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BP 20529 - F-60205 Compiègne cedex - France
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Abstract

Dempster’s rule plays a central role in the theory of belief functions. However, it
assumes the combined bodies of evidence to be distinct, an assumption which is not
always verified in practice. In this paper, a new operator, the cautious rule of com-
bination, is introduced. This operator is commutative, associative and idempotent.
This latter property makes it suitable to combine belief functions induced by reliable,
but possibly overlapping bodies of evidence. A dual operator, the bold disjunctive
rule, is also introduced. This operator is also commutative, associative and idempo-
tent, and can be used to combine belief functions issues from possibly overlapping and
unreliable sources. Finally, the cautious and bold rules are shown to be particular
members of infinite families of conjunctive and disjunctive combination rules based
on triangular norms and conorms.

Keywords: Evidence theory, Dempster-Shafer theory, Transferable Belief Model,
Distinct Evidence, Idempotence, Information fusion.



1 Introduction

Dempster’s rule of combination [3, 29] is known to play a pivotal role in the theory
of belief functions, together with its unnormalized version introduced by Smets in the
Transferable Belief Model (TBM) [31], hereafter referred to as the TBM conjunctive
rule. Justifications for the origins and uniqueness of these rules have been provided
by several authors [9, 31, 23, 22]. However, although they appear well founded theo-
retically, the need for greater flexibility through a larger choice of combination rules
has been recognized by many researchers involved in real-world applications. Two
limitations of Dempster’s rule and its unnormalized version seem to be their lack of
robustness with respect to conflicting evidence (a criticism which mainly applies to
Dempster’s rule), and the requirement that the items of evidence combined be distinct.

The issue of conflict management has been addressed by several authors, who
proposed alternative rules which, unfortunately, are generally not associative (see,
e.g., [41, 12, 26], and reviews in [28] and [38]). The disjunctive rule of combination
[10, 32] (hereafter referred to as the TBM disjunctive rule) is both associative and
more robust than Dempster’s rule in the presence of conflicting evidence, and its use
is appropriate when the conflict is due to poor reliability of some of the sources. It
may also be argued that problems with Dempster’s rule (and, to a lesser extent, with
the TBM conjunctive rule) are often due to incorrect or incomplete modelisation of
the problem at hand, and that these rules often yield reasonable results when they are
properly applied [18]. In [38], an expert system approach is advocated in case of large
conflict, to determine its origin and revise the underlying hypotheses accordingly.

The other, and perhaps more fundamental, limitation of Dempster’s rule lies in
the assumption that the items of evidence combined be distinct or, in other words,
that the information sources be independent. As remarked by Dempster [3], the real-
world meaning of this notion is difficult to describe. The general idea is that, in the
combination process, no elementary item of evidence should be counted twice. Thus,
non overlapping random samples from a population are clearly distinct items of evi-
dence, whereas “opinions of different people based on overlapping experiences could
not be regarded as independent sources” [3]. When the nature of the interaction be-
tween items of evidence can be described mathematically, then it is possible to extend
Dempster’s rule or the TBM conjunctive rule so as to include this knowledge (see, e.g.,
[9, 30]). However, it is often the case that, although two items of evidence (such as,
e.g., opinions expressed by two experts sharing some experiences, or observations of
correlated random quantities) can clearly not be regarded as distinct, the interaction
between them is ill known and, in many cases, almost impossible to describe.

In such a common situation, it would be very helpful to have a combination rule
that would not rely on the distinctness assumption. An early attempt to provide
such a rule is reported in [27], but it was limited to the combination of simple belief
functions (i.e., belief functions having at most two focal sets, including the frame of
discernment). This method was extended to separable belief functions (i.e., belief
functions that can be decomposed as the conjunctive sum of simple belief functions)
in [16]. However, not all belief functions are separable, and the justification for this
approach was unclear.

A natural requirement for a rule allowing the combination of overlapping bodies of
evidence is idempotence. The arithmetic mean does possess this property, but it is not
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associative, another requirement often regarded as essential. Following an approach
initiated by Dubois and Prade in [9], Cattaneo [1] studied a family of rules gener-
alizing the TBM conjunctive rule, based on the definition of a joint belief function
on a product space, whose marginals are the belief functions to be combined. Inside
this family, he proposed a rule minimizing the conflict, which happens to be idempo-
tent. However, he showed that, within this particular family of rules, associativity is
incompatible both with idempotency, and with conflict minimization.

In contrast, associative and idempotent operators exist in possibility theory, based
on the minimum triangular norm and its dual, the maximum triangular conorm.
Dubois and Yager [15] showed that agregation operators for possibility distributions
(or, equivalently, fuzzy set connectives) can be deduced from assumptions on multi-
valued mappings underlying the possibility distributions viewed as consonant belief
functions. This approach, however, has not made it possible to extend possibilistic
agregation operators to arbitrary belief functions while maintaining such properties
as associativity and idempotency. New operators satisfying these properties are pro-
posed in this paper, following a completely different approach based on some ideas
suggested to the author by the late Philippe Smets [36].

The rest of this paper is organized as follows. The underlying fundamental con-
cepts, including the canonical decomposition and the relative information content of
belief functions, are first recalled in Section 2. The cautious conjunctive rule and its
dual, the bold disjunctive rule are then introduced in Sections 3 and 4, respectively.
The cautious and bold rules are shown in Section 5 to be particular members of infinite
families of conjunctive and disjunctive combination rules based on triangular norms
and conorms. Finally, the efficiency of the cautious rule to combine information from
dependent features in a classifier fusion problem is demonstrated experimentally in
Section 6, and Section 7 concludes the paper.

2 Fundamental Concepts

In this section, the main building blocks of new combination rules defined later are
introduced. The basic concepts and terminology related to belief functions are first
summarized in Section 2.1. Section 2.2 then focuses on the canonical conjunctive
decomposition of non dogmatic belief functions, which allows their representation in
the form of conjunctive weight functions taking values in (0,+∞). This section is
essential, as the cautious conjunctive rule introduced in this paper will be expressed
as a function of conjunctive weights. Finally, Section 2.3 recalls known definitions
and results related to the ordering of belief functions according to their information
content; a new partial ordering relation based on conjunctive weights is also intro-
duced. This ordering relation will play an important role in the derivation of the new
combination rules.

2.1 Basic Definitions and Notations

In this paper, the TBM [39, 34] is accepted as a model of uncertainty. An agent’s state
of belief expressed on a finite frame of discernment Ω = {ω1, . . . , ωK} is represented
by a basic belief assignment (BBA) m, defined as a mapping from 2Ω to [0, 1] verifying
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∑
A⊆Ω m(A) = 1. Subsets A of Ω such that m(A) > 0 are called focal sets of m. A

BBA m is said to be

• normal if ∅ is not a focal set (this condition is not imposed in the TBM);

• subnormal is ∅ is a focal set;

• dogmatic if Ω is not a focal set;

• vacuous if Ω is the only focal set;

• simple if it has at most two focal sets and, if it has two, Ω is one of those;

• categorical if it has only one focal set;

• Bayesian if its focal sets are singletons.

A subnormal BBA m can be transformed into a normal BBA m∗ by the normalization
operation defined as follows:

m∗(A) =
{

k ·m(A) if A 6= ∅,
0 otherwise,

(1)

for all A ⊆ Ω, with k = (1−m(∅))−1.
A simple BBA (SBBA) m such that m(A) = 1−w for some A 6= Ω and m(Ω) = w

can be noted Aw (the advantage of this notation will become apparent later). The
vacuous BBA can thus be noted A1 for any A ⊂ Ω, and a categorical BBA can be
noted A0 for some A 6= Ω. A BBA m can equivalently be represented by its associated
belief, implicability, plausibility and commonality functions defined, respectively, as:

bel(A) =
∑

∅6=B⊆A

m(B), (2)

b(A) =
∑
B⊆A

m(B) = bel(A) + m(∅), (3)

pl(A) =
∑

B∩A6=∅

m(B), (4)

and
q(A) =

∑
B⊇A

m(B), (5)

for all A ⊆ Ω. BBA m can be recovered from any of these functions. For instance:

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B), ∀A ⊆ Ω, (6)

and
m(A) =

∑
B⊆A

(−1)|A|−|B|b(B), ∀A ⊆ Ω, (7)

where |A| denotes the cardinality of A.
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The negation (or complement) m of a BBA m is defined as the BBA verifying
m(A) = m(A) for all A ⊆ Ω, where A denotes the complement of A [10]. It may easily
be shown that the implicability function b associated to m and the commonality
function q associated to m are linked by the following relation:

b(A) = q(A), ∀A ⊆ Ω. (8)

A BBA m is said to be consonant if its focal sets are nested. This is known to be
equivalent to the following condition [29]:

pl(A ∪B) = pl(A) ∨ pl(B), ∀A,B ⊆ Ω,

where ∨ denote the maximum operator. The above equation defines a possibility
measure [42]. Consequently, a consonant BBA uniquely defines a possibility measure.
The corresponding possibility distribution is then given by

π(ω) = pl({ω}) = q({ω}), ∀ω ∈ Ω.

Given a BBA m and a coefficient α ∈ [0, 1], the discounting of m with discount
rate α yields the new BBA αm defined by:

αm = (1− α)m + α mΩ,

where mΩ denotes the vacuous BBA [29, page 252]. The discounting operation is used
to model a situation where a source S provides a BBA m, and the reliability of S is
measured by 1−α. If S is fully reliable (1−α = 1), then m is left unchanged. If S is
not reliable at all, m is transformed into the vacuous BBA. In intermediate situations,
m is replaced by a convex combination of m and the vacuous BBA.

The TBM conjunctive rule and Dempster’s rule are noted ∩© and ⊕, respectively.
They are defined as follows. Let m1 and m2 be two BBAs, and let m1 ∩©2 and m1⊕2

be the result of their combination by ∩© and ⊕. We have:

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω, (9)

and, assuming that m1 ∩©2(∅) 6= 1:

m1⊕2(A) =

{
0 if A = ∅,

m1 ∩©2(A)

1−m1 ∩©2(∅) otherwise.
(10)

Dempster’s rule is just equivalent to the TBM conjunctive rule followed by normaliza-
tion using (1). Both rules are commutative, associative, and admit a unique neutral
element: the vacuous BBA. They both assume the combined items of evidence to be
distinct. Let Aw1 and Aw2 be two SBBAs with the same focal element A 6= Ω. The
result of their ∩©-combination is the SBBA Aw1w2 . The ⊕ operator yields the same
result as long as A 6= ∅. The TBM conjunctive rule has a simple expression in terms
of commonality functions: with obvious notations, we have:

q1 ∩©2 = q1 · q2. (11)
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In the TBM, conditioning by B ⊆ Ω is equivalent to conjunctive combination with
a categorical BBA mB focused on B. The result is noted m[B], with m[B] = m ∩©mB.
This conditional BBA quantifies our belief on Ω, in a context where B holds.

Let us now assume that m1 ∩©2 has been obtained by combining two BBAs m1 and
m2, and then we learn that m2 is in fact not supported by evidence and should be
“removed” from m1 ∩©2. This “decombination” operation was introduced in [33]. It is
well defined if m2 is non dogmatic. Denoting 6∩© this operator, we can write:

m1 ∩©2 6∩©m2 = m1.

Decombination can easily be computed for any two BBAs m1 and m2 using the cor-
responding commonality functions as:

q1 6∩©2(A) =
q1(A)
q2(A)

, ∀A ⊆ Ω. (12)

Note that q2(A) > 0 for all A as long as m2 is non dogmatic. One should also be
aware that the quotient of two commonality functions is not always a commonality
function. Consequently, m1 6∩©m2 is not necessarily a BBA.

