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Abstract

Several transformations from probabilities to possibilities have been proposed. In par-

ticular, Dubois and Prade’s procedure produces the most specific possibility distribution

among the ones dominating a given probability distribution. In this paper, this method is

generalized to the case where the probabilities are unknown, the only information being

a data sample represented by a histogram. It is proposed to characterize the probabili-

ties of the different classes by simultaneous confidence intervals with a given confidence

level 1 − α. From this imprecise specification, a procedure for constructing a possibility

distribution is described, insuring that the resulting possibility distribution will dominate

the true probability distribution in at least 100(1 − α)% of the cases. Finally, a simple

efficient algorithm is given which makes the computations tractable even if the number of

classes is high.

Keywords: Probability-Possibility Transformation, Possibility theory, Statistics, Multi-

nomial Confidence Regions, simultaneous confidence intervals.



1 Introduction

Uncertainty management is one of the major issues in complex decision system design. For

a long time, the only tools for representing uncertainty were based on probability theory.

Initiated by Zadeh [24], possibility theory has gained an increasing interest in recent

years as it offers an alternative framework for uncertainty modeling and management.

As pointed out by Dubois et al [12], probability theory can be viewed as a good model

for representing randomness, while possibility theory is useful for representing partial

knowledge or incompleteness. Although these two theories aim at representing different

kinds of uncertainty, it is often desirable to move from one framework to another, for

example to fuse heterogeneous information sources. Several transformations, in finite or

continuous settings, have been proposed in the literature [9, 1, 3, 15, 16, 5], based on various

principles such as consistency (“what is probable is possible”) or information invariance.

A related, but distinct and more complex problem is to build a possibility distribution

from empirical data. One approach, investigated in this paper, is to assume the (discrete)

data to have been generated from an unknown probability (i.e., long-run frequency) dis-

tribution. If the sample is very large, the histogram of the data can be considered as a

good approximation to the underlying probability distribution, and the above probability-

possibility transformations can be applied. This approach, however, is clearly unsatisfac-

tory in the case of limited data, where the empirical distribution can be very different

from the true underlying distribution. We are then obviously not primarily interested in

the empirical distribution, which is random and, to some extent, accidental, but rather in

the underlying probability distribution, from which some properties can be inferred from

the data.

This is, of course, a statistical inference problem, and it is natural to attack it using

existing methods of statistical inference, whose results will need, however, to be interpreted

in the possibilistic setting. A useful concept in classical statistics, which will be used in this
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paper, is that of confidence region. A confidence region for a scalar of vector parameter is a

random region in parameter space, defined as a function of the sample, which is guaranteed

to contain the true parameter value with a certain prescribed probability, or confidence

level 1 − α. In this approach, it must be quite clear that the parameter is considered as

unknown but constant, whereas the confidence region is random. Once the data has been

observed, a realization of the confidence region can be computed. It is not known whether

this particular region contains the true parameter value or not. It is only known that it

was constructed using a method which, in the long run, yields a region containing the true

parameter value for a fraction 1− α of the samples.

In our case, the parameter is the vector p = (p1, p2, ..., pK) of probabilities character-

izing the unknown probability distribution of a random variable X on Ω = {ω1, . . . , ωK}.

Let nk denote the number of observations of class ωk in a random sample of size N . Then,

the random vector n = (n1, . . . ,nK) as a multinomial distribution with parameter p. A

confidence region for p at level 1 − α can be computed using simultaneous confidence

intervals. Such a confidence region can be considered as a set of probability distribu-

tions. In this paper, it is shown how to construct the most specific possibility distribution

dominating all the probability distributions in that set. This procedure guarantees that

the obtained possibility distribution will be consistent with the true unknown probability

distribution, in the long run, in at least 100(1− α)% of the cases.

The paper is organized as follows. Section 2 present the necessary background on

ordering relations and on Dubois and Prade’s probability-possibility transformation. Our

method is then exposed in Section 3, and an efficient computational procedure is intro-

duced in Section 4. Finally, numerical experiments are presented in Section 5, and Section

6 concludes the paper.
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2 Background

2.1 Ordering relations

Before developing our approach, we give some basic definitions about ordering relations.

