Théorie des fonctions de croyance : applications en diagnostic et sûreté de fonctionnement

Thierry Denœux

Université de Technologie de Compiègne HEUDIASYC, UMR CNRS 6599 http://www.hds.utc.fr/~tdenoeux

> QUALITA 2011 Angers, 24 mars 2011

Gestion des incertitudes

- La problématique de gestion des incertitudes est fondamentale dans de nombreux domaines :
 - Diagnostic, pronostic;
 - Sûreté de fonctionnement ;
 - Management des risques, etc.
- Différents types d'incertitudes :
 - Incertitudes aléatoires, induites par la variabilité de caractéristiques au sein de populations (irréductibles);
 - Incertitudes épistémiques, dues au caractère incomplet de la connaissance (réductibles).
- Formalismes classiques :
 - Théorie des probabilités ;
 - Méthodes ensemblistes.

Formalismes classiques

Théorie des probabilités

- Modèle fréquentiste :
 - Probabilités : grandeurs objectives, s'interprètent comme des fréquences ou des limites de fréquences ;
 - Représentation des incertitudes aléatoires.
- Modèle bayésien :
 - Probabilités : grandeurs subjectives, s'interprètent en termes de comportement en situation de pari;
 - Représentation des incertitudes aléatoires et épistémiques.

Critiques de l'approche bayésienne

- Ambiguïté : absence de distinction entre ignorance totale et équiprobabilité.
- Instabilité: une distribution uniforme sur $X \in [a, b]$ induit généralement une distribution non uniforme sur g(X) pour une fonction non linéaire g.
- Arguments expérimentaux : en l'absence d'information, le comportement de décideurs ne peut pas toujours s'expliquer en supposant l'existence d'une distribution de probabilité subjective (paradoxe d'Ellsberg).

Formalismes classiques

Approche ensembliste

- La connaissance sur une variable X est décrite par un ensemble de valeurs possibles E (contrainte).
- Exemple : estimation à erreurs bornées
 - Soit un système dynamique décrit par les équations :

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k)$$

 $\mathbf{y}_k = g(\mathbf{x}_k, \mathbf{v}_k)$

- Problème : étant données des bornes sur les bruits et sur l'état initial, trouver un domaine garanti $\mathbf{X}_{k+1} \ni \mathbf{x}_{k+1}$.
- Avantage : simplicité des calculs dans certains cas (analyse par intervalles).
- Inconvénient : approche excessivement conservative.

Nouveaux formalismes

- Depuis les années 1970, de nombreux travaux en Intelligence Artificielle, Statistique, Economie, ont visé à proposer de nouveaux formalismes de représentations des incertitudes.
- Principaux formalismes :
 - Théorie des possibilités (Zadeh, 1978);
 - Théorie des probabilités imprécises (Walley, 1990);
 - Théorie des fonctions de croyance (Dempster, 1968; Shafer, 1976).

Théorie des fonctions de croyance Généralités

- Formalisme introduit par Dempster (1968) et Shafer (1976), développé par Smets dans les années 1980 et 1990.
- Autres dénominations : théorie de Dempster-Shafer, théorie de l'évidence, Modèle des Croyances Transférables
- Synthèse entre les approches ensembliste and probabiliste de représentation des incertitudes.
- Une fonction de croyance peut être vue comme
 - un ensemble généralisé et
 - une mesure non additive.

Théorie des fonctions de croyance Applications

- Inférence statistique (Dempster, 1968);
- Systèmes experts (Gordon et Shortliffe, 1985);
- Fusion d'informations;
- Classification, diagnostic par reconnaissance de formes (Appriou, 1991; Denœux, 1995; Denœux, 2000; etc.).
- Fiabilité (Dempster et Kong, 1988; Almond, 1995;
 Démotier, Schön & Denœux, 2006; Simon et Weber, 2009; Sallak, Schön & Aguirre, 2010, etc.)

Plan.