A disjunctive rule of combination ∪© also exists [10, 32]: it is defined as

m1 ∪©2(A) =
∑

B∪C=A

m1(B)m2(C), ∀A ⊆ Ω. (13)

This rule, called the TBM disjunctive rule, is also commutative and associative. It
has a simple expression in terms of implicability functions, which is the counterpart
of (11):

b1 ∪©2 = b1 · b2. (14)

As for the TBM conjunctive rule, an inverse operation may also be defined for the
TBM disjunctive rule:

b1 6∪©2(A) =
b1(A)
b2(A)

, ∀A ⊆ Ω. (15)

This operation is well-defined as long as m2 is subnormal (in which case we have
b2(A) > 0 for all A). However, it does not necessarily produce a belief function. Its
interpretation is similar to that of 6∩©: it removes, or “decombines”’, evidence which
has been combined disjunctively with prior knowledge.

The dual nature of ∩© and ∪© becomes apparent when one notices that these two
operators are linked by De Morgan’s laws [10]:

m1 ∪©m2 = m1 ∩©m2, (16)
m1 ∩©m2 = m1 ∪©m2, (17)

for all m1 and m2.
As remarked by Smets [32], the TBM conjunctive rule is based on the assumption

that the belief functions to be combined are induced by reliable sources of information,
whereas the TBM disjunctive rule only assume that at least one source of information
is reliable, but we do not know which one. Both rules assume the sources of information
to be independent (i.e., they are assumed to provide distinct, non overlapping pieces
of evidence).
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In the TBM, combination rules belong to the credal level where evidence aggre-
gation takes place, whereas decisions are made at the pignistic level [39], where each
BBA m is mapped to a pignistic probability function Betpm defined by

Betpm(ω) =
∑

{A:ω∈A}

m∗(A)
|A|

, ∀ω ∈ Ω, (18)

where m∗ denotes the normalized version of m.

2.2 Canonical Conjunctive Decomposition of a Belief Function

Shafer [29, Chapter 4] defined a separable BBA as the result of the ⊕ combination of
SBBAs. For every separable BBA in the sense of Shafer, one has:

m =
⊕

∅6=A⊂Ω

Aw(A), (19)

with w(A) ∈ [0, 1] for all A ⊂ Ω, A 6= ∅. This representation is unique if m is non
dogmatic. Shafer named this representation the canonical decomposition of m.

The concept of separability can be extended to subnormal BBAs in two ways:

• We will say that a BBA m is u-separable (where “u” stands for “unnormalized”)
if we have

m = ∩©A⊂ΩAw(A), (20)

with w(A) ∈ [0, 1] for all A ⊂ Ω;

• We will say that a BBA m is n-separable (where “n” stands for “normalized”)
if we have

m∗ =
⊕

∅6=A⊂Ω

Aw(A), (21)

where w(A) ∈ [0, 1] for all A ⊂ Ω, A 6= ∅, and m∗ is the normalized form of m.

Again, the decompositions (20) and (21) are unique as long as m is non dogmatic.
Clearly, (20) implies (21), but the converse is not true, as will be shown below. Con-
sequently, u-separability is a stronger notion than n-separability.

2.2.1 Extension to non dogmatic BBAs

The canonical decomposition of a separable BBA was extended to any non dogmatic
BBA by Smets [33]. The key to such a generalization is the notion of generalized
simple BBA (GSBBA), defined as a function µ from 2Ω to R verifying

µ(A) = 1− w, (22)
µ(Ω) = w, (23)
µ(B) = 0 ∀B ∈ 2Ω \ {A,Ω}, (24)

for some A 6= Ω and some w ∈ [0,+∞). Any GSBBA µ can thus be noted Aw for
some A 6= Ω and w ∈ [0,+∞). When w ≤ 1, µ is a SBBA. When w > 1, µ is not
a BBA, since it is no longer a mapping from 2Ω to [0, 1]. Such a function can be
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referred to as an inverse simple BBA (ISBBA), using a terminology similar to that
used in [33]. The TBM conjunctive rule can be trivially extended to combine SBBAs
and ISBBAs alike. In particular, the relationship Aw1 ∩©Aw2 = Aw1w2 still holds for
w1, w2 ∈ [0,+∞).

In [33], Smets proposed an interpretation of an ISBBA as representing a state of
belief in which one has some reasons not to believe in A. By combining Aw for some
w > 1 with the SBBA A1/w using the TBM conjunctive rule, one obtains the vacuous
bba A1. Hence, the ISBBA Aw corresponds to a situation where the agent has a “debt
of belief” in A, and some evidence has to be accumulated before it starts to believe
in A.

Using the concept of GSBBA, and extending Shafer’s approach, Smets showed that
any non dogmatic BBA can be uniquely represented as the conjunctive combination
of GSBBAs:

m = ∩©A⊂ΩAw(A), (25)

with w(A) ∈ (0,+∞) for all A ⊂ Ω. Equation (25) is clearly an extension of (19). It
defines the canonical conjunctive decomposition of m (we will see in Section 4.1 that
a canonical disjunctive decomposition also exists). The weights w(A) for every A ⊂ Ω
can be obtained from the commonalities using the following formula:

w(A) =
∏

B⊇A

q(B)(−1)|B|−|A|+1
, (26)

=



∏
B⊇A,|B|6∈2N q(B)∏
B⊇A,|B|∈2N q(B)

if |A| ∈ 2N

∏
B⊇A,|B|∈2N q(B)∏
B⊇A,|B|6∈2N q(B)

otherwise,

(27)

where 2N denotes the set of even natural numbers. Eq. (26) can be equivalently
written

lnw(A) = −
∑
B⊇A

(−1)|B|−|A| ln q(B), ∀A ⊂ Ω. (28)

One notices the similarity with (6). Hence, any procedure for transforming q to m
(such as the Fast Möbius Transform [21] or matrix multiplication [35]) can be used to
compute ln w from − ln q.

The function w : 2Ω \ {Ω} → (0,+∞) (hereafter referred to as the conjunctive
weight function) is thus yet another equivalent representation of any non dogmatic
BBA (together with bel, pl, q, etc.). This concept of conjunctive weight function can
be extended to a dogmatic BBA m by discounting it with some discount rate ε and
letting ε tend towards 0 [33]. However, this extension requires some mathematical
subtleties. Furthermore, it may be argued that most (if not all) states of belief, being
based on imperfect and not entirely conclusive evidence, should be represented by non
dogmatic belief functions, even if the mass m(Ω) is very small. For instance, consider
a coin tossing experiment. It is natural to define a BBA on Ω = {Heads, Tails}
as m({Heads}) = 0.5 and m({Tails}) = 0.5. However, this assumes the coin to
be perfectly balanced, a condition never exactly verified in practice. So, a more
appropriate BBA may be m({Heads}) = 0.5(1 − ε), m({Tails}) = 0.5(1 − ε) and
m(Ω) = ε for some small ε > 0.
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Example 1 Let Ω = {a, b, c} be a frame of discernment, and m the BBA shown in
Table 1. The weights can be computed from the commonalities using (26) as follows:

w(∅) =
q({a})q({b})q({c})q({a, b, c})
q(∅)q({a, b})q({a, c})q({b, c})

=
0.5× 1× 0.7× 0.2
1× 0.5× 0.2× 0.7

= 1

w({a}) =
q({a, b})q({a, c})
q({a})q({a, b, c})

=
0.5× 0.2
0.5× 0.2

= 1

w({b}) =
q({a, b})q({b, c})
q({b})q({a, b, c})

=
0.5× 0.7
1× 0.2

= 7/4

w({a, b}) =
q({a, b, c})
q({a, b})

=
0.2
0.5

= 2/5

w({c}) =
q({a, c})q({b, c})
q({c})q({a, b, c})

=
0.2× 0.2
0.7× 0.2

= 1

w({a, c}) =
q({a, b, c})
q({a, c})

=
0.2
0.1

= 1

w({b, c}) =
q({a, b, c})
q({b, c})

=
0.2
0.7

= 2/7.

We can see that m can be represented as the conjunctive combination of two SBBAs
{a, b}2/5 and {b, c}2/7, and an ISBBA {b}7/4.

Table 1: A BBA with its commonality and weight functions.

A m(A) q(A) w(A)
∅ 0 1 1
{a} 0 0.5 1
{b} 0 1 7/4
{a, b} 0.3 0.5 2/5
{c} 0 0.7 1
{a, c} 0 0.2 1
{b, c} 0.5 0.7 2/7

Ω 0.2 0.2

2.2.2 Special cases

In the following two propositions, we provide analytical formulas for the conjunctive
weight functions associated to two important classes of BBAs.

Proposition 1 Let A1, . . . , An be n subsets of Ω such that Ai ∩Aj = ∅ for all i, j ∈
{1, . . . , n}, and let m be a BBA on Ω with focal sets A1, . . . , An, and Ω. We assume
that m(Ω) +

∑n
k=1 m(Ak) ≤ 1, so that ∅ may also be a focal set. The conjunctive

weight function associated to m is:

w(A) =


m(Ω)

m(Ak)+m(Ω) , A = Ak,

m(Ω)
∏n

k=1

(
1 + m(Ak)

m(Ω)

)
, A = ∅,

1, otherwise.
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Proof: We have:

q(A) =


m(Ak) + m(Ω), A ⊆ Ak,
1, A = ∅,
m(Ω), otherwise.

Consequently, m may be expressed as a function of q as follows:

m(Ak) = q(Ak)− q(Ω), k = 1, . . . , n, (29)
m(Ω) = q(Ω) (30)

m(∅) = q(∅)− q(Ω)−
n∑

k=1

(q(Ak)− q(Ω)) (31)

m(A) = 0, ∀A /∈ {A1, . . . , An,Ω, ∅}. (32)

As explained above, ln w may be obtained from − ln q using any procedure that
transforms q to m. Consequently, we may, in the above equations, replace m by lnw
and q by − ln q (except in (30), because w(Ω) is not defined). We obtain from (29):

lnw(Ak) = − ln q(Ak) + ln q(Ω) = ln
q(Ω)
q(Ak)

,

which implies

w(Ak) =
m(Ω)

m(Ak) + m(Ω)
, k = 1, . . . , n.

Now, from (31) we get

lnw(∅) = − ln q(∅) + ln q(Ω) +
n∑

k=1

(ln q(Ak)− ln q(Ω)) ,

= ln

(
q(Ω)1−n

n∏
k=1

q(Ak)

)
,

= ln

(
m(Ω)1−n

n∏
k=1

(m(Ω) + m(Ak))

)
,

which implies

w(∅) = m(Ω)
n∏

k=1

(
1 +

m(Ak)
m(Ω)

)
.

Finally, (32) implies that w(A) = 1, for all A /∈ {A1, . . . , An,Ω, ∅}. �
The BBAs studied in Proposition 1 may be termed “quasi-Bayesian”, as they can

be obtained by discounting Bayesian BBAs defined on a coarsening of Ω. This class
of BBAs is closed under the TBM conjunctive rule. Quasi-Bayesian BBAs are defined
by a small number of masses, and are frequently encountered in applications.

Another important case concerns consonant BBAs, whose focal sets are nested.
The following proposition provides formulas to compute the weight function associated
to a consonant BBA.
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Proposition 2 Let m be a consonant BBA, with associated possibility distribution
π(ωk) = q({ωk}), k = 1, . . . ,K. We note πk = π(ωk) and we assume that the elements
of Ω have been arranged in decreasing order of plausibility, i.e., we have

1 ≥ π1 ≥ π2 ≥ . . . ≥ πK > 0.

Let Ak = {ω1, . . . , ωk}, k = 1, . . . ,K. The focal sets of m are in {A1, . . . , AK , ∅} (m
is subnormal if π1 < 1, and it is non dogmatic since we have assumed πK > 0). The
conjunctive weight function associated to m is:

w(A) =


π1 A = ∅,
πk+1

πk
, A = Ak, 1 ≤ k < K,

1, otherwise.

