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Abstract. This paper reports on the application of Artificial Neural Network techniques to coagulation control in drinking water
treatment plants. The coagulation process involves many complex physical and chemical phenomena which are difficult to model
using traditional methods. The amount of coagulant ensuring optimal treatment efficiency has been shown experimentally to be
non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. The software sensor
developed is a hybrid system including a self-organising map (SOM) for sensor data validation and missing data reconstruction,
and a multi-layer perceptron (MLP) for modelling the coagulation process. A key feature of the system is its ability to take into
account various sources of uncertainty, such as atypical input data, measurement errors and limited information content of the
training set. Experimental results with real data are presented.

Keywords: Data validation, missing data reconstruction, outlier rejection, self-organising maps, multi-layer perceptrons, hybrid
system, coagulation control, water treatment

1. Introduction

In water treatment, as in many other domains, process monitoring and control relies heavily on accurate
and reliable sensor information. Whereas many process parameters can be measured continuously using
relatively simple and cheap physical sensors, the determination of certain quantities of interest requires
costly laboratory analyses which cannot be performed on-line. Such high level information may,however,
sometimes be inferred from available measurements of observable quantities using a statistical model
usually referred to, in this context, as a “software sensor” [1].

This paper addresses the problem of building a software sensor for on-line determination of optimal
coagulant dosage from raw water characteristics such as turbidity, pH, conductivity, etc. Previous
studies [2,3] have shown the potential effectiveness of such an approach based on artificial neural
networks. The innovative aspect of the present work resides primarily in the integration of various
techniques in a global system allowing for data validation and reconstruction, prediction of the quantity
of interest, and analysis of uncertainties.

Given the high variability of the inputs and the low reliability of available sensors, an important
requirement for such a system is robustness against erroneous sensor measurements or unusual water
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Fig. 1. Structure of the system for automatic coagulation control.

characteristics, due to accidental pollution for instance. In our system, such a robustness is achieved
using a modular architecture composed of two levels: a pre-processing level responsible for outlier
rejection and missing data reconstruction, and a prediction level involving the determination of the
optimal coagulant amount from raw water characteristics (Fig. 1).

A second important requirement from the considered application is the possibility to install the system
at low cost in various sites, which necessitates a methodology for designing and training the neural
networks automatically from new data, including the phases of data validation and model choice. Our
system uses pruning and re-sampling techniques for automatic determination of the network architecture
and computation of confidence bounds for the predictions.

This paper is organised as follows. Section 2 presents a general introduction to the application domain
and states the problem addressed in the rest of the paper. The two main modules of the system, based
on self-organising maps and multi-layer perceptrons, are then described in Section 3 and 4, respectively.
Finally, experimental results are presented and discussed in Section 5.

2. Problem description

2.1. Overview of water treatment operations

Water treatment involves physical, chemical and biological processes that transform raw water into
drinking water. However, contrary to most industrial processes, for which the quality of the input
raw material is under control, the quality of the given raw water source may fluctuate due to natural
perturbation or occasional pollution.

Figure 2 depicts the main processes in a typical plant for surface water treatment (the Viry-Chatillon
plant, near Paris). Raw water is abstracted from the resource (a river in this case) and pumped to the
treatment works. A water treatment plant invariably consists in two main process units: clarification and
filtration; other units may be required depending on the quality of the water source.

The coagulation process is brought about by adding a highly ionic salt (aluminium sulphate) to the
water. A bulky precipitate is formed which electrochemically attracts solids and colloidal particles.
The solid precipitate is removed by allowing it to settle to the bottom of the tank and then periodically
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Fig. 2. Simplified synopsis of the Viry-Chatillon water treatment plant.

removing it as sludge. The coagulation process accounts for the removal of most of the undesirable
substances from the raw water and hence tight monitoring and control of this process is essential. The
next stage is filtration, where the particles passing through the previous stages are removed. Filtered
water is also treated by ozonation to eliminate the last micro-pollutants. The final stages in the process
are chlorination and pH adjustment. The water is then stored in a tank and ready to be transported
through the water supply network.