A binary relation on a set U is a subset of the Cartesian product U2. The notation uRv

is often used in place of (u, v) ∈ R. A relation R is said to be:

• transitive if ∀(u, v, w) ∈ U3, uRv and vRw ⇒ uRw;

• antisymmetric if ∀(u, v) ∈ U2, uRv and vRu⇒ u = v;

• irreflexive if ∀(u, v) ∈ U2, uRv ⇒ u 6= v;

• complete if ∀(u, v) ∈ U2, u 6= v ⇒ uRv or vRu.

A partial order is an antisymmetric, transitive relation. An irreflexive partial order is said

to be strict. A linear order is a transitive, antisymmetric and complete order. A linear

order L is compatible with a partial order P if and only if P ⊆ L. In this case, L is

called a linear extension of P. Each partial order can be associated to the set of its linear

extensions.

2.2 Dubois and Prade’s transformation

The problem of moving from probabilities to possibilities has received a lot of attention

in the past [9, 1, 3, 15, 16, 5]. A consistency principle between probability and possibility

was first stated by Zadeh [24] in an unformal way: what is probable should be possible.

Dubois and Prade [6, 8] translated this requirement via the inequality

P (A) ≤ Π(A) ∀A ⊆ Ω, (1)

where P and Π are, respectively, a probability and a possibility measure on a domain

Ω = {ω1, . . . , ωK}. In this case, Π is said to dominate P . Transforming a probability
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measure into a possibilistic one then amounts to choosing a possibility measure in the

set F(P ) of possibility measures dominating P . Dubois et al [12, 4] proposed to add the

following strong order preservation constraint, which insures the preservation of the shape

of the distribution:

pi < pj ⇔ πi < πj ∀i, j ∈ {1, . . . , K}, (2)

where pi = P ({ωi}) and πi = Π({ωi}), for all i ∈ {1, . . . , K}. It is then natural to search

for the most specific possibility distribution verifying constraints (1) and (2) (we recall

that possibility distribution π is more specific than π′ if πi ≤ π′
i,∀i).

Dubois and Prade [12, 4] showed that the solution to this problem exists and is unique.

This solution can be described as follows. Assuming pi 6= pj for all i 6= j, one can define

a strict linear order L on Ω = {ω1, ..., ωK} such that:

(ωi, ωj) ∈ L ⇔ pi < pj . (3)

Let σ be the permutation of the indices {1, 2, ..., K} associated to this linear order such

that pσ(1) < pσ(2) < ... < pσ(K) or, equivalently:

σ(i) < σ(j)⇔ (ωσ(i), ωσ(j)) ∈ L . (4)

The permutation σ is a bijection and the reverse transformation σ−1 gives the rank of

each pi in the list of the probabilities sorted in the ascending order. The transformation

of Dubois and Prade may then be expressed as:

πi =
∑

{j|σ−1(j)≤σ−1(i)}

pj . (5)

Example 1 Let p1 = 0.2, p2 = 0.35, p3 = 0.4, and p4 = 0.05. Then we have σ(1) = 4,

σ(2) = 1, σ(3) = 2, σ(4) = 3 and σ−1(1) = 2, σ−1(2) = 3, σ−1(3) = 4, σ−1(4) = 1.
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Transformation (5) gives the following possibility distribution :

π1 = p1 + p4 = 0.2 + 0.05 = 0.25

π2 = p2 + p1 + p4 = 0.35 + 0.2 + 0.05 = 0.6

π3 = p3 + p2 + p1 + p4 = 0.4 + 0.35 + 0.2 + 0.05 = 1

π4 = p4 = 0.05.