Proof. As shown in [8], m can be computed from π1, . . . , πK as:

m(A) =


1− π1, A = ∅,
πk − πk+1, A = Ak, 1 ≤ k < K,
πK , A = Ω,
0 otherwise.

Since πk = q({ωk}), we may deduce that

lnw(A) =


lnπ1, A = ∅,
− lnπk + lnπk+1, A = Ak, 1 ≤ k < K,
0 otherwise,

from which the desired expression of w can be easily derived. �

2.2.3 Normalization and combination

It may be remarked that normalizing a subnormal BBA m using (1) amounts to
combining it with the ISBBA ∅k:

m∗ = m ∩©∅k.

Consequently, the weight function w∗ associated to m∗ is identical to w, except for
the weight assigned to ∅. If m = ∩©A⊂ΩAw(A), we have

m∗ = ∅k
∩©∅w(∅)

∩©
(
∩©∅6=A⊂ΩAw(A)

)
= ∅k·w(∅)

∩©
(
∩©∅6=A⊂ΩAw(A)

)
,

= ∩©A⊂ΩAw∗(A)

with w∗(∅) = k · w(∅) and w∗(A) = w(A) for all A ∈ 2Ω \ {∅,Ω}. We can write,
equivalently:

m∗ =
⊕

∅6=A⊂Ω

Aw(A). (33)

As a direct consequence of the above remark, it is easy to formulate criteria for
u-separability and n-separability:
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• A BBA m is u-separable iff w(A) ≤ 1, for all A ⊂ Ω;

• A BBA m is n-separable iff w(A) ≤ 1, for all A ⊂ Ω, A 6= ∅.

For instance, quasi-Bayesian BBAs studied in Proposition 1 are n-separable, but they
are not u-separable in general (we may have w(∅) > 1). In contrast, consonant BBAs
are u-separable, since they satisfy the condition w(A) ≤ 1 for all A ⊂ Ω.

The w representation appears particularly interesting when it comes to combining
BBAs using the TBM conjunctive rule or Dempster’s rule. Indeed, let m1 and m2 be
two BBAs with weight functions w1 and w2. We have:

m1 ∩©m2 =
(
∩©A⊂ΩAw1(A)

)
∩©
(
∩©A⊂ΩAw2(A)

)
(34)

= ∩©A⊂ΩAw1(A)w2(A). (35)

We can thus write, with obvious notations:

w1 ∩©2 = w1 · w2,

which is reminiscent of (11). The inverse TBM conjunctive rule 6∩© also has a simple
expression in the w-space, similar to (33): we have w1 6∩©2 = w1/w2. Hence,

m1 6∩©m2 =
(
∩©A⊂ΩAw1(A)

)
6∩©
(
∩©A⊂ΩAw2(A)

)
(36)

= ∩©A⊂ΩAw1(A)/w2(A). (37)

Finally, using (33), it is easy to see that

m1 ⊕m2 =
⊕

∅6=A⊂Ω

Aw1(A)w2(A). (38)

2.2.4 Latent belief structure

Let m be a non dogmatic belief function, and w its associated conjunctive weight
function. For each weight w(A) let us define the following two quantities:

wc(A) = 1 ∧ w(A), (39)

and
wd(A) = 1 ∧ 1

w(A)
, (40)

where ∧ denotes the minimum operator. It is clear that we have

w(A) =
wc(A)
wd(A)

. (41)

Consequently, we can write

m = ∩©A⊂ΩAwc(A)/wd(A) (42)

=
(
∩©A⊂ΩAwc(A)

)
6∩©
(
∩©A⊂ΩAwd(A)

)
(43)

= mc
6∩©md. (44)
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Any non dogmatic BBA m can thus be decomposed into two u-separable BBAs mc and
md called, respectively, its confidence and diffidence components. The pair (mc,md)
forms what Smets called a latent belief structure (LBS) [33]. He proposed to interpret
mc as representing positive evidence, i.e., good reasons to believe in various propo-
sitions A ⊆ Ω, and md as representing negative evidence, i.e., good reasons not to
believe in the same propositions. The BBA m is obtained by removing the negative
evidence md from the positive evidence mc. Note that we have the following property
with respect to the TBM conjunctive rule: if (mc

1,m
d
1) and (mc

2,m
d
2) are two LBSs

associated to non dogmatic BBAs m1 and m2, respectively, then (mc
1 ∩©mc

2,m
d
1 ∩©md

2)
is a LBS associated to m1 ∩©m2.

2.3 Informational Comparison of Belief Functions

In the TBM, the Least commitment Principle (LCP) plays a role similar to the prin-
ciple of maximum entropy in Bayesian Probability Theory. As explained in [32], the
LCP indicates that, given two belief functions compatible with a set of constraints,
the most appropriate is the least informative. To make this principle operational, it is
necessary to define ways of comparing belief functions according to their information
content. Three such partial orderings, generalizing set inclusion, were proposed in the
1980’s by Yager [40] and Dubois and Prade [10]; they are defined as follows:

• pl-ordering: m1 vpl m2 iff pl1(A) ≤ pl2(A), for all A ⊆ Ω;

• q-ordering: m1 vq m2 iff q1(A) ≤ q2(A), for all A ⊆ Ω;

• s-ordering: m1 vs m2 iff there exists a square matrix S with general term
S(A,B), A,B ∈ 2Ω verifying∑

B⊆Ω

S(A,B) = 1, ∀A ⊆ Ω,

S(A,B) > 0 ⇒ A ⊆ B, A, B ⊆ Ω,

such that
m1(A) =

∑
B⊆Ω

S(A,B)m2(B), ∀A ⊆ Ω. (45)

The term S(A,B) may be seen as the proportion of the mass m2(B) which is
transferred (“flows down”) to A. Matrix S is named a specialization matrix
[23, 35], and m1 is said to be a specialization of m2.

As shown in [10], these three definitions are not equivalent: m1 vs m2 implies m1 vpl

m2 and m1 vq m2, but the converse is not true. Additionally, pl-ordering and q-
ordering are not comparable. However, in the set of consonant BBAs, these three
partial orders are equivalent. The interpretation of these ordering relations is discussed
in [10] from a set-theoretical perspective, and in [13] from the point of view of the
TBM. Whenever we have m1 vx m2, with x ∈ {pl, q, s}, we will say that m1 is x-more
committed than m2.

Another concept which leads to an alternative definition of informational order-
ing is that of Dempsterian specialization [23]. m1 is said to be a Dempsterian spe-
cialization of m2, which we note m1 vd m2, iff there exists a BBA m such that
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m1 = m ∩©m2. As shown in [23], this is a stronger condition than specialization, i.e.,
we have m1 vd m2 ⇒ m1 vs m2, but the converse is false. If m1 = m ∩©m2, then
there is a specialization matrix Sm defined as a function of m, called a Dempsterian
specialization matrix, allowing to compute m1 from m2 using relation (45).

Finally, we can think of one more definition of informational ordering based on
the weight function recalled in Section 2.2: given two non dogmatic BBAs m1 and
m2, we can say that m1 is w-more committed than m2, which we note m1 vw m2,
iff w1(A) ≤ w2(A), for all A ⊂ Ω. Because of (35), this is equivalent to the existence
of a u-separable BBA m, with weight function w = w1/w2, such that m1 = m ∩©m2.
Consequently, w-ordering is strictly stronger than d-ordering. The meaning of vd

and vw is clear: if m1 vd m2 or m1 vw m2, it means that m1 is the result of the
combination of m2 with some BBA m; consequently, m1 has a higher information
content than m2. In the case of vw, the requirement that m be u-separable may seem
artificial. However, it may be argued that most belief functions encountered in practice
result from the pooling of simple evidence, and are therefore u-separable. As shown
in Section 2.2.2, this is also the case for consonant belief funtions, a class of belief
functions often encountered in applications because of its simplicity. Furthermore, we
will see that w-ordering happens to be a simpler and more convenient notion, for some
purposes, than other orderings. A slightly weaker notion based on n-separability will
be defined later in Section 3.3. We defer the introduction of this additional notion for
clarity of presentation.

In summary, we thus have, for any two non dogmatic BBAs m1 and m2:

m1 vw m2 ⇒ m1 vd m2 ⇒ m1 vs m2 ⇒
{

m1 vpl m2

m1 vq m2,
(46)

where all implications are strict.
The vacuous BBA mΩ (with weight function wΩ(A) = 1, for all A ⊂ Ω) is the

unique greatest element for partial orderings vx with x ∈ {pl, q, s, d}, i.e., we have

m vx mΩ, ∀m,∀x ∈ {pl, q, s, d}.

In contrast, mΩ is only a maximal element for vw, i.e., we have the following weaker
property

mΩ vw m ⇒ m = mΩ.

The BBAs that are w-less specific than mΩ are the u-separable ones. Non u-separable
BBAs are not comparable with mΩ according to relation vw.

As emphasized by Dubois and Prade in [10], relations vx with x ∈ {pl, q, s}
generalize set inclusion: if mA and mB are two categorical BBAs such that mA(A) = 1
and mB(B) = 1, then mA vx mB, with x ∈ {pl, q, s}, if and only if A ⊆ B. The same
is true for relation vd. For relation vw, this property does not hold, since categorical
BBAs, being dogmatic, cannot be compared according to vw. However, we can still
have a similar property if we consider a categorical BBA as the limit of a sequence of
non dogmatic BBAs. More precisely, let (εn), n = 1, 2, . . . ,∞ be a real sequence such
that εn ∈ [0, 1] for all n, and limn→∞ εn = 0. For any A ⊆ Ω, let mn

A the BBA with
following weight function:

wn
A(C) =

{
εn if C ⊇ A
1 otherwise,
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for all C ⊂ Ω. It is clear that mn
A(A) ≥ 1−εn. Consequently, we have limn→∞ mn

A(A) =
1 and limn→∞ mn

A(C) = 0, for all C 6= A. This means that the categorical BBA mA

may seen as the limit of the sequence (mn
A), this sequence being uniquely defined,

given (εn). Using this representation, we can state the following proposition.

Proposition 3 Let A and B be two subsets of Ω, mA and mB the categorical BBAs
focused on A and B, and (mn

A) and (mn
B) their representations as sequences of BBAs

as defined above. Then, we have

A ⊆ B ⇔ mn
A vw mn

B, ∀n ≥ 1.

Proof: Assume that A ⊆ B. Let C be an arbitrary subset of Ω:

• if C ⊇ B, then C ⊇ A, and we have wn
A(C) = wn

B(C) = εn;

• if C 6⊇ B, then wn
B(C) = 1 ≥ wn

A(C).

Conversely, assume that wn
A(C) ≤ wn

B(C) for all C ⊂ Ω. Then wn
A(B) ≤ wn

B(B) = εn.
Consequently, wn

A(B) = εn, and A ⊆ B. �
Equipped with these definitions of the relative information content of belief func-

tions, it is possible to give an operational meaning of the LCP. Let M be a set of BBA
compatible with a set of constraints. The LCP dictates to choose a greatest element
in M, if one such element exists, according to one of the partial ordering vx, for some
x ∈ {pl, q, s, d, w}. These partial orderings seem equally well justified and reasonable
and, in the absence of any decisive argument to discard any of them, considerations
of simplicity, existence of a solution and tractability of calculations can be invoked to
choose a particular ordering for a given problem. For instance, q-ordering is adopted
in [13] to derive the expression of the q-least committed BBA with given pignistic
probability function. In the following section, the same principle is used to derive a
rule of combination, using partial ordering vw.

3 The Cautious Conjunctive Rule

3.1 Derivation from the LCP

Just as relations vx may be seen as generalizing set inclusion, it is possible to conceive
conjunctive combination rules generalizing set intersection, by reasoning as follows.
Assume that we have two sources of information, one of which indicates that the true
value of the variable of interest ω lies in A ⊆ Ω, while the other one indicates that
it lies in B ⊆ Ω, with A 6= B. If we consider both sources as reliable, then we can
deduce that ω lies in some set C such that C ⊆ A, and C ⊆ B. The largest of these
subsets is the intersection A ∩B of A and B.