2.2. Coagulation control

Coagulation is one of the most important stages in surface water treatment, allowing for the removal of
colloidal particles. The main difficulty is to determine the optimum quantity of chemical reagent related
to raw water characteristics. Poor control leads to wastage of expensive chemicals, failure to meet the
water quality targets, and reduced efficiency of sedimentation and filtration processes. In contrast, good
control can reduce manpower and chemical costs and improve compliance with treated water quality
targets.

The traditional method of controlling coagulant dose, called the jar-test, relies heavily upon human
intervention. It involves taking raw water samples and applying different quantities of coagulant to each
sample [4,5]. After a short period of time each sample is assessed for water quality and the dosage that
produces the optimal result is used as a set point. Operators change the dose and make a new jar test if
the quality of treated water changes. Disadvantages associated with such a procedure are the necessity
to rely on manual intervention, and lack of adaptation to abrupt changes of water characteristics.

More recently, an automatic device, called a streaming current detector (SCD) [6,7] has emerged.
This device is based on the measurement of the net residual charge surrounding turbidity and colloidal
particles in water. It requires a set point to be entered, assumed to represent an optimum water-quality
standard. Streaming-current values above the set point reveal an excess of coagulant, while values below
the set point indicate insufficient coagulant dosage for full flocculation to occur. A jar test needs to be
carried out to determine the set point. Disadvantages associated with the SCD are its operation cost and
limited efficiency for certain types of raw water quality.
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Fig. 3. Principle of the SOM.

The objective of this paper is to propose an alternative to the jar-test and SCD methods allowing for
the automatic determination of optimal coagulant dose from raw water characteristics, using an artificial
network approach. This approach requires the availability of on-line water quality measurements at an
upstream survey station. An important objective of the present study is to automatically validate the
sensor measurements performed at the survey station so as to provide reliable inputs to the automatic
coagulation control system.

3. Data validation and reconstruction

3.1. General approach

Applications in the environmental domain such as the one considered in this paper generally rely
on complex sensors located at remote sites. The processing of the corresponding measurements for
generating higher level information (such as predictions of optimal coagulant dosage) must therefore
account for possible sensor failures and incoherent input data.

In many cases, even domain experts are unable to categorise off-line data as “valid” or “invalid” with
complete certainty, because of incompleteness of the available information or lack of knowledge of
the underlying physical phenomena. For this reason, data validation should not be merely seen as the
suppression of spurious data, but as the determination of a degree of confidence in the data, based on a
comparison between observations and models incorporating background knowledge about the application
domain. For example, the validity of a temperature measurement may be put in doubt because (1) the
value is surprisingly high or low; (2) the rate of change between consecutive time steps is not within
certain limits; (3) the temperature measured at successive time steps normally follows a certain pattern
that is not present in the data; or (4) the observed value is not compatible with other measurements of
the same quantity obtained by an independent device, or of other quantities whose values are normally
related to temperature, etc.

In our system, data validation is performed at two levels, referred to as single parameter and multi-
parameter validation. The first level is quite simple and is based on the comparison of each input
parameter and its derivative to a distribution of historical values obtained in the absence of sensor faults.
A confidence level is calculated, and raw data with confidence level below a user-defined threshold are
declared as invalid data.
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Fig. 4. Multi-layer perceptron network for prediction of coagulant dosage.

Although this simple approach allows in many cases to detect gross measurement errors, the detection
of inconsistencies in data involving more than one parameter requires the use of more sophisticated
multidimensional techniques such as the self-organising feature map model implemented in our system.

