the two usual
tasks performed by Bayes rule, that is prediction and revision, can no longer be
performed by the same conditioning rule [Dubois and Prade, 1997b].

3.2.1 Prediction

When a credal set represents generic knowledge, Bayesian prediction or plausible
inference is achieved by performing a form of sensitivity analysis on probabilistic
conditioning, a rule proposed in [Walley, 1991; Fagin and Halpern, 1991]. Let P
be a credal set on S. It induces lower and upper bounds P∗(A) and P∗(A) of the
probability of each proposition A. In the presence of new pieces of information about
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a singular case, summarized by the context C, the belief of the agent that proposition
A holds for the case at hand is represented by the interval [P∗(A | C),P∗(A | C)]
defined by

P∗(A |C) = inf{P(A |C) s.t. P(C)> 0,P ∈P}

P∗(A |C) = sup{P(A |C) s.t. P(C)> 0,P ∈P}.

Note that it is possible that interval [P∗(A |C),P∗(A |C)] is larger than [P∗(A),P∗(A)],
which means that there is a deficit of information given by the credal set P in the
specific context C, while there is more in more general contexts. This is called the
dilation effect [Seidenfeld and Wasserman, 1993]. It reflects the fact that in the pres-
ence of incomplete information, the more observations are available on a singular
case, the less relevant to this case is generic information about the population of
cases, because the less the new one can be viewed as representative of this pop-
ulation. In the case of Bayes rule applied to a known frequentist distribution, this
dilation effect does not appear because in any case a single number is obtained.
However, this value becomes all the more dubious as the number of cases similar to
the one under study in the population justifying the frequentist distribution becomes
smaller and smaller as we condition on a more specific context.

If P is the credal set associated to a convex capacity (hence, belief functions,
necessity measures as well) the upper and lower conditional functions take the re-
markable forms [Fagin and Halpern, 1991]:

P∗(A |C) =
P∗(A∩C)

P∗(A∩C)+P∗(A∩C)
; P∗(A |C) =

P∗(A∩C)

P∗(A∩C)+P∗(A∩C)
(37)

It is easy to see that P∗(A | C) = 1−P∗(A | C), and these formula extend prob-
abilistic conditioning, in the sense that P∗(A | C) is a function of P∗(A∩C) and
P∗(C∪A) (and similarly for P∗(A | C)). It is clear that this form of conditioning
does not correspond to the idea of enriching generic information by new observa-
tions, i.e., the latter do not alter the credal set. We just extract from it information
that fits the available evidence, in the spirit of De Finetti.

In the theory of belief functions, the above form of conditioning can be justified
in terms of their mass functions, positive weights m(E) assigned to subsets E of S.
When a mass function represents generic knowledge, m(E) may be, e.g., the propor-
tion of individuals for which imprecise proposition E holds, in the whole population.
In this setting, prediction in context C consists in evaluating mass function m(· |C)
induced by m in context C summarizing the available singular information. Three
cases can be considered [de Campos et al, 1990]:

1. E ⊆C: in that case, m(E) remains committed to E;
2. E ∩C = /0: in that case, m(E) is no longer relevant and is discarded;
3. E ∩C 6= /0 and E ∩C 6= /0: in that case, a part αE ·m(E) of m(E) remains com-

mitted to E ∩C and the rest, i.e., (1−αE) ·m(E), is committed to E ∩C. But the
proportion αE is unknown.

The third case corresponds to incomplete information E which neither confirms, nor
contradicts C. We do not have information to determine if, in each of the situations
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corresponding to these observations, C is true or not. Assume that one knows the
proportions {αE ,E ⊆ S}. We always have αE = 1 in the first case and αE = 0 in
the second case. One thus constructs a mass function mα(· |C). We can remark that
renormalization of the resulting mass function is necessary whenever Pl(C) < 1:
each mass is then divided by Pl(C). Denoting by Belα(A | C) and Plα(A | C) the
belief and plausibility obtained by focalization on C with vector of proportions α ,
we can define the conditional degrees of belief and of plausibility given C as

Bel(A |C) = inf
α

Belα(A |C); Pl(A |C) = sup
α

Plα(A |C). (38)

These definitions yield the following special cases of Bayesian conditioning for
imprecise probability (37):

Bel(A |C) = inf{P(A |C) s.t. P(C)> 0,P≥ Bel}= Bel(A∩C)