Let us now assume that the two sources provide BBAs m1 and m2, and the sources
are both considered to be reliable. The agent’s state of belief, after receiving these
two pieces of information, should then be represented by a BBA m12 more informative
than m1, and more informative than m2. Let us denote by Sx(m) the set of BBAs
m′ such that m′ vx m, for some x ∈ {pl, q, s, d, w}. We thus have m12 ∈ Sx(m1)
and m12 ∈ Sx(m2) or, equivalently, m12 ∈ Sx(m1) ∩ Sx(m2). According to the LCP,
one should select the x-least committed element in Sx(m1) ∩ Sx(m2). This defines
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a conjunctive combination rule, provided that an x-least committed element (i.e., a
greatest element with respect with partial order vx) exists and is unique.

In [13], this approach was used to justify the minimum rule for combining possibil-
ity distributions, from the point of view of the TBM. Let m1 and m2 be two consonant
BBAs, and let q1 and q2 be their respective commonality functions. Then, the con-
sonant BBA m12 with commonality function q12(A) = q1(A) ∧ q2(A) for all A ⊆ Ω is
claimed in [13] to be the s-least committed element in the set Ss(m1) ∩ Ss(m2). This
approach, however, cannot be blindly transposed to non consonant BBAs, since the
minimum of two commonality functions is not, in general, a commonality function.

However, applying this approach with the vw ordering does yield an interesting
solution, as shown by the following lemma and proposition.

Lemma 1 Let m by a non dogmatic BBA with conjunctive weight function w, and let
w′ be a mapping from 2Ω \Ω to (0,+∞) such that w′(A) ≤ w(A) for all A ⊂ Ω. Then
w′ is the conjunctive weight function of some BBA m′.

Proof: We have

w′(A) = w(A) · w′(A)
w(A)

, ∀A ⊂ Ω.

Since w′(A)/w(A) ≤ 1 for all A ⊂ Ω, w′/w is the weigth function of a u-separable
BBA. Consequently, w′ is the weigth function of a BBA m′ obtained by combining
m with a u-separable BBA using the TBM conjunctive rule. �

Proposition 4 Let m1 and m2 be two non dogmatic BBAs. The w-least committed
element in Sw(m1)∩Sw(m2) exists and is unique. It is defined by the following weight
function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω. (47)

Proof: For i = 1 and i = 2, we have m ∈ Sw(mi) iff w(A) ≤ wi(A) for all A ⊂ Ω.
Hence, m ∈ Sw(m1) ∩ Sw(m2) iff w(A) ≤ w1(A) ∧ w2(A) for all A ⊂ Ω. Let us
consider function w1 ∧©2 defined by w1 ∧©2(A) = w1(A) ∧ w2(A), for all A ⊂ Ω. This
is the conjunctive weight function of a valid BBA, as a consequence of Lemma 1.
Consequently, it corresponds to the unique w-least committed element in Sw(m1) ∩
Sw(m2). �

Equation (47) defines a new rule which can be formally defined as follows.

Definition 1 (Cautious conjunctive rule) Let m1 and m2 be two non dogmatic
BBAs. Their combination using the cautious conjunctive rule (or cautious rule for
short) is noted m1 ∧©2 = m1 ∧©m2. It is defined as the BBA with the following weight
function:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω.

We thus have
m1 ∧©m2 = ∩©A⊂ΩAw1(A)∧w2(A). (48)

Note that this rule happens to generalize a method proposed by Kennes [20] for
combining u-separable BBAs induced by non distinct items of evidence, based on an
application of category theory to evidential reasoning. Using the canonical decompo-
sition of non dogmatic belief functions and the concept of w-ordering, the new rule
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described in this paper proves to be well justified for combining the wider class of non
dogmatic belief functions.

As another remark, it must also be emphasized that the cautious rule provides a
BBA m1 ∧©m2 which is the w-least committed in the set Sw(m1) ∩ Sw(m2) of BBAs
that are w-more committed than both m1 and m2. When either m1 or m2 is not
u-separable, then m1 ∩©m2 does not belong to that set (because, e.g., w1(A)w2(A) >
w1(A) whenever w2(A) > 1). Consequently, we do not have m1 ∩©m2 vw m1 ∧©m2 in
general, except when both m1 and m2 are separable.

In practice, the cautious combination of two non dogmatic BBAs m1 and m2 can
thus be computed as follows:

• Compute the commonality functions q1 and q2 using (5);

• Compute the weight functions w1 and w2 using (26);

• Compute m1 ∧©2 = m1 ∧©m2 as the ∩© combination of GSBBAs Aw1(A)∧w2(A), for
all A ⊂ Ω such that w1 ∧ w2(A) 6= 1.

Example 2 Table 2 shows the weight functions of two BBAs m1 and m2 on Ω =
{a, b, c}, a well as the combined weight function w1 ∧©2 and BBA m1 ∧©m2. In this
case, m1 ∧©2 is obtained as the TBM conjunctive combination of three SBBAs: {b}0.7,
{a, b}2/5 and {b, c}2/7. By combining the first two we get a mass 0.3 on {b}, 3/5×0.7 =
0.42 on {a, b} and 2/5× 0.7 = 0.28 on Ω. Combination with {b, c}2/7 then yields

m1 ∧©2({b}) = 0.3× (2/7 + 5/7) + 0.42× 5/7 = 0.6,

m1 ∧©2({a, b}) = 0.42× 2/7 = 0.12,

m1 ∧©2({b, c}) = 0.28× 5/7 = 0.2,

m1 ∧©2(Ω) = 0.28× 2/7 = 0.08.

The result of the combination of m1 and m2 using the TBM conjunctive rule directly
from (9) is shown in the last column of Table 2 for comparison.

Table 2: Combination of two BBAs using the cautious rule.

A m1(A) w1(A) m2(A) w2(A) w1 ∧©2(A) m1 ∧©2(A) m1 ∩©2(A)
∅ 0 1 0 1 1 0 0
{a} 0 1 0 1 1 0 0
{b} 0 7/4 0.3 0.7 0.7 0.6 0.42
{a, b} 0.3 2/5 0 1 2/5 0.12 0.09
{c} 0 1 0 1 1 0 0
{a, c} 0 1 0 1 1 0 0
{b, c} 0.5 2/7 0.4 3/7 2/7 0.2 0.43

Ω 0.2 0.3 0.08 0.06

3.2 Properties

Proposition 5 The cautious conjunctive rule has the following properties:
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Commutativity: for all m1 and m2, m1 ∧©m2 = m2 ∧©m1;

Associativity: for all m1, m2 and m3, m1 ∧©(m2 ∧©m3) = (m1 ∧©m2) ∧©m3;

Idempotence: for all m, m ∧©m = m;

Distributivity of ∩© with respect to ∧© : for all m1, m2 and m3,

m1 ∩©(m2 ∧©m3) = (m1 ∩©m2) ∧©(m1 ∩©m3).

Proof: Commutativity, associativity and idempotence result directly from correspond-
ing properties of the minimum operator. Distributivity of ∩© with respect to ∧© is a
consequence of distribution of the product with respect to the minimum:

w1(w2 ∧ w3) = (w1w2) ∧ (w1w3), ∀w1, w2, w3.

�
The last property (distributivity) is actually quite important, as it explains why

the cautious rule can be considered to be more relevant than the TBM conjunctive
rule ∩© when combining non distinct items of evidence: if two sources provide BBAs
m1 ∩©m2 and m1 ∩©m3 having some evidence m1 in common, the shared evidence is not
counted twice.

The following proposition is linked to the notion of LBS introduced in Section
2.2.4. It will be useful to explain some additional properties of the cautious rule.

Proposition 6 Let m1 and m2 be two non dogmatic BBAs with conjunctive weight
functions w1 and w2. Let (mc

1,m
d
1) and (mc

2,m
d
2) denote the LBSs associated to m1

and m2, respectively, and let (wc
1, w

d
1) and (wc

2, w
d
2) denote the corresponding weights.

Then the LBS (mc
1 ∧©2,m

d
1 ∧©2) associated to m1 ∧©m2 is defined by

mc
1 ∧©2 = ∩©A⊆ΩAwc

1∧wc
2 ,

md
1 ∧©2 = ∩©A⊆ΩAwd

1∨wd
2 ,

where ∨ denotes the maximum operation.

Proof: For any A ⊂ Ω, we have

wc
1 ∧©2(A) = 1 ∧ w1 ∧©2(A)

= 1 ∧ w1(A) ∧ w2(A)
= (1 ∧ w1(A)) ∧ (1 ∧ w2(A))
= wc

1(A) ∧ wc
2(A),
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and

wd
1 ∧©2(A) = 1 ∧ 1

w1 ∧©2(A)

= 1 ∧ 1
w1(A) ∧ w2(A)

= 1 ∧
(

1
w1(A)

∨ 1
w2(A)

)
=

(
1 ∧ 1

w1(A)

)
∨
(

1 ∧ 1
w2(A)

)
= wd

1(A) ∨ wd
2(A).

�
We thus see that, using the cautious rule, the confidence parts are combined con-

junctively, whereas the diffidence parts are combined disjunctively by taking the maxi-
mum of the two weight functions wd

1 and wd
2 . Note that such a disjunctive combination

is well defined only for u-separable BBAs (see Section 4 for further discussion on this
issue and the definition of a disjunctive counterpart of the cautious rule). Combining
the diffidence components disjunctively does seem to make sense, as shown by the
following informal argument. According to Smets [33], md(A) should be interpreted
as the strength of evidence that one should not believe A. If I receive two pieces of
evidence, one of which tells me not to believe A while the other tells me not to believe
B, then I am inclined not to believe A∪B, hence the disjunctive nature of the combi-
nation. Consequently, there seems to be some form of duality between the confidence
and diffidence components of a LBS, which translates into different mechanisms for
combining each of the two components.

As is well known, the vacuous BBA is the neutral element for the TBM con-
junctive rule, whereas it is an absorbing element for the TBM disjunctive rule. As
a consequence of the dual conjunctive/disjunctive nature of the cautious rule, cau-
tious combination of a BBA m with the vacuous BBA has the effect of absorbing
the diffidence component, while leaving the confidence component unchanged. This
is formalized in the following proposition.

Proposition 7 For any non dogmatic BBA m with corresponding LBS (mc,md):

m ∧©mΩ = mc.

Proof. This is a direct consequence of Proposition 6. Let wc and wd denote, respec-
tively, the weight functions of mc and md. The weights associated to the confidence
component of m ∧©mΩ are wc(A) ∧ 1 = wc(A) for all A ⊂ Ω, whereas those associated
to the diffidence component are wd(A) ∨ 1 = 1 for all A ⊂ Ω. �

The following proposition follows directly from the previous one.

Proposition 8 For any non dogmatic BBA m, mΩ ∧©m = m iff m is u-separable.

Proof. m is u-seperable iff it is equal to its confidence component, i.e. m = mc, hence
the result. �
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Proposition 8 implies that, when combining a BBA m with the vacuous BBA
using the cautious rule, one does not in general recover m but only a u-separable
approximation in the form of its confidence component. This is a consequence of
Proposition 6, which shows that, for non u-separable BBAs, the cautious rule is not
purely conjunctive as it combines the diffidence components in a disjunctive manner.
Furthermore, it is easy to see that the cautious conjunctive rule has no neutral element,
since the only BBA m0 such that m ∧©m0 = m for any u-separable BBA m is the
vacuous BBA, and this property is not satisfied for non u-separable BBAs.