- Théorie des fonctions de croyance
 - Représentation de connaissances partielles
 - Fusion d'informations
- Mise en œuvre en diagnostic et en fiabilité
 - Diagnostic sans modèle
 - Arbres de défaillance
 - Croyance sur la fiabilité d'un composant

Outline

- Théorie des fonctions de croyance
 - Représentation de connaissances partielles
 - Fusion d'informations
- Mise en œuvre en diagnostic et en fiabilité
 - Diagnostic sans modèle
 - Arbres de défaillance
 - Croyance sur la fiabilité d'un composant

Fonction de masse

- Soit une variable X à valeurs dans un ensemble fini Ω : cadre de discernement.
- Une fonction de masse (normalisée) sur Ω est une fonction $m: 2^{\Omega} \to [0, 1]$ telle que $m(\emptyset) = 0$ et

$$\sum_{A\subseteq\Omega}m(A)=1.$$

 Les parties A de Ω t.q. m(A) > 0 sont appelées éléments focaux de m.

Fonction de masse Interprétation

- Une fonction de masse *m* modélise un élément d'évidence sur la valeur prise par la variable *X*.
- m(A) s'interprète comme une mesure de la croyance allouée exactement à l'hypothèse X ∈ A, et à aucune hypothèse plus spécifique.

Exemple

- Un meurtre a été commis. Il y a 3 suspects :
 Ω = {Pierre, Jean, Marie}.
- Un témoin a vu le meurtrier s'enfuir, mais il est myope et peut seulement attester que c'était un homme. On sait que le témoin est ivre 20 % du temps.
- Représentation de l'élément d'évidence :

$$m(\{Pierre, Jean\}) = 0.8,$$

$$m(\Omega) = 0.2$$

 La masse 0.2 n'est pas allouée à {Marie}, car le témoignage n'accuse absolument pas Marie!

Fonction de masse Cas particuliers

• Fonction de masse catégorique (ou logique) :

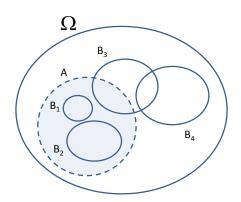
$$m(A) = 1$$
 pour un $A \subseteq \Omega$

- \rightarrow équivalente à un ensemble. La fonction de masse vide, correspondant à $A = \Omega$, représente l'ignorance totale.
- Fonction de masse bayésienne :

$$m(A) > 0 \Rightarrow |A| = 1$$

- → équivalent à une distribution de probabilité.
- Dans le cas général, une fonction de masse peut donc être vue comme :
 - un ensemble généralisé;
 - une distribution de probabilité généralisée.

Fonctions de croyance et de plausibilité



$$bel(A) = \sum_{\emptyset \neq B \subseteq A} m(B)$$

$$pl(A) = \sum_{B \cap A \neq \emptyset} m(B),$$

$$pl(A) \geq bel(A), \quad \forall A \subseteq \Omega.$$

Fonctions de croyance et de plausibilité Interprétation et cas particuliers

- Interprétations :
 - bel(A) = degré de croyance en A, justifié par l'élément d'évidence considéré.
 - pl(A) = borne supérieure du degré de croyance susceptible d'être alloué à A après prise en compte de nouvelles informations.
- Cas particuliers :
 - Si m est bayésienne, bel = pl (mesure de probabilité).
 - Si les éléments focaux sont emboîtés, pl est une mesure de possibilité, et bel est la mesure de nécessité duale.

Outline

- Théorie des fonctions de croyance
 - Représentation de connaissances partielles
 - Fusion d'informations
- Mise en œuvre en diagnostic et en fiabilité
 - Diagnostic sans modèle
 - Arbres de défaillance
 - Croyance sur la fiabilité d'un composant

Règle de Dempster

Soient m_1 et m_2 deux fonctions de masse issues de sources indépendantes.

	m ₁ (B ₁)	m ₁ (B ₂)	m ₁ (B ₃)	m ₁ (B ₄)
$m_2(C_3)$				
m ₂ (C ₂)	m ₁ (B	₃) x m ₂ (C ₂)	^	
$m_2(C_1)$				

$$(m_1 \oplus m_2)(A) = \frac{\sum_{B \cap C = A} m_1(B) m_2(C)}{1 - K}$$

avec $K = \sum_{B \cap C = \emptyset} m_1(B) m_2(C)$ (degré de conflit).