3.2. Multi-parameter data validation and reconstruction

3.2.1. Basic approaches
Neural network approaches to signal failure detection and reconstruction include autoassociativeneural

networks (AANN) and SOM’s [8].
The basic idea behind the AANN approach is to train a multilayer feedforward network to approximate

the identity function by using target values identical to the input values. One of the hidden layer typically
has limited capacity and plays the role of a bottleneck, which forces the network to optimally encode
the input vectors, thus performing information compression and dimensionality reduction. With a single
hidden layer of linear units, this approach was shown by Bourlard and Kamp to be equivalent to principal
component analysis (PCA) [9]. Consequently, more complex networks with non-linearities can be seen
as implementing some form of “non linear PCA”. Such an approach is proposed in Ref. [10], where a
five-layer perceptron feedforward network is used for data validation. This network can be viewed as two
independent three-layer neural networks connected in series. The first network mixes and compresses
then redundant measurements into a smaller number of characteristic variables which should ideally
represents the essential characteristics of the process. The second network works in the opposite way and
uses the compressed information to regenerate the originaln redundant measurements. When trained on
valid data, this network may be used to detect erroneous data, which are recognised from their higher
reconstruction error [8]. However, the performance of such a system in the presence of incomplete input
data is not fully predictable.

Another approach, which was adopted in this study, implies computing distances between input vectors
and reference patterns, or prototypes. The determination of prototypes from data in an unsupervised way
may be achieved using the Self-Organising Map (SOM) algorithm introduced by Kohonen [11]. The
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Fig. 5. Learning and pruning algorithm.

SOM model combines the goals of projection and clustering algorithms and may be seen as a method
for automatically arranging high-dimensional data. It can be used at the same time to visualise the
clusters in a data set, and to represent the data on a two dimensional map in a manner that preserves the
non-linear relations of the data items, nearby items being mapped to neighbouring positions on the map.
Applications of SOM’s to water quality monitoring are described in [12,13].

3.2.2. Principles of SOM
The SOM defines a mapping from the input data spaceRn (raw water quality parameters) onto a

regular two-dimensional array of nodes (an hexagonal array in our case) as shown in Fig. 3. A weight
vector (also called a reference vector or a prototype)mi ∈ Rn is associated to every nodei. Each input
vectorx ∈ Rn is compared to themi, and the best matchmc defines the winning prototype. The input
is then mapped onto the corresponding location on the grid.

The process in which the SOM is formed is an unsupervised learning process. At each time stept, a
data samplex(t) ∈ Rn is presented to the map. The nodec that best represents the input is then searched
for using, e.g., the Euclidean distance:

‖x − mc‖ = min
i
{‖x − mi‖} (1)

Next, the unitc as well as neighbouring units learn to represent the data sample more accurately. The
weight vector of uniti is updated according to the following learning rule:

mi(t + 1) = mi(t) + hci(t)�x(t) − mi(t)� (2)

wherehci is a “smearing” or neighbourhood function expressing how much uniti is updated when
unit c is the winner. The neighbourhood function typically is a symmetric, monotonically decreasing
function of the distance between unitsi andc on the map grid. During repeated application of Eq. (2)
with different inputs, the weight vectors of neighbouring units become gradually similar due to the
neighbourhood functionhci, eventually leading to global ordering of the model vectors. With time, the
mi then tend to become ordered along the array in a meaningful way.

3.2.3. Application to sensor failure detection and reconstruction
Self-organising maps allow not only to visualise the evolution of raw water quality in two dimensions,

but also to detect atypical data or outliers by monitoring the distance between each input vector and its
closest reference vector (which is a variant of the distance rejection concept introduced by Dubuisson
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Fig. 6. Bootstrap sampling for the generation of prediction intervals.

and Masson [14]). More precisely, let us define the activation of unit i for input x using a Gaussian kernel
as:

K(i) = exp
( −1

2σ2
i

‖x − mi‖2

)
(3)

whereσ2
i is a parameter defining the size of the influence region of uniti. σ 2

i may be computed as
the average empirical variance of then input features, among the samples associated to uniti. If the
activationK(c) of the winning prototype is smaller than a specified threshold, the current sample is
considered as invalid. The contributions of each of the components of vectorx to the distance‖x−m c‖
are then examined to determine more precisely which sensors should be declared as faulty. These sensor
measurements are then disconnected to compute a new winning prototype with only valid parameters.