Note that, in practice, the cautious rule will often behave in a purely conjunc-
tive fashion because most belief functions encountered in applications are u-separable.
This is the case, in particular, for belief functions elicited from experts, which are
often obtained by discounting logical propositions. This is also the case for consonant
BBAs, as shown in in Section 2.2.2, and for belief functions inferred using the Gen-
eral Bayesian Theorem [32, 2] (see Section 6) or the evidential case-based reasoning
approach [4, 5], two widely used mechanisms for reasoning with belief functions in
diagnosis and classification applications [7].

To conclude this description of the main properties of the cautious rule, it is
important to mention some implications of selecting the vw ordering in its definition.
As a consequence of (46), we have, for any bbas m1 and m2;

Sw(m1) ∩ Sw(m2) ⊆ Sd(m1) ∩ Sd(m2) ⊆ Ss(m1) ∩ Ss(m2) ⊆ Spl(m1) ∩ Spl(m2)

and

Sw(m1) ∩ Sw(m2) ⊆ Sd(m1) ∩ Sd(m2) ⊆ Ss(m1) ∩ Ss(m2) ⊆ Sq(m1) ∩ Sq(m2),

with the subset relations being usually strict. Choosing the combined bba in Sw(m1)∩
Sw(m2), as done by the cautious rule, then comes down to choosing the smallest set
of possible combined bbas in the above relations. In that set, the cautious rule selects
the w-least committed element, which exists and is unique, as stated by Proposition 4.
In that sense, it may be termed “cautious” as it is derived from the LCP. However, it
must be kept in mind that the choice of Sw(m1)∩Sw(m2) imposes severe restrictions
on the combination. As a consequence, bbas x-less committed than m1 ∧©m2 (with
x ∈ {w, d, s, pl, q}) may exist outside Sw(m1)∩Sw(m2). In particular, when m1 or m2

is not u-separable, m1 ∩©m2 does not belong to Sw(m1)∩Sw(m2), and it is possible to
have m1 ∧©m2 vw m1 ∩©m2, as shown by the following example1.

Example 3 Let us consider the following bbas on Ω = {a, b, c, d, e}:

m1(A) =


0.4 if A = {a, b} or A = {b, c}
0.2 if A = Ω,
0 otherwise,

m2(A) =


0.4 if A = {b, d} or A = {b, e}
0.2 if A = Ω,
0 otherwise.

1This example was suggested to the author by Frédéric Pichon.
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The corresponding weight functions are

w1(A) =


1/3 if A = {a, b} or A = {b, c}
1.8 if A = {b},
1 otherwise,

w2(A) =


1/3 if A = {b, d} or A = {b, e}
1.8 if A = {b},
1 otherwise.

It can easily be checked that w1(A) ∧ w2(A) ≤ w1(A)w2(A) for all A ⊂ Ω and,
consequently, m1 ∧©m2 vw m1 ∩©m2.

As illustrated by the previous example, the cautious rule is not more “cautious”
than the TBM conjunctive rule when applied to non u-separable bbas, even in the
sense of the vw ordering. As will be shown in Section 5, these two rules actually
belong to two different families of rules with distinct algebraic properties, and as such
they cannot easily be compared.

The strong constraint imposed to the cautious rule seems to be the price to pay for
its ease of calculation and good properties (associativity, idempotence, distributivity
of ∩© with respect to ∧©)) as outlined above. It would, of course, be possible to
consider a larger set Sx(m1)∩Sx(m2), with x ∈ {d, s, pl, q} as the search space for the
combination of two bbas m1 and m2. However, the existence and unicity of a x-least
committed element would then no longer be verified in general, making it impossible
to apply the LCP. One could also consider selecting a combined bba maximizing an
uncertainty measure (see, e.g., [25]). Finding both a search space and an uncertainty
measure ensuring interesting properties of the combination seems to be a very difficult
problem which is left for further research.

3.3 The Normalized Cautious Rule

A normalized version of the cautious rule introduced in the previous section may be
defined by replacing the conjunctive rule ∩© by Dempster’s rule ⊕ in (48). Denoting
this rule by ∧©∗, we have:

m1 ∧©∗2 = m1 ∧©∗m2 =
⊕

∅6=A⊂Ω

Aw1(A)∧w2(A). (49)

We thus have
m1 ∧©∗2(A) = k ·m1 ∧©2(A), ∀A ⊆ Ω, A 6= ∅,

with k = (1−m1 ∧©2(∅))−1, and m1 ∧©∗2(∅) = 0. Note that we can never have m1 ∧©2(∅) =
1, because the cautious combination of two non dogmatic BBAs can never be dogmatic.
As shown in Section 2.2, the weight functions of m1 ∧©∗m2 and m1 ∧©m2 differ only by
the weight assigned to the empty set: with obvious notations, we have

w1 ∧©∗2(A) = w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ∈ 2Ω \ {∅,Ω},

and w1 ∧©∗2(∅) = k · w1 ∧©2(∅). Clearly, this rule has the same properties as its unnor-
malized counterpart: it is commutative, associative and idempotent. When combining
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several BBAs m1, . . . ,mn using the normalized cautious rule, we may either compute
their unnormalized cautious combination and normalize the end result, or normalize
intermediate results in the computation. The same property is known to hold for
Dempster’s rule [29].

The normalized cautious rule ∧©∗ can be justified using the LCP with a suitable
ordering relation. Let v∗w denote the following partial order between non dogmatic
BBAS: m1 v∗w m2 iff w1(A) ≤ w2(A), for all A ⊂ Ω, A 6= ∅. Obviously, we have

m1 vw m2 ⇒ m1 v∗w m2,

for all m1 and m2, and the implication is strict. When the condition m1 v∗w m2 holds,
we will say that m1 is w∗-more committed than m2. Using the same line of reasoning
as in Section 3.1, it is easy to show that m1 ∧©∗m2 is the w∗-least committed BBA
among all normal BBAs which are w∗-more committed than m1 and m2.

The following proposition is a counterpart to Proposition 8:

Proposition 9 For any non dogmatic normal BBA m, mΩ ∧©∗m = m iff m is n-
separable.

Proof. Let m be a non dogmatic normal BBA and w is weight function. Then
w(A) ∧ 1 = w(A) for A ⊂ Ω, A 6= ∅ implies that w(A) ≤ 1 for A ⊂ Ω, A 6= ∅, i.e., m
is n-separable. The converse is obvious. �

Example 4 Table 3 shows intermediate steps for the computation of the normalized
cautious combination of two BBAs m1 and m2. Their weight functions are first com-
puted and combined using the minimum operator. The corresponding BBA is then
computed, and normalized. It can be checked that the weight function w1 ∧©∗2 is equal
to w1 ∧©2, except for w1 ∧©∗2(∅) = 1/(1−m1 ∧©2(∅)) = 2.57.

Table 3: Combination of two BBAs using the normalized cautious rule.

A m1(A) w1(A) m2(A) w2(A) w1 ∧©2(A) m1 ∧©2(A) m1 ∧©∗2(A)
∅ 0 1 0 7/5 1 0.61 0
{a} 0 1 0.3 0.5 0.5 0.061 0.16
{b} 0 7/4 0 1 1 0.092 0.24
{a, b} 0.3 2/5 0 1 2/5 0.037 0.094
{c} 0 1 0.4 3/7 3/7 0.11 0.29
{a, c} 0 1 0 1 1 0 0
{b, c} 0.5 2/7 0 1 2/7 0.061 0.16

Ω 0.2 0.3 0.025 0.063

Note that we have, in Example 4, m1 ∧©2(∅) = 0.61, whereas it can be checked
that m1 ∩©2(∅) = 0.27. This illustrates the fact that the cautious rule is not related to
conflict minimization, contrary to, e.g., the rule proposed in [1].

4 The Bold Disjunctive Rule

Just as the cautious rule extends set intersection, as shown in Section 3.1, one may
wonder whether the same principle could be used to derive a disjunctive operator
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generalizing set union. Just as the union of two sets A and B is the smallest set
containing both A and B, we could attempt to define the disjunction of two BBAs
m1 and m2 issued from two sources as the most x-committed BBA, among the set
of BBAs less x-committed than m1 and m2. This approach seems appropriate when
it is only known that at least one of the two sources is reliable, but we do not know
which one. The combined BBA should then be less informative than each of the BBAs
provided by the individual sources.

Formally, let us denote as Gx(m) the set of BBAs m′ such that m vx m′. If the
set Gx(m1)∩ Gx(m2) possesses a most x-committed element, then this element could,
by definition, be equated to the disjunction of m1 and m2. Since this BBA would be
the most committed one, among those which are less informative than m1 and m2,
such a rule could be named a bold disjunctive rule.

If we adopt w-ordering as the definition of inclusion, then Gw(m1) is the set of
BBAs m such that w(A) ≥ w1(A) for all A ⊂ Ω. Similarly, Gw(m2) contains the
BBAs m such that w(A) ≥ w2(A) for all A ⊂ Ω. The intersection Gw(m1) ∩ Gw(m2)
thus contains the set of BBAs for which w(A) ≥ w1(A) ∨ w2(A) for all A ⊂ Ω, where
∨ denotes the maximum operator. The most w-committed element in that set, if it
exists, has the weight function w1 ∨ w2. This approach is valid in the case where m1

and m2 are both separable BBA: in that case, we still have w1(A)∨w2(A) ≤ 1 for all
A ⊂ Ω, and w1∨w2 defines a separable belief function [20]. However, this rule cannot
be used to combine arbitrary non dogmatic BBAs, because w1 ∨ w2 does not always
correspond to a belief function, as shown by the following counterexample.

Example 5 Consider the two BBAs m1 and m2 of Example 2, and let w = w1 ∨ w2

be the weight function obtained by taking the maximum of the weight functions of m1

and m2. We have w({b}) = 7/4∨0.7 = 7/4, w({b, c}) = 2/7∨3/7 = 3/7, and w(A) = 1
for all other A ⊂ Ω. The corresponding mass function is thus the TBM combination of
ISBBA {b}7/4 and SBBA {b, c}3/7. We get m({b}) = −3/4, m({b, c}) = 7/4×4/7 = 1,
and m(Ω) = 7/4× 3/7 = 3/4, which does not correspond to a belief function.

In the rest of this section, we will show that the above approach does allow to
define a disjunctive counterpart of the cautious rule, provided it is based on a proper
informational ordering of belief functions. To define such an ordering, we will need
to introduce a canonical disjunctive representation of belief functions, dual to the
“conjunctive” one introduced in [33] and recalled in Section 2.2. This representation
is presented in the following section.

4.1 Canonical Disjunctive Decomposition of a Subnormal BBA

Let m be a subnormal BBA. Its complement m is non dogmatic and can be decomposed
as

m = ∩©A⊂ΩAw(A).

Consequently, m can be written

m = ∩©A⊂ΩAw(A)

= ∪©A⊂ΩAw(A).
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We recall that Aw(A) denotes the GSBBA assigning a mass w(A) > 0 to Ω and a mass
1 − w(A) to A. Consequently, its complement Aw(A) is a generalized BBA with two
focal sets: A with a mass 1−w(A), and ∅ with a mass w(A). Such a mapping can be
called a negative GSBBA, as it is the negation of a GSBBA, and noted Av(A), with
v(A) = w(A). We can thus write

m = ∪©A⊂ΩAv(A) (50)

= ∪©A6=∅Av(A). (51)

We have proved the following proposition:

Proposition 10 (Canonical disjunctive decomposition) Any subnormal BBA
m can be uniquely decomposed as the ∪©-combination of negative generalized BBAs
Av(A) assigning a mass v(A) > 0 to ∅, and a mass 1 − v(A) to A, for all A ⊆ Ω,
A 6= ∅:

m = ∪©A6=∅Av(A). (52)

Function v : 2Ω \ {∅} → (0,+∞) will be referred to as the disjunctive weight function.
It is related to the conjunctive weight function w associated to the negation m of m
by the equation

v(A) = w(A), ∀A 6= ∅. (53)

A comparison between equations (8) and (53) shows that the relation between v
and w parallels that between b and q. As a consequence, v can be obtained from b
using a formula similar to (28), as expressed in the following proposition.