Règle de Dempster Propriétés

- Commutativité, associativité.
- Elément neutre : fonction de masse vide.
- Généralisation de l'intersection : si m_A et m_B sont des fonctions de masse catégoriques et $A \cap B \neq \emptyset$, alors

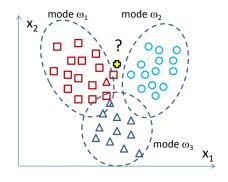
$$m_A \oplus m_B = m_{A \cap B}$$

 Généralisation du conditionnement probabiliste : si m est bayésienne et m_A catégorique, alors m ⊕ m_A est la fonction de masse bayésienne correspondant au conditionnement de m par A.

Outline

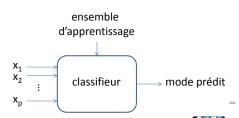
- Théorie des fonctions de croyance
 - Représentation de connaissances partielles
 - Fusion d'informations
- Mise en œuvre en diagnostic et en fiabilité
 - Diagnostic sans modèle
 - Arbres de défaillance
 - Croyance sur la fiabilité d'un composant

Diagnostic sans modèle Problème



$$\Omega = \{\omega_1, \dots, \omega_c\}$$

- Pas de modèle explicite.
- Ensemble d'apprentissage de n exemples $(\mathbf{x}_i, y_i) \in \mathbb{R}^p \times \Omega$.

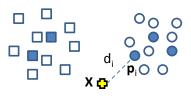


Diagnostic sans modèle Intérêt des fonctions de croyance

- Problèmes pour lesquels l'information disponible est relativement "pauvre" :
 - Ensemble d'apprentissage non exhaustif;
 - Données d'apprentissage non totalement représentatives des données acquises en conditions opérationnelles;
 - Données partiellement étiquetées (connaissance imparfaite des classes pour les données d'apprentissage), etc.
- Fusion d'informations issues de différentes sources (capteurs, experts, algorithmes d'apprentissage, etc.).

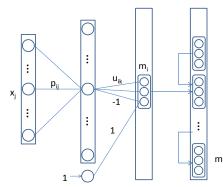
Réseaux de neurones évidentiels

IEEE transactions on Systems, Man and Cybernetics A, 30(2):131-150, 2000.



- Ensemble d'apprentissage résumé sous forme de r prototypes.
- Chaque prototype p_i est un élément d'évidence concernant la classe de x.
- La fiabilité de cet élément d'évidence décroît avec la distance d_i entre x et p_i.

Réseaux de neurones évidentiels



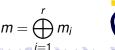
Fonction de masse induite par p_i :

$$m_i(\{\omega_k\}) = \alpha_i u_{ik} \exp(-\gamma_i d_i^2),$$

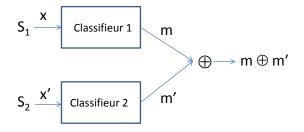
 $k = 1, \dots, c.$
 $m_i(\Omega) = 1 - \alpha_i \exp(-\gamma_i d_i^2)$

avec $u_{ik} = \text{degr\'e}$ d'appartenance du prototype \mathbf{p}_i à la classe ω_k .

Combinaison :



Exemple (fusion de décisions)

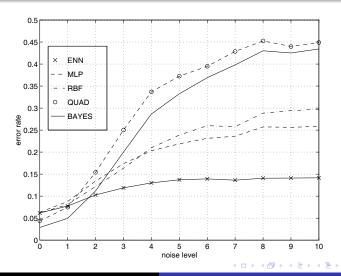


- c = 2 classes
- Ensemble d'apprentissage (n = 60): $\mathbf{x} \in \mathbb{R}^5, \mathbf{x}' \in \mathbb{R}^3$, distributions normales, conditionnellement indépendantes
- Ensemble de test (conditions opératoires réelles) : $\mathbf{x} \leftarrow \mathbf{x} + \epsilon$, $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$.