Remark 1 Formulation (5) assumes the pi’s to be all different. If at least two probabilities

are equal, (3) induces no longer a strict linear order, but a strict partial order P on

Ω. This partial order can be represented by the set of its compatible linear extensions

Λ(P) = {Ll, l = 1, L}. To each possible linear order Ll of Λ(P), one can associate a

permutation σl of the set {1, .., K} such that:

σl(i) < σl(j)⇔ (ωσl(i), ωσl(j)) ∈ Ll. (6)

In that case, the most specific possibility distribution compatible with p = (p1, ..., pK) is

obtained by taking the maximum over all possible permutations:

πi = max
l=1,L

∑

{j|σ−1

l
(j)≤σ−1

l
(i)}

pj . (7)

Example 2 Let p1 = 0.2, p2 = 0.5, p3 = 0.2, and p4 = 0.1. We have thus two possible

permutations σ1(1) = 4, σ1(2) = 1, σ1(3) = 3, σ1(4) = 2 and σ2(1) = 4, σ2(2) = 3,

σ2(3) = 1, σ2(4) = 2. Transformation (7) gives the following possibility distribution :

π1 = max(p4 + p1, p4 + p3 + p1) = max(0.3, 0.5) = 0.5

π2 = p4 + p1 + p3 + p2 = 1

π3 = max(p4 + p1 + p3, p4 + p3) = max(0.5, 0.3) = 0.5

π4 = p4 = 0.1.

It can be seen that p1 = p3 implies π1 = π3, a condition which is required for strong order

preservation.
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3 Inferring a possibility distribution from experimental data

3.1 Problem statement

We suppose that the available data consist of N observations (X1, X2, ..., XN ) generated

according to probability distribution PX on Ω = {ω1, ω2, ..., ωK}. Let ni denote the

number of observations falling in the ith class ωi. The vector n = (n1, n2, ..., nK) is a

sample of a multinomial distribution with parameters p = (p1, p2, ..., pK), where each

pi = PX({ωi}) > 0 is the probability of occurence of the ith class and
∑K

i=1 pi = 1.

The classical approach for deriving a possibility distribution from this data would be to

consider the vector of observed frequencies f = (f1, f2, ..., fK) where fi = ni/N as the

true vector of probabilities p and to apply Dubois and Prade’s transformation. However

this approach does not take into account the uncertainty due to the sampling process, as

shown in the following example:

Example 3 Figure 1 shows the possibility distributions computed with (5) using two

samples drawn from a multinomial distribution with parameters p = [0.2; 0.35; 0.4; 0.05]t

and N = 100. It can be seen that the two distributions are very different although the

samples are drawn from the same population. Moreover, one of the possibility distributions

(left) does not dominate the true probability distribution (see Example 1).

Statistical inference provides some tools to draw conclusions about the characteristics

of a population, based on information gathered from a sample. In particular, confidence

intervals are a usual means to estimate the unknown parameters of a distribution. A

confidence interval on a parameter at a given level α is a random interval (defined as a

function of the observations) that contains the true value of the parameter with probability

1−α (i.e., in 100(1−α)% of the cases when the data samples are repeatedly drawn from the

unknown distribution). We propose in this paper, first, to estimate the pi using confidence

intervals on multinomial proportions, and then to derive a possibility distribution from
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Figure 1: Two possibility distributions computed using samples from the same probability

distribution.

these intervals. The procedure should insure that the possibility distribution will dominate

the true probability distribution in at least 100(1−α)% of the cases, what can be formally

stated as:

P (Π(A) ≥ PX(A),∀A ⊆ Ω) ≥ 1− α , (8)

where PX(A) is the unknown but constant probability of event A, and Π(A) is a random

variable defined as a function of the observations. Note that proposition (8) is equivalent

to

P (N(A) ≤ PX(A),∀A ⊆ Ω) ≥ 1− α , (9)

where N is the necessity measure associated to Π, defined as N(A) = 1−Π(A), ∀A ⊆ Ω.

3.2 Confidence intervals for multinomial proportions

Making a guess about a population parameter on the basis of a sample is a classical ques-

tion addressed by statistical inference. In point estimation, the estimate of an unknown

parameter is a single value. In interval estimation, a scalar population parameter is typ-

ically estimated as a range of possible values, namely a confidence interval, with a given

confidence level 1− α.