Proposition 11 Let v and b the disjunctive weight and implicability functions asso-
ciated to a subnormal BBA m. They are related by the following equation:

ln v(A) = −
∑
B⊆A

(−1)|A|−|B| ln b(B). (54)

Proof: Using (53) and (28), we have

ln v(A) = lnw(A)

= −
∑
B⊇A

(−1)|B|−|A| ln q(B).

Now, (8) implies that q(B) = b(B). Observing that B ⊇ A ⇔ B ⊆ A, and |B|− |A| =
|A| − |B|, we get the desired result. �

Note that relation (54) between ln v and − ln b has the same form as relation (7)
between m and b. Consequently, any procedure for transforming b to m can be used
to compute ln v from − ln b.

Example 6 Table 4 illustrates the computation of disjunctive weights using (53).

Just as the TBM conjunctive rule can be easily computed using conjunctive weights
using (35), the TBM disjunctive rule has a simple expression in terms of the disjunctive
weights, as shown by the following proposition.
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Table 4: Computation of disjunctive weights.

A m(A) m(A) w(A) v(A)
∅ 0.1 0 2.8
{a} 0 0.6 0.1429 1
{b} 0 0 1 1
{a, b} 0.3 0 1 0.25
{c} 0 0.3 0.25 1
{a, c} 0 0 1 1
{b, c} 0.6 0 1 0.1429

Ω 0 0.1 2.8

Proposition 12 Let m1 and m2 be two subnormal BBAs with disjunctive weight
functions v1 and v2. The disjunctive weight function v1 ∪©2 associated to m1 ∪©m2 is
given by v1 ∪©2 = v1v2.

Proof: It is easy to check that we have Av ∪©Av′ = Avv′ . Consequently, we have:

m1 ∪©m2 =
(
∪©A6=∅Av1(A)

)
∪©
(
∪©A6=∅Av2(A)

)
(55)

= ∪©A6=∅Av1(A)v2(A). (56)

�
It follows directly that the inverse 6∪© of the TBM disjunctive rule also has a simple

expression in the v-space, as v1 6∪©2 = v1/v2.
Finally, the concept of latent belief structure recalled in Section 2.2.4 also has a

disjunctive counterpart. For each disjunctive weight v(A) let us define the following
two quantities:

vc(A) = 1 ∧ v(A), (57)

and
vd(A) = 1 ∧ 1

v(A)
. (58)

It is clear that we have
v(A) =

vc(A)
vd(A)

. (59)

Consequently, we can write

m = ∪©A⊂ΩAvc(A)/vd(A) (60)

=
(
∪©A⊂ΩAvc(A)

)
6∪©
(
∪©A⊂ΩAvd(A)

)
(61)

= mc
dis 6∪©md

dis. (62)

The pair (mc
dis,m

d
dis) is the disjunctive counterpart of the LBS introduced in 2.2.4,

and can be named the disjunctive LBS associated to m.
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4.2 Informational Ordering Based on Disjunctive Weights

The concept of disjunctive weight function defined above makes it possible to define
a new partial ordering relation between belief functions, which is the counterpart of
vw introduced in Section 2.3.

Let m1 and m2 be two subnormal BBAs with disjunctive weight functions v1 and
v2. Assume that v1(A) ≥ v2(A), for all A 6= ∅. Let v = v2/v1, and m the corresponding
BBA (it corresponds to a belief function, since v(A) ≤ 1 for all A 6= ∅). We thus have
m2 = m1 ∪©m, which implies that m1 is a specialization of m2. In that sense, m1 is
more informative than m2. Consequently, the following new informational ordering
can be introduced:

m1 vv m2 ⇔ v1(A) ≥ v2(A), ∀A 6= ∅.

If m1 vv m2, we will say that m1 is v-more committed than m2.
Just as vv is a counterpart of vw as a result of the duality between the conjunctive

and disjunctive decompositions, we may observe that it is also possible to define a dual
to the d-ordering (Dempsterian specialization) recalled in Section 2.3. Assume that
m2 = m1 ∪©m for some arbitrary bba m. Then m1 is a particular kind of specialization
of m1, which we can write as: m1 vdd m2. This new ordering is obviously stronger
than vs, but weaker than vv. The two new ordering relations vv and vdd allow us
to complete the picture drawn in Section 2.3 as follows:

m1 vw m2 ⇒ m1 vd m2

m1 vv m2 ⇒ m1 vdd m2

}
⇒ m1 vs m2 ⇒

{
m1 vpl m2

m1 vq m2,

where again all implications are strict.

4.3 Derivation of the Bold Disjunctive Rule

Using the general approach outlined at the beginning of this section, we can define a
disjunctive rule based on the vv ordering, as shown by the following proposition.

Proposition 13 Let m1 and m2 be two subnormal BBAs. The v-most committed ele-
ment in Gv(m1)∩Gv(m2) exists and is unique. It is defined by the following disjunctive
weight function:

v1 ∨©2(A) = v1(A) ∧ v2(A), ∀A ∈ 2Ω \ ∅. (63)

Proof: The proof is similar to that of Proposition 4. For any m ∈ Gv(m1)∩Gv(m2), we
have v(A) ≤ v1(A) and v(A) ≤ v2(A), hence v(A) ≤ v1(A) ∧ v2(A) for all non empty
subset A of Ω. The v-most committed element in Gv(m1) ∩ Gv(m2) is obtained by
taking the minimum of v1(A) and v2(A) for all A. One can verify that it corresponds
to a belief function, as a consequence of a counterpart of Lemma 1 for disjunctive
weights. �

Equation (63) introduces a new rule which can be formally defined as follows.

Definition 2 (Bold disjunctive rule) Let m1 and m2 be two subnormal BBAs.
Their combination using the bold disjunctive rule is noted m1 ∨©2 = m1 ∨©m2. It is
defined as the BBA with the following disjunctive weight function:

v1 ∨©2(A) = v1(A) ∧ v2(A), A ∈ 2Ω \ ∅.
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We thus have
m1 ∨©m2 = ∪©A6=∅Av1(A)∧v2(A). (64)

Example 7 Table 5 shows two subnormal BBAs, together with their v-representation
and their bold disjunction. The resulting BBA m1 ∨©2 may be computed from v1 ∨©2

by combining the three BBAs {b}1/6, {a, b}1/4 and {b, c}1/7 using the disjunctive rule
∪©. The result of the combination using the TBM disjunctive rule is shown in the last
column for comparison.

Table 5: Combination of two BBAs using the bold disjunctive rule.

A m1(A) v1(A) m2(A) v2(A) v1 ∨©2(A) m1 ∨©2(A) m1 ∪©2(A)
∅ 0.1 1 0.1 1 1 0.0060 0.01
{a} 0 1 0 1 1 0 0
{b} 0 1 0.5 1/6 1/6 0.0298 0.05
{a, b} 0.3 1/4 0 1 1/4 0.1071 0.18
{c} 0 1 0 1 1 0 0
{a, c} 0 1 0 1 1 0 0
{b, c} 0.6 1/7 0.4 0.6 1/7 0.2143 0.64

Ω 0 14/5 0 1 1 0.6429 0.12

The fact that the bold disjunctive rule is only applicable to subnormal BBAs may
appear as a severe restriction, as most belief functions encountered in practice are
normal (and subnormality often arises when combining conflicting items of evidence
using the TBM conjunctive rule). However, practically, it is always possible to “de-
normalize” a BBA by transferring a very small proportion of the unit mass of belief
to the empty set. In the TBM, the mass m(∅) may be interpreted as being committed
to the hypothesis than none of the elementary hypotheses in the frame of discernment
is true. Assigning even an infinitesimal mass to this hypothesis may be justified in
most cases, as a way to acknowledge the fact that the adopted model might not be
complete, unlikely as it may be.

4.4 Properties of the Bold Disjunctive Rule

The bold disjunctive rule has properties which parallel those of the cautious con-
junctive rule, due to the dual nature of these two rules. These properties are listed
below.

Proposition 14 The bold disjunctive rule has the following properties:

Commutativity: for all m1 and m2, m1 ∨©m2 = m2 ∨©m1;

Associativity: for all m1, m2 and m3, m1 ∨©(m2 ∨©m3) = (m1 ∨©m2) ∨©m3;

Idempotence: for all m, m ∨©m = m;

Distributivity of ∪© with respect to ∨© : for all m1, m2 and m3,

m1 ∪©(m2 ∨©m3) = (m1 ∪©m2) ∨©(m1 ∪©m3).
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Proof. The proof is similar to that of Proposition 18. �
The following proposition is the counterpart of Proposition 6, and can be derived

in the same manner. It shows that the bold disjunctive rule treats differently the two
components of disjunctive LBSs.

Proposition 15 Let m1 and m2 be two subnorm BBAs with disjunctive weight func-
tions v1 and v2. Let (mc

dis,1,m
d
dis,1) and (mc

dis,2,m
d
dis,2) denote the disjunctive LBSs

associated to m1 and m2, respectively, and let (vc
1, v

d
1) and (vc

2, v
d
2) denote the corre-

sponding disjunctive weights. Then the disjunctive LBS (mc
dis,1 ∨©2,m

d
dis,1 ∨©2) associ-

ated to m1 ∨©m2 is defined by

mc
dis,1 ∨©2 = ∪©A⊆ΩAvc

1∧vc
2
,

md
dis,1 ∨©2 = ∪©A⊆ΩAvd

1∨vd
2
.

Finally, the following proposition shows that the ∨© and ∧© operations are dual to
each other with respect to complementation, i.e., they are linked by De Morgan laws
analogous to (16) and (17).

Proposition 16 (De Morgan’s laws) Let m1 and m2 be two subnormal BBAs.
We have:

m1 ∨©m2 = m1 ∧©m2, (65)

for all subnormal BBAs m1 and m2, and

m1 ∧©m2 = m1 ∨©m2 (66)

for all non dogmatic BBAs m1 and m2.

Proof: Let m1 and m2 be two subnormal BBAs. We have

m1 ∨©m2 =
⋃
A6=∅

Av1(A)∧v2(A)

=
⋂
A6=∅

Av1(A)∧v2(A)

=
⋂
A6=∅

A
w1(A)∧w2(A)

=
⋂

A⊂Ω

Aw1(A)∧w2(A)

= m1 ∧©m2.

The proof of (66) is similar. �

5 General Combination Rules Based on Triangular Norms
and Conorms

As we have seen, the cautious and TBM conjunctive rules are based on pointwise
combination of conjunctive weights (using, respectively, the minimum and the prod-
uct), whereas the bold and TBM disjunctive rule are based on similar combination
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of disjunctive weights. One may wonder whether such operations on weights could
be generalized to define other combination rules with interesting properties. To sim-
plify the discussion, only operations on conjunctive weights will be considered here;
extension to disjunctive weights is obvious.

Let m1 and m2 be two non dogmatic BBAs with conjunctive weight functions w1

and w2. We have seen that each weight w(A) may be decomposed into two components
in [0, 1]: a confidence component wc(A) = 1 ∧ w(A) and a diffidence component
wd(A) = 1 ∧ (w(A))−1, with w(A) = wc(A)/wd(A).