Bel(A∩C)+Pl(A∩C)
; (39)

Pl(A |C) = sup{P(A |C) s.t. P(C)> 0,P≥ Bel}= Pl(A∩C)

Pl(A∩C)+Bel(A∩C)
. (40)

We still obtain belief and plausibility functions2 (see the non-trival proofs by
Jaffray [1992] and Paris [1994]). Let us notice that if Bel(C) = 0 and Pl(C) = 1
(total ignorance about C) then all focal sets of m overlap C but C does not contain
any of them. In that case, Bel(A |C) = 0 and Pl(A |C) = 1,∀A 6= S, /0: nothing can
be inferred in context C.

3.2.2 Revision

In the framework of imprecise probabilities, a simple brute force approach to revi-
sion of a credal set P by an information item C consists in enforcing the additional
constraint P(C) = 1 to P , namely restrict the latter, and update the upper and lower
probabilities of events accordingly:

P∗(A ||C) = inf{P(A |C) s.t. P(C) = 1,P ∈P}; (41)
P∗(A ||C) = sup{P(A |C) s.t. P(C) = 1,P ∈P}. (42)

Clearly, it is supposed, in contrast with the assumption in the prediction problem,
that the new item of information is of the same nature as the original credal set, and
can be modelled by the credal set {P : P(C) = 1} (it can be frequentist or subjec-
tivist).

However, by doing so, it may be that the intersection of the two credal sets, i.e.,
{P ∈P s.t. P(C) = 1} is empty. This is for instance most of the time the case in
the standard probabilistic setting since P reduces to a singleton. The way out is to

2 When applied to necessity and plausibility measures, these two formulas also preserve conso-
nance and yield another form of conditional possibility and necessity [Dubois and Prade, 1997a].
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apply the maximum likelihood principle [Gilboa and Schmeidler, 1992], selecting
the most likely probability functions in P , replacing condition P(C) = 1 by P(C) =
P∗(C) in the above definition of conditioning:

P∗(A ||C) = inf{P(A |C) s.t. P(C) = P∗(C),P ∈P}; (43)
P∗(A ||C) = sup{P(A |C) s.t. P(C) = P∗(C),P ∈P}. (44)

For convex capacities, it holds that P∗(A || C) = P∗(A∩C)
P∗(C) , which generalizes

Dempster rule of conditioning. In the belief function setting, this form of condi-
tioning systematically assumes that αE = 1 whenever E ∩C 6= /0 in Belα(A |C) and
Plα(A | C). From the perspective of Shafer and Smets, mass function m does not
represent generic information, but uncertain singular information, such as unreli-
able testimonies or inconclusive pieces of evidence about a specific situation. The
existence of two forms of conditioning in the theory of belief functions can thus be
explained by the difference between generic and singular information.

As a general setting for the numerical representation of uncertainty, liable of vari-
ous interpretations, and encompassing other theories of uncertainty as formal partic-
ular cases, imprecise probabilities receive an increasing attention and foster a num-
ber of theoretical works (for instance, in de Cooman and Hermans [2008] bridges are
built between Walley’s approach to imprecise probabilities and the game-theoretic
view of probability by Shafer and Vovk [2001]). Practical representation methods in
artificial intelligence are also studied, for instance the imprecise probability version
of Bayesian nets, including dedicated uncertainty propagation algorithms [Cozman,
2000; de Campos and Cozman, 2005; Cozman and Mauá, 2017].

4 Conclusion

Artificial Intelligence, when focusing on representation and reasoning with imper-
fect information, was naturally bound to realize that classical logic on the one hand,
and precise probabilities on the other hand, were separately insufficient to deal with
this issue. Alternative formal frameworks have emerged in the last 40 years or so
to that effect, that this chapter partially accounts for. These frameworks are nu-
merous and often complement each other rather than compete, even if research in
this area remains fragmented. Nevertheless, these alternative theories of uncertain,
incomplete or conflicting information offer a very rich range of formalisms. It is
important to correctly understand their potentials and limitations prior to appropri-
ately exploiting them. These frameworks can be qualitative (like possibilistic logic,
dicussed in the previous chapter) or quantitative (like belief functions and imprecise
probabilities). A significant effort is still needed before a full-fledged unification of
the various approaches is achieved, and the links with neighboring disciplines like
statistics are fully established, in order to master their use in applications.
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