To construct confidence intervals for multinomial proportions, a first approach is to

consider each ni versus the remaining ones as the realization of a binomial distribution and
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to make a set of confidence intervals independently from each other. This approach does

not allow to control the overall confidence coefficient for the entire set of intervals. A better

approach lies in constructing simultaneous confidence intervals with a joint confidence level

1 − α. Finding simultaneous confidence intervals for multinomial proportions is an old

problem and several methods have been proposed in the literature [19, 14, 13, 21]. All these

methods attempt to find a confidence region Cn in the parameter space {p = (p1, ...pK) ∈

[0; 1]K |∑K
i=1 pi = 1} as the Cartesian product of K intervals [p−1 , p+

1 ]× ...× [p−K , p+
K ] such

that

P (p ∈ Cn) ≥ 1− α (10)

This probability is called the coverage probability of the estimation. We have retained

the solution proposed by Goodman [14] which has been tested using different simulations

and shown to perform well in most practical situations [17]. The derivation of Goodman’s

formulation is explained in Appendix A. The main formulas are given in the sequel. Let

A = χ2(1− α/K, 1) + N, (11)

where χ2(1−α/K, 1) denotes the quantile of order 1−α/K of the chi-square distribution

with one degree of freedom, and N =
∑K

i=1 ni denotes the size of the sample. Addition-

nally, let:

Bi = χ2(1− α/K, 1) + 2ni, (12)

Ci =
n2

i

N
, (13)

∆i = B2
i − 4ACi. (14)

Then the bounds of the confidence intervals are defined as follows:

[p−i , p+
i ] =





Bi −∆
1

2

i

2A
,
Bi + ∆

1

2

i

2A



 . (15)

Note that this formula relies on asymtotic approximations (see Appendix A). Based

on simulation studies, May and Johnson [17] stated that Goodman’s intervals perform
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Figure 2: Confidence intervals of Example 4; the circles represent the true class probabil-

ities.

Table 1: Confidence intervals of Example 4

i 1 2 3 4

p−i 0.10 0.34 0.25 0

p+
i 0.28 0.56 0.46 0.08

well in terms of coverage probability and confidence region volume, provided that K, the

number of classes, is greater than 2 and that each ni is greater than 5. If the total sample

size is small or the number of observation in a class is small, other methods of intervals

construction should be used (see, for example, Sison and Glaz [21]).

Example 4 Let the true probability be again p = [0.2; 0.35; 0.4; 0.05]t. We suppose that

we observe a data sample of size 100 with the following distribution in the different classes:

18, 45, 35, and 2. Setting α = 0.1, leads to the simultaneous confidence intervals given in

Table 1 and represented in Figure 2.

3.3 Induced lower probability measure

A confidence region Cn for multinomial proportions such as described above is usually

interpreted as defining a set of plausible values for vector parameter p. However, since each

value of p specifies a unique probability measure on Ω, it is clear that Cn can equivalently

be seen as defining a family of probability measures. To keep the notation as simple as
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possible, the same symbol Cn will be used to denote the set of parameter values p and

the set of probability measures. Let P− and P+ denote, respectively, the lower and upper

enveloppes of Cn, defined as P−(A) = minP∈Cn P (A) and P+(A) = maxP∈Cn P (A). They

can be easily computed using the following proposition.

Proposition 1

For all strict nonempty subset A of Ω,

P−(A) = max





∑

ωi∈A

p−i , 1−
∑

ωi 6∈A

p+
i



 (16)

P+(A) = min





∑

ωi∈A

p+
i , 1−

∑

ωi 6∈A

p−i



 . (17)

Proof. For all A ⊂ Ω, P−(A) is the solution of the following linear program:

min
p1,...,pK

∑

ωi∈A

pi,

subject to the constraints
∑K

i=1 pi = 1 and p−i ≤ pi ≤ p+
i , i = 1, . . . , K. This problem is a

special case of a family of linear programs studied by Dubois and Prade in the context of

fuzzy arithmetics [7, 10]. Equation (16) can be derived from the general formula given in

[10, page 55]. Equation (17) can be obtained in a similar way. �

Note that we have, as a direct consequence of Proposition 1:

P+(A) = 1− P−(A), ∀A ⊆ Ω.

Hence, the lower probability measure P− is sufficient to characterize Cn:

Cn = {P | P− ≤ P}.