Both the TBM conjunctive rule and the cautious rule can be described in terms
of operations on conjunctive and disjunctive weights:

• The TBM conjunctive rule combines the confidence and diffidence components
of the weights using the product:

wc
1 ∩©2(A) = wc

1(A) · wc
2(A), (67)

wd
1 ∩©2(A) = wd

1(A) · wd
2(A); (68)

• The cautious rule combines the confidence components using the minimum, and
the diffidence components using the maximum:

wc
1 ∧©2(A) = wc

1(A) ∧ wc
2(A), (69)

wd
1 ∧©2(A) = wd

1(A) ∨ wd
2(A). (70)

Can these operations be generalized? To answer this question, we may observe
that, in the interval [0, 1], the product and the minimum are triangular norms (t-norms
for short), whereas the maximum is a triangular conorm (or t-conorm) [24]. We recall
that a t-norm is a commutative and associative binary operator > on the unit interval
satisfying the monotonicity property

y ≤ z ⇒ x>y ≤ x>z, ∀x, y, z ∈ [0, 1],

and the boundary condition x>1 = x, ∀x ∈ [0, 1]. A t-conorm ⊥ has the same three
basic properties (commutativity, associativity, monotonicity) and differs only by the
boundary condition x⊥0 = x. Because of their different boundary conditions, t-
norms and t-conorms are usually interpreted, respectively, as generalized conjunction
and disjunction operators in fuzzy logic.

A first consequence of this observation is that the TBM conjunctive rule and the
cautious rule combine the diffidence weights using operations with different algebraic
properties and, in that respect, they should be regarded as belonging to different fam-
ilies of combination rules. However, it does seem possible to define new combination
rules with interesting properties by generalizing the cautious rule and the TBM con-
junctive rule separately. This is done in the rest of this section, with emphasis on the
generalization of the cautious rule, which is the main topic of this paper.

5.1 Generalized cautious rules

The following proposition shows that new rules for combining non dogmatic belief
functions can be defined by replacing the minimum and the maximum in (69) and
(70) by, respectively, a positive t-norm and a t-conorm. (A t-norm > is said to be
positive iff x > 0 and y > 0 implies x>y > 0).
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Proposition 17 Let m1 and m2 be two non dogmatic BBAs, w1 and w2 their weight
functions, and (wc

1, w
d
1) and (wc

2, w
d
2) their decompositions into confidence and diffi-

dence components. Let w1∗2 be the mapping from 2Ω \ Ω to (0,+∞) defined as:

w1∗2(A) =
wc

1(A)>wc
2(A)

wd
1(A)⊥wd

2(A)
, ∀A ⊂ Ω, (71)

where > is a positive t-norm, and ⊥ a t-cornorm. Then:

• Function w1∗2 is the conjunctive weight function of a non dogmatic BBA m1∗2;

• We have m1∗2 vw m1 ∧©m2.

Proof. It is known [24] that the minimum is the largest t-norm, while the maximum
is the weakest t-conorm. Consequently, we have wc

1(A)>wc
2(A) ≤ wc

1(A) ∧ wc
2(A) and

wd
1(A)⊥wd

2(A) ≥ wd
1(A) ∨ wd

2(A), hence w1∗2(A) ≤ w1(A) ∧ w2(A) for all A. Using
Lemma 1, this proves that w1∗2 corresponds to a belief function. It is obviously w-
more committed than m1 ∧©m2. Additionally, positivity of > ensures w1∗2(A) > 0 and,
consequently, that m1∗2 is non dogmatic. �

Note that each combined weight w1∗2(A) can be expressed directly as a function of
w1(A) and w2(A) as w1∗2(A) = w1(A)∗>,⊥w2(A), where ∗>,⊥ is the following operator
in (0,+∞):

x ∗>,⊥ y =


x>y if x ∨ y ≤ 1,
x ∧ y if x ∨ y > 1 and x ∧ y ≤ 1,(

1
x⊥

1
y

)−1
otherwise,

(72)

for all x, y > 0.
Given a positive t-norm > and a t-cornorm ⊥, Proposition 17 allows us to define

a belief function combination operator ~>,⊥ as

m1 ~>,⊥ m2 = ∩©A⊂ΩAw1(A)∗>,⊥w2(A),

where ∗>,⊥ is defined by (72). Note that the cautious rule corresponds to ~∧,∨.
The ~>,⊥ operator has some interesting properties. We start with the following

lemma.

Lemma 2 For any positive t-norm > and any t-conorm ⊥, the operator ∗>,⊥ defined
by (72) is commutative, associative, and satisfies the monotonicity property

y ≤ z ⇒ x ∗ y ≤ x ∗ z, ∀x, y, z > 0.

Proof: Commutativity results directly from the commutativity of >, ∧ and ⊥. For
associativity, we may consider different cases:

• If x ≤ 1, y ≤ 1 and z ≤ 1, then

(x ∗>,⊥ y) ∗>,⊥ z = (x>y)>z = x>(y>z) = x ∗>,⊥ (y ∗>,⊥ z);
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• If x > 1, y > 1 and z > 1, then

(x ∗>,⊥ y) ∗>,⊥ z =

[(1
x
⊥1

y

)−1
]−1

⊥1
z

−1

=
([

1
x
⊥1

y

]
⊥1

z

)−1

=
(

1
x
⊥
[
1
y
⊥1

z

])−1

=

1
x
⊥

[(
1
y
⊥1

z

)−1
]−1

−1

= x ∗>,⊥ (y ∗>,⊥ z);

• If x ≤ 1, y ≤ 1 and z > 1, then

(x ∗>,⊥ y) ∗>,⊥ z = (x>y) ∧ z = x>y,

and
x ∗>,⊥ (y ∗>,⊥ z) = x>(y ∧ z) = x>y;

• If x > 1, y > 1 and z ≤ 1, then

(x ∗>,⊥ y) ∗>,⊥ z = (x ∗>,⊥ y) ∧ z = z,

and
x ∗>,⊥ (y ∗>,⊥ z) = x ∧ (y ∧ z) = z.

The other cases can be deduced from the above last two cases using the commutativity
property. Finally, monotonicity can be proved in a similar manner, by considering the
different cases:

Case 1: y ≤ z ≤ 1. Then:

• if x ≤ 1, then x ∗>,⊥ y = x>y and x ∗>,⊥ z = x>z, and x>y ≤ x>z by the
monotonicity of >;

• if x > 1, then x ∗>,⊥ y = y and x ∗>,⊥ z = z, and the result follows directly.

Case 2: y ≤ 1 < z. Then:

• if x ≤ 1, then x∗>,⊥y = x>y and x∗>,⊥z = x∧z. Now, x>y ≤ x∧y ≤ x∧z,
since > is dominated by ∧;

• if x > 1, then x ∗>,⊥ y = y and x ∗>,⊥ z = ((1/x)⊥(1/z))−1. Now, we have
1/x < 1/y and 1/z < 1/y, hence (1/x)⊥(1/z) < 1/y and ((1/x)⊥(1/z))−1 >
y.

Case 3: 1 < y ≤ z. Then:

• if x ≤ 1, then x ∗>,⊥ y = x, x ∗>,⊥ z = x and the result follows directly;
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• if x > 1, then x ∗>,⊥ y = ((1/x)⊥(1/y))−1 and x ∗>,⊥ z = ((1/x)⊥(1/z))−1.
Now, since 1/y ≥ 1/z, we have (1/x)⊥(1/y) ≥ (1/x)⊥(1/z) by the mono-
tonicity of ⊥, hence ((1/x)⊥(1/y))−1 ≤ ((1/x)⊥(1/z))−1. �

Proposition 18 The ~>,⊥ rule has the following properties:

Commutativity: for all m1 and m2, m1 ~>,⊥ m2 = m2 ~>,⊥ m1;

Associativity: for all m1, m2 and m3,

m1 ~>,⊥ (m2 ~>,⊥ m3) = (m1 ~>,⊥ m2) ~>,⊥ m3;

Monotonicity with respect to vw : for all m1, m2 and m3,

m1 vw m2 ⇒ m1 ~>,⊥ m3 vw m2 ~>,⊥ m3.

Proof: These properties follow directly from corresponding properties of ∗>,⊥ ex-
pressed in Lemma 2.

5.2 Discussion

We thus have defined a family of commutative and associative combination operators,
which also have the property of monotonicity with respect to vw. The latter property
means that, if a BBA m1 is less informative than a BBA m2 according to the vw

ordering, then this order is unchanged after combination with a third BBA. The
cautious rule is the only idempotent rule in this family, since the minimum and the
maximum are, respectively, the only idempotent t-norm and co-tnorm.

We may remark that, normalized combination rule can be defined in the same way,
by combining the weights of non empty subsets A of Ω, and normalizing the result.
These normalized combination rules are also commutative, associative, and monotonic
with respect to v∗w.

The same approcah can also be used to generalize the TBM conjunctive rule,
by replacing the product in (67) and (68) by two t-norms >1 and >2, respectively.
However, some cautious should be exercised here, because the resulting combined
weight function is not guaranteed to correspond to a belief function for any choice of
>1 and >2. For instance, choosing >1 = >2 = ∧ does not yield a belief function in
general. A sufficient condition for obtaining a belief function is to choose >1 and >2

such that >1 ≤ Π ≤ >2, where Π denotes the product t-norm. Deeper investigation
of this topic is beyond the scope of this paper.

One may object that these new combination rules, in spite of their interesting
properties outlined in Proposition 18, are only weakly justified. However, we may
remark that the same situation prevails in Possibility theory [11], where there are as
many conjunctive and disjunctive operators as t-norms and t-conorms. Although this
multiplicity of operators may be seen as a weakness of the axiomatic foundations of
Possibility theory, it also proves beneficial from a practical point of view as it provides
considerable flexibility to adjust the behavior of a system to user-defined requirements
[14] or to learning examples. In contrast, Dempster-Shafer theory has sometimes been
criticized for its lack of flexibility in the choice of combination operator [9], a criticism
which, in light of the new results presented in this paper, appears to be unjustified.
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Figure 1: Distance between the target BBA and the combined BBA, as a function of
parameter s of the Frank family of t-norms.

5.3 Combination rule optimization

As shown in the previous section, a commutative and associative operator based on
conjunctive (or disjunctive) weights can be associated to each pair of a t-norm and
a t-conorm. By choosing parameterized families of t-norms and t-conorms [24], it is
thus possible to defined parameterized families of belief function combination rules.
This introduces the possibility to learn a combination rule from examples, as shown
in the following simple illustrative example.

Example 8 Assume that the BBAs m1 and m2 shown in Table 6 have been provided
by two sensors, and expert knowledge regarding the true value of the variable of
interest is represented by BBA me also shown in Table 6. For this simple illustrative
example, me was artificially constructed by combining m1 and m2 using the ~>,⊥
operator based on the Frank t-norm and dual t-conorm with parameter s = 0.5, and
adding a small amount of random noise. We recall that the Frank family of t-norms
[24] is defined by

x>sy =


x ∧ y if s = 0,
xy if s = 1,

logs

(
1 + (sx−1)(sy−1)

s−1

)
otherwise,

for all x, y ∈ [0, 1], where s is a positive parameter. The dual t-conorm ⊥s is defined
by x⊥sy = 1− (1− x)>s(1− y).

We wish to find a combination rule of the form ~>s,⊥s , where >s and ⊥s are,
respectively, the Frank t-norm and t-conorm with parameter s, such that the com-
bination of m1 and m2 yields a BBA as close as possible to me. Note that, in real
applications such as classifier fusion problems, a large number of such learning in-
stances would typically be available. Parameter s was varied between 0 and 1, and
for each s value the discrepancy between m12 = m1 ~>s,⊥s m2 and me was measured
by Jousselme’s distance [19] defined :

d(m12,me) =

√
1
2
(m12 −me)tD(m12 −me),

where m12 and me are 2|Ω|-dimensional vectors of basic belief masses corresponding
to m12 and me, and D is the square matrix of size 2|Ω| defined by

D(A,B) =

{
1 if A = B = ∅,
|A∩B|
|A∪B| otherwise.

Distance d is plotted as a function of s in Figure 1. The best fit between the
combined BBA m12 and the target BBA me is obtained for s ≈ 0.33, which is an
estimate of the true value s = 0.5.
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Table 6: BBAs of Example 8.