4 □ > 4 □ > 4 □ >

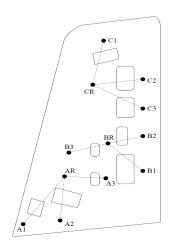
Resultats

Taux d'erreur de test : $\mathbf{x} + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2 l)$



Surveillance acoustique de structure

Mechanical Systems and Signal Processing 23(6):1792-1804, 2009

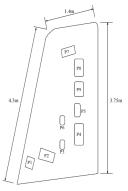


- 9 défauts (retrait des 9 panneaux d'inspection) → K = 9 classes.
- Mesures de transmissibilité par 12 capteurs acoustiques.
- 100 mesures pour chaque retrait d'un panneau d'inspection, avec 2 répétitions → 1800 observations.
- Sélection de caractéristiques (algorithme génétique) : 4 variables $\mathbf{x} \in \mathbb{R}^4$.

Résultats

Réseau de neurones évidentiel

29 prototypes, taux de bonnes classifications 89.7 %.

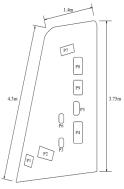


Prediction	1	2	3	4	5	6	7	8	9	Θ
True Class 1	54	5	5	0	0	0	2	0	0	0
True Class 2	0	63	0	0	2	0	0	0	0	1
True Class 3	6	1	56	2	0	0	0	0	0	1
True Class 4	5	0	1	55	0	3	0	2	0	0
True Class 5	0	0	0	0	65	0	0	1	0	0
True Class 6	2	2	2	4	0	54	1	0	0	1
True Class 7	0	1	1	0	0	0	61	2	1	0
True Class 8	0	0	1	0	1	0	0	62	1	1
True Class 9	0	0	0	0	0	0	0	3	63	0

Résultats

Réseau de neurones évidentiel + Perceptron multi-couches

Taux de bonnes classifications 92.3 %.

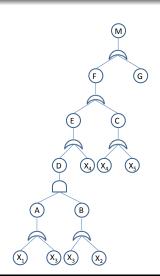


	Prediction	1	2	3	4	5	6	7	8	9
	True Class 1	63	2	0	0	0	0	1	0	0
	True Class 2	0	64	0	0	2	0	0	0	0
	True Class 3	0	1	55	6	0	0	2	2	0
	True Class 4	0	1	2	59	0	1	0	3	0
1	True Class 5	0	0	0	0	65	0	0	0	1
	True Class 6	1	2	0	6	0	57	0	0	0
	True Class 7	0	0	0	0	0	0	60	5	1
	True Class 8	1	0	0	0	1	0	0	63	2
	True Class 9	0	0	0	0	0	0	0	4	62

Outline

- 1 Théorie des fonctions de croyance
 - Représentation de connaissances partielles
 - Fusion d'informations
- Mise en œuvre en diagnostic et en fiabilité
 - Diagnostic sans modèle
 - Arbres de défaillance
 - Croyance sur la fiabilité d'un composant

Arbres de défaillances



- Formalisme largement utilisé dans les études de fiabilité des systèmes.
- Recensement de toutes les combinaisons d'événements pouvant entraîner un événement redouté en remontant jusqu'aux événements élémentaires.
- Les probabilités des événements élémentaires sont propagées pour calculer la probabilité de l'événement redouté.