By construction, we have

P(PX ∈ Cn) = P(P− ≤ PX) ≥ 1− α (18)

and, equivalently,

P(P+ ≥ PX) ≥ 1− α . (19)
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Equations (18) and (19) are similar to (9) and (8), respectively. However, P− is not a

necessity measure. It is not even, in general, a belief function [20] when K > 2, as shown

by Example 5 below. However, it can be shown to be a 2-monotone capacity, i.e., we have

P−(A ∪B) ≥ P−(A) + P−(B)− P−(A ∩B), ∀A, B ⊆ Ω.

Consequently, P− is a coherent lower probability measure [22].

Example 5 Let us return to the data and confidence region computed in Example 4.

The corresponding lower probabilities are shown in Table 2. As shown by Shafer [20], a

mapping f : 2Ω → [0, 1] is a belief function iff its Möbius inverse, defined as:

m(A) =
∑

B⊆A

(−1)|A\B|f(B), ∀A ⊆ Ω,

is a basic belief assignment (i.e., if m(A) ≥ 0 for all A, and
∑

A⊆Ω m(A) = 1). The Möbius

inverse of P−, shown in Table 2, assigns a negative value to Ω. Consequently, P− is not

a belief function.

3.4 Generating a possibility distribution from interval-valued probabil-

ities

We have seen that a set of simultaneous multinomial confidence intervals at confidence

level 1 − α can be seen as defining a set of probability measures that can be described

exactly by its lower envelope P−, which is a coherent lower probability, or, equivalently,

by its upper envelope P+.

We recall that our goal is to find a probability measure Π verifying (8). Now, it is clear

that this property is satisfied for any possibility Π dominating P+, since Π(A) ≥ P+(A),

∀A ⊆ Ω and (19) implies (8).

The problem of finding the least specific possibility measure dominating a plausibility

function has been addressed in [11], in which an algorithm is proposed for computing a
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Table 2: Lower and upper probabilities induced by the confidence intervals of Table 1,

and corresponding Möbius inverse.

A P−(A) P+(A) m(A)

{ω1} 0.1038 0.2938 0.1038

{ω2} 0.3323 0.5735 0.3323

{ω1, ω2} 0.4362 0.7530 0

{ω3} 0.2429 0.4747 0.2429

{ω1, ω3} 0.3467 0.6636 0.0000

{ω2, ω3} 0.6139 0.8921 0.0387

{ω1, ω2, ω3} 0.9077 0.9959 0.1900

{ω4} 0.0041 0.0923 0.0041

{ω1, ω4} 0.1079 0.3861 0

{ω2, ω4} 0.3364 0.6533 0

{ω1, ω2, ω4} 0.5253 0.7571 0.0850

{ω3, ω4} 0.2470 0.5638 0

{ω1, ω3, ω4} 0.4265 0.6677 0.0757

{ω2, ω3, ω4} 0.7062 0.8962 0.0882

Ω 1.0000 1.0000 -0.1607

good (though not optimal) solution. However, this algorithm is not applicable here since,

as we have shown in the previous section, P− is not a belief function (or, equivalently, P+

is not a plausibility function).

It is clear that Π dominates the upper probability measure P+ if and only if it domi-

nates all elements in the corresponding family of probability measures, i.e., all probability

measures P such that P ≤ P+, or, equivalently, all probability distributions verifying

p−i ≤ pi ≤ p+
i , i = 1, . . . , K. We thus reformulate our goal as finding the most spe-

cific possibility distribution on Ω, dominating every probability distribution defined by

pi ∈ [p−i , p+
i ] ∀i, or, equivalently, every possibility distribution induced by possible val-

ues of the pi’s, whatever their value in [p−i , p+
i ].

To achieve this goal, our approach will be to use the transformation described in
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Section 2.2, which allows to compute the most specific possibility distribution dominating

any particular probability measure.

Let P denote the partial order induced by the intervals [pi] = [p−i , p+
i ]:

(ωi, ωj) ∈ P ⇔ p+
i < p−j . (20)

As explained in Section 2.1, this partial order may be represented by the set of its compati-

ble linear extensions Λ(P) = {Ll, l = 1, L}, or, equivalently, by the set of the corresponding

permutations {σl, l = 1, L}.