∅ {a} {b} {a, b} {c} {a, c} {b, c} {a, b, c}
m1 0.11 0.10 0.13 0.01 0.10 0.07 0.19 0.29
m2 0.08 0.19 0.16 0.05 0 0.10 0.11 0.31
me 0.3965 0.1210 0.1446 0.0236 0.0871 0.0498 0.0934 0.0841

6 Application to classifier fusion

Although the cautious rule and its relatives have nice mathematical properties, their
usefulness in applications of belief functions might be questioned. In this section, we
present numerical experiments showing the efficiency of the cautious rule and a t-norm
based generalization to combine classifiers built from dependent features.

6.1 Problem statement and formalization

Let us consider a classification problem with K classes and d continuous features
X1, . . . , Xd. Assume that each feature Xi has a known conditional probability dis-
tribution fk(xi) in each class ωk (k = 1, . . . ,K). The class prior probabilities are
unknown. Additionally, nothing is known concerning the correlations between fea-
tures.

This problem can be tackled in the TBM using the General Bayesian Theorem
(GBT) [32, 2, 7]. Assume that the known probability density fk(xi) of feature Xi

in ωk is interpreted as the pignistic probability of some unknown conditional belief
function on R. For simplicity, fk(xi) will be assumed to be unimodal and symmet-
ric. As shown in [37], the q-least committed belief function on R associated with a
unimodal symmetric pignistic probability density fk with mode νk is consonant (and,
consequently, equivalent to a plausibility measure). The corresponding possibility
distribution (called “contour function” by Shafer [29, page 221]) is:

plk(xi) =

{
2(xi − νk)fk(xi) + 2

∫ +∞
xi

fk(ti)dti if xi ≥ νk

2(νk − xi)fk(xi) + 2
∫ xi

−∞ fk(ti)dti otherwise.
(73)

The quantity plk(xi) is the plausibility that feature Xi takes value xi, given that the
object belongs to class ωk.

Assume that the value xi of feature Xi has been observed for a certain object.
What is our belief state concerning the class of this object ? In the TBM, the answer
is provided by the GBT. The induced BBA on the set of classes Ω = {ω1, . . . , ωK},
conditional on Xi = xi, is u-separable [7]. It is given by:

mΩ[xi] = ∩©K
k=1{ωk}

plk(xi)
. (74)

If the features Xi are assumed to be conditionally independent given the class, then
the evidence of the d feature values can be considered as distinct and, as such, can be
combined by the TBM conjunctive rule:

mΩ[x1, . . . , xd] = ∩©d
i=1m

Ω[xi] (75)

= ∩©K
k=1{ωk}

Qd
i=1 plk(xi)

. (76)
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If conditional independence is not assumed, then the cautious rule may be more ap-
propriate. We then have:

mΩ[x1, . . . , xd] = ∧©d
i=1m

Ω[xi] (77)

= ∩©K
k=1{ωk}

Vd
i=1 plk(xi)

. (78)

Note that the possibility distributions plk(xi) are combined using the product t-norm
in (76), whereas they are combined using the minimum t-norm in (78). Using a
generalized cautious rule ~>,⊥ such as introduced in Section 5.1 amounts to combining
the plk(xi) using t-norm >. If > is chosen in the Frank family, then the cautious rule
is recovered for s = 0, whereas the TBM conjunctive rule is recovered for s = 1.
Choosing s between 0 and 1 results in a combination rule somewhere between these
two extremes.

6.2 Experimental results

Numerical simulations were performed for a particular instance of the above problem,
with K = 2 classes and d = 10 features. The conditional distribution of feature
vector (X1, . . . , Xd) in class ωk was assumed to be multivariate normal with mean
µ1 = (0, . . . , 0) in class ω1 and µ2 = (1, . . . , 1) in class ω2, and with common variance
matrix

Σ =



1 ρ ρ . . . ρ 0
ρ 1 ρ . . . ρ 0

ρ ρ
. . .

...
...

...
...

. . . ρ
...

ρ ρ . . . ρ 1 0
0 0 . . . . . . 0 1


,

with ρ ∈ [0, 1]. Conditionally on each class, the last feature X10 was thus assumed
to be independent from all other features, whereas the correlation coefficient between
any two features Xi and Xj , i, j ∈ {1, . . . , 9} was equal to ρ.

For any observed feature vector x = (x1, . . . , x10), a decision was computed as
follows:

• The plausibilities plk(xi) were computed using (73), for each i and each k;

• The BBAs mΩ[xi] on Ω given feature Xi were computed using (74);

• The combined BBA mΩ[x1, . . . , x10] was computed using the conjunctive rule
using (76), the cautious rule using (78), or the generalized cautious rule ~>,⊥
with > equal to the Frank t-norm with s = 0.01;

• The pignistic transformation (18) was applied to mΩ[x1, . . . , x10], and the pig-
nistic probability of class ω1 was compared to some threshold.

The above procedure was repeated for n = 5000 test vectors in each class, for ρ = 0,
ρ = 0.5 and ρ = 0.9. The false positive rate (proportion of test vectors from class ω1

wrongly classified as ω2) and the true positive rate (proportion of test vectors from
class ω2 correctly classified as ω2) were estimated for each combination rule and each
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value of ρ. The corresponding ROC curves (plot of the true positive rate as a function
of the false positive rate) are shown in Figure 2. In this representation, a higher curve
corresponds to higher performance (higher true positive rate for any false positive
rate).
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Figure 2: ROC curves for the TBM conjunctive, cautious and generalized cautious
rules, for ρ = 0 (top), ρ = 0.5 (middle) and ρ = 0.9 (bottom).
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As expected, the TBM conjunctive rule achieves higher performance in the case of
independent features. However, it is outperformed by the cautious rule when features
are no longer independent. The generalized cautious rule with the Frank t-norm for
s = 0.01 has intermediate performances in all three situations. This is an experimental
verification of the validity of the cautious rule in the case of non distinct evidence.

7 Conclusion

Two new commutative, associative and idempotent operators for belief functions have
been introduced. The cautious conjunctive rule ∧© has been derived from the Least
Commitment Principle with a suitable informational ordering: the ∧©-combination of
two non dogmatic BBAs m1 and m2 has been defined as the least committed BBA
according to the vw ordering, among those which are more committed than m1 and
m2, according to the same ordering. Symetrically, the combination of two subnormal
BBAs m1 and m2 using the bold disjunctive rule ∨© has been defined as the most
committed BBA according to vv, an ordering dual to vw, among BBAs that are less
committed than m1 and m2.

Contrary to the TBM conjunctive and disjunctive rules ∩© and ∪©, these two opera-
tors do not require the assumption of independence, or distinctness of the information
sources from which BBAs are derived. Independently from this distinctness assump-
tion, conjunctive operators ∩© and ∧© are appropriate when all sources are believed to
be reliable, whereas disjunctive operators should be used when one only assumes that
at least one of the sources is reliable. The choice of one operator among ∩©, ∪©, ∧© and
∨© thus depends on assumptions regarding both the distinctness and reliability of the
sources, as summarized in the following table:

sources all reliable at least one reliable
distinct ∩© ∪©

non distinct ∧© ∨©

The cautious and bold rules have also been shown to belong to infinite families
of conjunctive and disjunctive operators based on t-norms and t-conorms. Using
parametrized families of t-norms and t-conorms, corresponding families of conjunctive
and disjunctive operators can be defined. All these operators are commutative and
associative, but only ∧© and ∨© are idempotent. Although these operators do not
appear to be as well justified as the cautious and bold rules, they may be useful in
classification or information fusion applications where the behavior of a combination
rule can be tuned to optimize a given performance measure [43, 5, 17]. In any case, it
appears that, contrary to a so far widely accepted opinion [9], the richness of potential
combination operators is not lower in the theory of belief functions than it is in
possibility theory, which opens new perspectives for applying belief functions theory
to information fusion problems.

Acknowledgment

This work is dedicated to the memory of Professor Philippe Smets, who inspired most
of the ideas expressed in this paper. The author thanks the anonymous referees for

37



their careful reading of the manuscript and their constructive comments that helped
to improve this paper. Thanks also to Frédéric Pichon for stimulating discussions on
the cautious rule and the canonical decompositions.

References

[1] M. E. G. V. Cattaneo. Combining belief functions issued from dependent sources.
In J. M. Bernard, T. Seidenfeld, and M. Zaffalon, editors, Proceedings of the
Third International Symposium on Imprecise Probabilities and Their Applications
(ISIPTA’03), pages 133–147, Lugano, Switzerland, 2003. Carleton Scientific.

[2] F. Delmotte and Ph. Smets. Target identification based on the Transferable Belief
Model interpretation of Dempster-Shafer model. IEEE Transactions on Systems,
Man and Cybernetics A, 34(4):457–471, 2004.

[3] A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping.
Annals of Mathematical Statistics, 38:325–339, 1967.

[4] T. Denœux. A k-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Trans. on Systems, Man and Cybernetics, 25(05):804–813, 1995.

[5] T. Denœux. A neural network classifier based on Dempster-Shafer theory. IEEE
Trans. on Systems, Man and Cybernetics A, 30(2):131–150, 2000.

[6] T. Denœux. The cautious rule of combination for belief functions and some
extensions. In Proceedings of the 9th International Conference on Information
Fusion, Florence (Italy), July 2006. Paper #114.

[7] T. Denœux and P. Smets. Classification using belief functions: the relationship
between the case-based and model-based approaches. IEEE Transactions on
Systems, Man and Cybernetics B, 36(6):1395–1406, 2006.

[8] D. Dubois and H. Prade. On several representations of an uncertainty body
of evidence. In M. M. Gupta and E. Sanchez, editors, Fuzzy Information and
Decision Processes, pages 167–181. North-Holland, New-York, 1982.

[9] D. Dubois and H. Prade. On the unicity of Dempster’s rule of combination.
International Journal of Intelligent Systems, 1:133–142, 1986.

[10] D. Dubois and H. Prade. A set-theoretic view of belief functions: logical op-
erations and approximations by fuzzy sets. International Journal of General
Systems, 12(3):193–226, 1986.

[11] D. Dubois and H. Prade. Possibility Theory: An approach to computerized pro-
cessing of uncertainty. Plenum Press, New-York, 1988.

[12] D. Dubois and H. Prade. Representation and combination of uncertainty with
belief functions and possibility measures. Computational Intelligence, 4:244–264,
1988.

38



[13] D. Dubois, H. Prade, and Ph. Smets. New semantics for quantitative possibility
theory. In S. Benferhat and Ph. Besnard, editors, Proc. of the 6th European Con-
ference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty
(ECSQARU 2001), pages 410–421, Toulouse, France, 2001. Springer-Verlag.

[14] D. Dubois, H. Prade, and R. Yager. Merging fuzzy information. In J. C. Bezdek,
D. Dubois, and H. Prade, editors, Fuzzy sets in approximate reasoning and in-
formation systems, pages 335–401. Kluwer Academic Publishers, Boston, 1999.

[15] D. Dubois and R. R. Yager. Fuzzy set connectives as combination of belief struc-
tures. Information Sciences, 66:245–275, 1992.

[16] Z. Elouedi and K. Mellouli. Pooling dependent expert opinions using the theory
of evidence. In Proc. of the Seventh Int. Conf. on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU 98), volume 1,
pages 32–39, Paris, France, July 1998.

[17] Z. Elouedi, K. Mellouli, and Ph. Smets. Assessing sensor reliability for multisensor
data fusion within the Transferable Belief Model. IEEE Transactions on Systems,
Man and Cybernetics B, 34(1):782–787, 2004.

[18] R. Haenni. Are alternatives to Dempster’s rule of combination real alternatives?:
Comments on “about the belief function combination and the conflict manage-
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