Remarks:

1. Note that this procedure for detecting outliers may be given a probabilistic interpretation, the input
vectorsx being assumed to be taken from a mixture of normal distributions (or classes) with
meansmi and scalar covariance matricesσ2

i I (I being the identity matrix). The activation of the
winning uniti for inputx may then be considered as an approximation to thei-th class-conditional
probability density atx (up to a scaling factor). Our procedure for rejecting outliers then amounts to
discarding feature vectors which were “implausible” under each of the class densities (see, e.g. [16,
p. 25] on this topic). Other approaches to probability density estimation using, e.g., Gaussian
mixture models and the EM algorithm [15], could also be used.

2. The above procedure allows for the rejection of atypical patterns and therefore implements some
kind of “novelty detection”. This constitutes a very conservative approach which prevents the
prediction module of the system from blindly interpolating known relationships between water
characteristics and coagulant dosage to previously unseen cases. It is clear however that the
“atypicality” of rejected input vectors may have several causes, such as sensor failure, abrupt
changes of water quality due to an accidental pollution, or merely lack of completeness of the
training set. It is therefore necessary to store the rejected input patterns for subsequent interpretation
by the user, and possible retraining of the system in case of undue rejection of “normal” patterns.

For reconstruction, each missing value of a given input variable is estimated by the value of the
corresponding component of the winning prototype. In order to improve the reconstruction accuracy, a
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Fig. 7. Component planes of the SOM.

Table 1
Statistical summary of raw water conditions at the Viry treatment plant between Nov. 1997 and Nov. 1998

Property Turbidity pH Dissolved Oxygen Conductivity Temperature UV Coagulant Dose
(NTU) (mg/l) (µS) (◦C) (do/m) (ppm)

Maximum 166,5 8,37 14,3 560 25,3 19,2 7,8
Minimum 1,1 7,06 5,7 264 5,5 0,4 2
Mean 21,5 7,95 10,4 445 10,3 8,6 4,1
Standard deviation 28,4 0,2 1,8 48 5,5 4,9 1,7

combination of thek nearest nodes is used. Each missing or invalid valuej is estimated by a combination
of the corresponding component in thek nearest prototypes:

x̂(j) =

k∑
i=1

K(i)mi(j)

k∑
k=1

K(i)

(4)

wheremi(j) denotes componentj of prototypei. Note that this method is similar in spirit to radial basis
function networks, and to the fuzzy system approach described in [17].
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Fig. 8. Up: actual (thick line) versus predicted (thin line) coagulant dosage with ANN model on test data and confidence interval
(shaded region). Down: predicted vs target coagulant dose.

4. Prediction of coagulant dosage

4.1. The model

The prediction of optimal coagulant dosage from water characteristics is a non linear regression
problem which can be tackled using multilayer perceptrons (MLP). We used a conventional MLP with
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Fig. 9. Up: actual (thick line) versus predicted (thin line) coagulant dosage with linear regression model. Down: predicted vs
target coagulant dose.

one hidden layer of sigmoidal units trained by minimisation of the mean squared error function (Fig. 4).
This approach is known to provide estimates of the conditional average of the output variable (here, the
optimal coagulant dosing rate), given the observed values of the input variables (the raw water quality
parameters) [18].

For the determination of the architecture, a pruning approach was used, starting from a relatively large
network and then removing connections in order to arrive at a suitable network size. Several approaches
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Fig. 10. Simulated dissolved oxygen sensor fault.

to network pruning are based on the following general procedure [18]. First a relatively large network
is trained using one of the standard training algorithms. Then the network is examined to assess the
relative importance of the weights, and the least important are deleted. Typically this is followed by
some further training of the pruned network, and the procedure of pruning and training is repeated for
several cycles. Clearly, there are various choices to be made concerning how much training is applied
at each stage, which fraction of the weights are pruned, and so on. These choices are usually made on
a heuristic basis. The most important consideration, however, is how to decide which weights should
be removed. For that purpose, some measure of the relative importance, or saliency, of weights has to
be defined. The Optimal Brain Damage (OBD) method [19] provides such a measure. This method is
briefly recalled here.