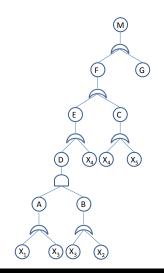
Arbres de défaillances

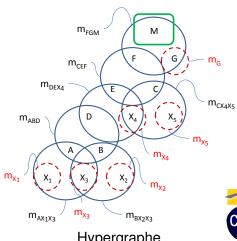
Extension aux fonctions de croyance

- Dans certaines applications les probabilités des événements élémentaires sont mal connues du fait de la rareté ou de l'absence de données de retour d'expérience.
- On peut alors exprimer l'incertitude (aléatoire et épistémique) sur les événements élémentaires sous forme de fonctions de croyance.
- Deux approches :
 - Exprimer les arbres de défaillance sous forme de réseaux bayésiens et remplacer les probabilités marginales et conditionnelles par des fonctions de croyance (Simon et Weber, 2009);
 - Représentation sous forme de fonctions de croyances multidimensionnelles (Kong, 1986; Almond, 1995; Sallak, Schön & Aguirre, 2010).

Fonctions de croyance multidimensionnelles

Exemple : arbre de défaillance (Dempster & Kong, 1988)



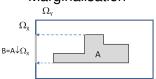


Fonctions de croyance multidimensionnelles Principes de raisonnement

 Trois opérations fondamentales : règle de Dempster, marginalisation, extension vide:

• Exemple : $U = \{X, Y\}, V = \{X\}.$

Marginalisation



Extension vide

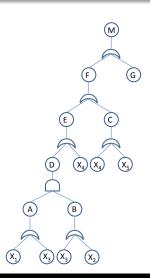
Fonctions de croyance multidimensionnelles Principes de raisonnement

La solution du problème précédent s'écrit :

$$m_T = \left(m_{U_1 \uparrow \mathcal{X}} \oplus \cdots \oplus m_{U_k \uparrow \mathcal{X}}\right)_{\mathcal{X} \downarrow T}.$$

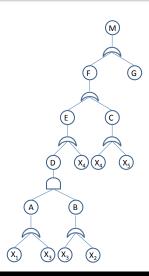
 Des algorithmes efficaces (propagation-fusion : Kong, 1986) permettent de combiner les fonctions de masse en se plaçant dans des cadres de discernement de dimensions minimales.

Fonctions de croyance multidimensionnelles Exemple (suite)



	((,,))	((-))	((5 ())
Cause	<i>m</i> ({1})	$m(\{0\})$	$m(\{0,1\})$
X_1	0.05	0.90	0.05
X_2	0.05	0.90	0.05
X_3	0.005	0.99	0.005
X_4	0.01	0.985	0.005
X_5	0.002	0.995	0.003
G	0.001	0.99	0.009
М	0.02	0.951	0.029
F	0.019	0.961	0.02

Fonctions de croyance multidimensionnelles Exemple (suite et fin)



Cause	<i>m</i> ({1})	$m(\{0\})$	$m(\{0,1\})$
M	1	0	0
G	0.197	0.796	0.007
F	0.800	0.196	0.004
:	:	:	:
X ₁	0.236	0.724	0.040
X_2	0.236	0.724	0.040
X ₃ X ₄	0.200	0.796	0.004
X_4	0.302	0.694	0.004 utc
X_5	0.099	0.898	0.003
			Clillo

Outline

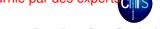
- Théorie des fonctions de croyance
 - Représentation de connaissances partielles
 - Fusion d'informations
- Mise en œuvre en diagnostic et en fiabilité
 - Diagnostic sans modèle
 - Arbres de défaillance
 - Croyance sur la fiabilité d'un composant

Fiabilité d'un composant Hypothèses et exposé du problème

- Problème : comment déterminer les fonctions de masse relatives aux événements élémentaires dans les arbres de défaillance ?
- Hypothèse : le composant tombe en panne suivant un processus de Poisson avec un taux de défaillance λ .
- Soit

$$X = \begin{cases} 1 & \text{si le composant tombe en panne dans }]0, t] \\ 0 & \text{sinon.} \end{cases}$$

- Problèmes : quantifier l'incertitude sur X à partir :
 - D'une connaissance partielle sur λ fournie par des experts
 - De données statistiques.