Formally, the solution of our problem may be thus computed as follows:

1. For each possible permutation σl associated to each linear orders in Λ(P), and each

class ωi, solve the following linear program (LP):

πσl

i = max
p1,...,pK

∑

{j|σ−1

l
(j)≤σ−1

l
(i)}

pj (21)

under the constraints:


























K
∑

k=1

pk = 1

p−k ≤ pk ≤ p+
k ∀k ∈ {1, ..., K}

pσl(1) ≤ pσl(2) ≤ ... ≤ pσl(K)

(22)

2. Then, take the distribution dominating all the distributions πσl :

πi = max
l=1,L

πσl

i ∀i ∈ {1, ..., K}. (23)

If the [pi] are simultaneous confidence intervals computed using (15) with a confidence

level 1−α, this procedure ensures that the resulting possibility measure is the most specific

one that dominates all the compatible probability measures, and, consequently, the upper

probability P+. As a consequence, it verifies property (8).
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Example 6 We consider four classes characterized by the probability intervals given in

Table 1 and represented in Figure 2. The corresponding partial order of the classes is:

P = {(ω4, ω1), (ω1, ω2), (ω4, ω2), (ω4, ω3)}.

There are three permutations compatible with P: σ1 = (4, 1, 3, 2), σ2 = (4, 1, 2, 3),

σ3 = (4, 3, 1, 2). The corresponding ranks are σ−1
1 = (2, 4, 3, 1), σ−1

2 = (2, 3, 4, 1) and

σ−1
3 = (3, 4, 2, 1). Table 3 gives the solutions of the different linear programs and the final

possibility distribution. Classes ω2 and ω3 logically receive the greatest possibility, since

both corresponding probabilities could be ranked in the last position. Class ω4, always

ranked in the first position, has a possibility degree corresponding to its maximum of

probability. The value of 0.64 of possibility degree for the first class is obtained for the

third permutation with an optimal value of p equal to [0.28,0.36,0.28,0.08].

Table 3: Solutions of the linear programs and derived optimal solution (Example 6).

l πσl

1 πσl

2 πσl

3 πσl

4

1 0.36 1 0.66 0.08

2 0.32 0.66 1 0.08

3 0.64 1 0.36 0.08

maxl 0.64 1 1 0.08
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Remark 2 Some of the probability distributions in Cn are such that pi = pj for some

i 6= j. As emphasized in Remark 1, the corresponding possibility distributions are built

by considering all the linear extensions of the induced partial orders. This is consistent

with our approach, which considers all the linear extensions of the partial order induced

by the probability intervals.

Remark 3 It is very important to note that the constraint set may be inconsistent for

some problems defined by (21)-(22). As an example, consider the following probability

intervals: p1 = [0; 0.9], p2 = [0.1; 0.3], p3 = [0; 0.8]. A possible permutation is σ(1) = 1,

σ(2) = 3, σ(3) = 2. However, the associated constraint set is not consistent, since the

equality constraint can not be satisfied, p1 and p3 being limited by the upper value of p2

which is 0.3. The final possibility distribution is thus derived by taking the maximum of

the solutions over the feasible problems which gives here π1 = 1, π2 = 0.6 and π3 = 1.

Remark 4 The above procedure could be applied if the [pi] were obtained differently, for

example, directly elicited from experts. However, property (8), insuring a coverage rate

of a predefined level, which is our main concern in this paper, would not be satisfied.

Confidence intervals may be also obtained by other procedures, like the one suggested by

Walley [23] in the context of the theory of imprecise probabilities.

4 Computational procedure

4.1 Outline of the approach

To compute the possibility degrees of the different classes, the conceptually simplest ap-

proach is to generate all the linear extensions compatible with the partial order induced

by the probability intervals, and then to solve the associated linear programs, as shown

in the previous section. However, this approach is unfortunately limited to small values

of K (say K < 10) due to the complexity of the algorithms generating linear extensions:
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the fastest algorithm seems to be the algorithm of Pruesse and Ruskey [18], whose com-

plexity is O(L), where L is the number of linear extensions. Even for moderate values

of K, L can be very large (K! in the worst case) and generating all the linear extensions

and solving the linear programs soon becomes intractable. We propose in this section a

new formulation of the solution which will be shown to be equivalent to the first one and

reduces the computations. This formulation will be explained in several steps:

• first, all the linear programs to be solved will be grouped in different subsets;

• then, an analytic expression for the best solution in each subset will be given;

• lastly, it will be shown that it is not necessary to evaluate the solution for every

subset. A simple computational algorithm will be derived.