The method is based on the computation of the changeδE in the error functionE due to small changes
in the values of the weights [19]. If each weightwi is changed towi + δwi the corresponding change in
the error functionE is given by

δE =
∑

i

∂E

∂wi
δwi +

1
2

∑
i

∑
j

Hijδwiδwj + o(δw3) (5)

where theHij are the elements of the Hessian matrix

Hij =
∂2E

∂wi∂wj
. (6)

If we assume that the training process has converged, then the first term in (5) vanishes. As proposed
by Le Cun et al. [19], the Hessian matrix can be approximated by discarding the non-diagonal terms.
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Fig. 11. Activation of the winning prototype.

Neglecting the higher-order terms in the expansion then reduces (5) to the form

δE =
1
2

∑
Hiiδw

2
i . (7)

If a weight having an initial valuewi is set to zero, the increase in error is given approximately by (7)
with δwi = −wi. The saliency values of the weights can therefore be defined as the quantitiesH iiw

2
i /2.

The implementation of this technique consists in the following steps (Fig. 5):

1. Choose a relatively large initial network architecture.
2. Train the network using the back-propagationalgorithm applied to the sum of squares error function.
3. Compute the second derivativesHii for each of weights, and hence evaluate the salienciesH iiw

2
i /2.

4. Sort the weights by saliency and delete theq lowest saliency weights (q = 1 in our simulations).
5. Go to step 2 and repeat until the error measured using an independent validation set starts to

increase.

4.2. Computation of confidence bounds

For practical use, a software system for the prediction the optimal coagulant amount should not only
provide point estimates but also confidence intervals. Bootstrap sampling was used to generate confidence
intervals for the system outputs [20]. The reader is referred to the book by Efron and Tibshirani [21] for
a general presentation of the bootstrap.

Bootstrap is a statistical inference technique which uses training sets created by re-sampling with
replacement from the original data (so that examples may occur more than once), and re-estimates
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Fig. 12. Reconstruction of dissolved oxygen.

all the parameters on each bootstrap sample. The application of this technique to the computation of
confidence bounds for the outputs of a neural network as proposed in Ref. [20] is illustrated in Fig. 6.
In this approach,b bootstrap subsets of the initial training set are used to trainb MLP models using the
architecture and training procedure described previously. When a vector is fed into these networks, the
b outputs provide an estimate of the distribution of the target variable for the current input. Lower and
upper confidence limits for the prediction related to any given input vector may then be obtained by
sorting these outputs and selecting, e.g., the 10% and 90% cumulative levels. As argued in [20], this
approach allows to measure the variability due to the training algorithm and the limited training data. A
theoretical discussion concerning the use of bootstrap percentile intervals may be found in [21, p. 170].

5. Results

The water treatment plant in Viry-Chatillon was used as an application site for this study. This plant
provides water to more than 300,000 inhabitants. It has a nominal capacity to process 120,000 m3

of water per day and has been well instrumented for several years. Several raw water parameters are
measured on-line (Fig. 2), and jar-tests are performed quite frequently, providing the necessary target
values (the optimal dosing rates to be estimated from water quality data).

The raw database consisted of 100,000 measurements of 6 input variables (turbidity, conductivity,
pH, temperature, dissolved oxygen and UV absorption) sampled every 5 minutes during a period of 12
months (from November 1997 to November 1998). Simple descriptive statistics of the data are given in
Table 1. Note that this data set, which represented all the available data at the beginning of this study,
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Fig. 13. Actual (thick line) versus predicted (doted line) coagulant dosage with ANN model and confidence bounds (thin lines).

covers a period of one year and so can be expected to account for seasonal variations of water quality.
It is obvious, however, that periodic retraining of the system will be needed to ensure that the full range
of water quality conditions (in the absence of dramatic pollution events) are accounted for, and to allow
continuous adaptation of the system to any possible long-term evolution of water quality.