Fiabilité d'un composant

Détermination à partir d'une opinion

- La durée de vie W du composant suit une loi exponentielle d'espérance 1/λ. Donc, V = λW ~ ε(1).
- Les 3 variables X, λ et V sont liées par la relation :

$$X = 1 \Leftrightarrow V/t \leq \lambda$$
.

- Supposons que l'on sache seulement que $\lambda \in [\underline{\lambda}, \overline{\lambda}]$:
 - Si $V/t \leq \underline{\lambda}$, le composant est certainement en défaut, donc

$$bel(X = 1) = m_X(\{1\}) = 1 - e^{-\underline{\lambda}t}.$$

• Si $V/t > \overline{\lambda}$, le composant n'est certainement pas en défaut, donc

$$bel(X = 0) = m_X(\{0\}) = e^{-\overline{\lambda}t}.$$

• Par conséquent, $m_X(\{0,1\}) = e^{-\lambda t} - e^{-\lambda t}$.

Fiabilité d'un composant

Détermination à partir d'une opinion (suite)

 Modèle plus général : l'expert exprime sa connaissance sur λ sous forme de r intervalles emboîtés

$$[\underline{\lambda}_1,\overline{\lambda}_1]\supseteq\ldots\supseteq[\underline{\lambda}_r,\overline{\lambda}_r]$$

avec des plausibilités $1 = pl_1 \ge ... \ge pl_r \ge pl_{r+1} = 0$.

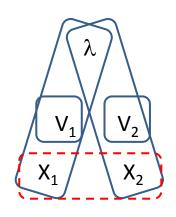
• On en déduit une fonction de masse sur λ :

$$m_{\lambda}([\underline{\lambda}_k, \overline{\lambda}_k]) = \mu_k = pl_k - pl_{k+1}, \quad k = 1, \dots, r.$$

On alors :

$$bel(X = 1) = 1 - \sum_{k=1}^{r} \mu_k e^{-\lambda_k t}, \quad bel(X = 0) = \sum_{k=1}^{r} \mu_k e^{-\overline{\lambda_k} t}$$

Fiabilité de deux composants

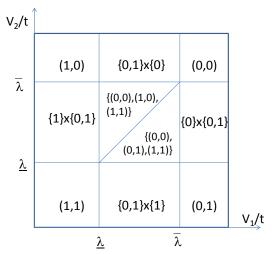


- Soient 2 composants (en série ou en parallèle) de même type.
- Problème : calculer la fonction de masse $m_{X_1X_2}$ relative à (X_1, X_2) .
- En général :

$$m_{X_1X_2} \neq m_{X_1\uparrow X_1X_2} \oplus m_{X_2\uparrow X_1X_2}$$

Les variables X_1 et X_2 ne sont pas indépendantes au sens évidentiet utc (épistémique).

Fiabilité de deux composants Solution



Conclusion

- La théorie des fonctions de croyance constitue un cadre très général pour la représentation et la manipulation de connaissances partielles.
- Ce cadre est adapté à la représentation des incertitudes en diagnostic et SdF, particulièrement lorsqu'on se trouve confronté à :
 - Des informations imparfaites (données partiellement supervisées, capteurs peu fiables, etc.);
 - Une combinaison d'informations objectives (données) et subjectives (opinions d'experts, perceptions): intégration d'informations a priori en classification, appréciation du contexte par des experts, etc.;
 - Des sources d'informations multiples (fusion multi-capteurs, combinaison multi-experts, méthodes d'ensemble en classification supervisée ou non).

Pistes de recherche

- Inférence statistique à partir de données censurées, non totalement fiables, imprécises, partiellement représentatives, etc.
- Elicitation d'avis d'experts.
- Fusion d'informations :
 - Combinaison de données et d'avis d'experts ;
 - Combinaison multi-experts (gestion du conflit, de la non indépendance, etc.)

...

Références

Articles et sources Matlab disponibles à l'adresse :

http ://www.hds.utc.fr/~tdenoeux

MERCI!