Component planes of a Kohonen map of size 15*15 trained on the whole data set are shown in Fig. 7.
In this representation, individual components of reference vectors in the map are displayed as grey
levels. Component planes are commonly used as a by-product of SOM’s for “correlation hunting” in
large data sets [22]. In our case, correlation between, e.g., turbidity and UV can be clearly seen on these
displays. Such relationships between input variables are captured by the SOM and are exploited for the
reconstruction of missing data.

For training the MLP’s, a learning set of 1,600 complete measurement vectors was constructed by
removing erroneous and incomplete data, and averaging the data over one hour time intervals. A total
of 1,120 samples (about 70%) was exploited to build the model, the rest being used as an independent
test set. Among the training data, approximately 30% was left out as a validation set for optimising
the architecture. Training the model included: finding the best structure of the ANN and estimating
the prediction accuracy by bootstrap. The prediction accuracy and confidence bounds computed on the
validation set are shown in Fig. 8.

A linear regression model was also developed for comparison with the neural network model. Figure 9
shows the outputs of the linear model trained with the same data as the ANN. As expected, the prediction
accuracy is clearly less than that of the ANN model, which confirms the non linearity of the relationship
of interest. Performance results for the best model obtained from this data set with ANN model and
linear regression are presented in Table 2.
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Fig. 14. Actual (thick line) versus predicted (doted line) coagulant dosage with ANN model without pre-processing.

Table 2
Results for ANN and linear regression models

Models ANN model Linear Regression model

R2 for training data 0.99 0.78
R2 for validation data 0.96
R2 for test data 0.96 0.58
Root-mean-square-error for test data 0.19 1.5
Mean absolute error for test data 0.14 1.2
Maximum absolute error for test data 0.92 4.4
Correlation coefficientr for test data 0.98 0.76

In order to assess the robustness of the system, an off-line simulation study was conducted by artificially
introducing faults in the original data at certain time steps. The simulation was based on two weeks of
real data sampled every 5 minutes from 24th June 1998 to 9th July 1998. The dissolved oxygen was
simulated to be degraded with a rising ramp of 0.005 mg/l per samples (every 5 minutes). The faults
occurs on the 1st July at 8:00 at sample 2017 as shown in Fig. 10. Using the SOM, the fault was detected
72 samples (6 hours) later at 1st July 14:00 (Fig. 11), and the dissolved oxygen variable was correctly
identified as being the faulty parameter.

Figure 12 shows the reconstruction of dissolved oxygen using the SOM approach. The prediction
accuracy and confidence interval of the ANN are shown in Fig. 13 for the pre-processed data. This is
to be compared with the prediction results without pre-processing as shown in Fig. 14. These results
clearly demonstrate the robustness induced by the pre-processing module in our system.
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6. Conclusion

An integrated coagulation control system based on unsupervised and supervised neural network models
has been described. It has been demonstrated that process data can be used to develop and train a feed-
forward controller in the form of a neural network to accurately predict a suitable coagulant dosing rate.
Experimental results using real data have demonstrated the efficiency and soundness of this approach.
Field testing is currently under way to fully validate the system before its widespread dissemination
to other sites. Expected benefits are treated water of a more consistently high quality, together with
improved security of service, as the system will respond reliably and effectively over long periods.
Significant savings in coagulant usage can be obtained in certain cases.

The performance of the network is obviously dependent on the quality and completeness of the data
available for training the system. Consequently, continuous updating of training data during operational
use is expected to improve the performance of the system. This model, however, is only based on the
previous behaviour of operators and jar-test results. Further work is needed to develop a model taking
into account the dynamics of the process, and allowing to predict treated water parameters (mainly,
turbidity) at the output of the clarification process. The concepts demonstrated in this paper will also
be applied in the near future to the modelling of other water treatment processes such as filtration and
chlorination.
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