4.2 Step 1: Grouping the linear programs

For a given permutation σ, let Sσ
i denote the set of classes with a rank smaller than or

equal to the one of ωi in the permutation σ:

Sσ
i = {j | σ−1(j) ≤ σ−1(i)}. (24)

The set of all linear programs to be solved may be partitioned by remarking that

several permutations can be associated to the same set Sσ
i . Let S denote such a set and

let ΣS be the set of all permutations σ such that Sσ
i = S, that is the set of permutations

for which the probabilities smaller than pi are the pj , j ∈ S. Let πS
i denote the maximum

of the solutions found in ΣS :

πS
i = max

σ∈ΣS

πσ
i (25)

The interest of such a grouping is that it is not necessary to solve nS = |ΣS | linear

programs to compute πS
i . Only one linear program is needed, as expressed in the following

proposition:
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Proposition 2

πS
i is the solution of the following linear program:

LP (S):

πS
i = max

p1,...,pK

∑

j∈S

pj (26)

under the constraints:


























K
∑

k=1

pk = 1

p−k ≤ pk ≤ p+
k ∀k ∈ {1, ..., K}

pk ≤ pi ∀k ∈ S

(27)

Sketch of proof. In each subset ΣS , all LP have the same objective function. Taking

the maximum over the nS solutions is equivalent to relax all the precedence constraints

between the pk.

It may be remarked that, if p∗ denotes argmax πS
i , we have necessarily p∗i = p+

i since

raising pi to its largest value increases the objective function and in the same time relaxes

the bounds of the constraints. This allows to reformulate constraints (27) as:



























K
∑

k=1

pk = 1

p−k ≤ pk ≤ p+
k ∀k ∈ S̄

p−k ≤ pk ≤ min(p+
i , p+

k ) ∀k ∈ S,

(28)

4.3 Step 2: Analytic expression of π
S
i

Problem LP (S) above consists in the maximization of a linear function under box con-

straints and one equality constraints. This is again a problem belonging to the class of

problems studied in [7][10, page 55]. By applying the general formula given in [10, page55],

we obtain the following analytical expression for the solution of LP (S):

πS
i = min





∑

k∈S

min(p+
i , p+

k ), 1−
∑

k∈S̄

p−k



 , (29)
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where S̄ denote the complement of S.

Note that, to satisfy the normalization condition for probabilities, the sum of the upper

bounds of the box contraints must be greater or equal to one, so that a solution exists if

and only if:

∑

k∈S

min(p+
k , p+

i ) +
∑

k∈S̄

p+
k ≥ 1. (30)

4.4 Step 3: Search for the optimal S

Having expressed the solution for a given set S, it is now necessary to find the set S

maximizing the possibility degree of ωi. In fact, one obtains the overall solution for πi by

taking the maximum over all subsets S for which problem LP (S) is feasible. The solution

(29) may be expressed in another way by decomposing S as follows.

Let Ni denote the set of the indices of the classes with a rank necessarily smaller than

the rank of ωi, and let Pi denote the set of indices of the classes with a rank possibly, but

not necessarily smaller than ωi. Since p∗i = p+
i , it is clear that p+

j < p+
i implies p∗j < p∗i .

Consequently, we have:

Ni = {j/p+
j ≤ p+

i }, (31)

and

Pi = {j |p+
j > p+

i and p−j < p+
i }. (32)

Note that Ni necessarily contains the singleton {i}. Any set of indices S for which a

solution of problem LP (S) exists satisfies S = Ni ∪ PS
i for some PS

i ⊆ Pi. Such a set will

18



be said to be admissible. Let S be an admissible set. Then, one obtains:

πS
i = min





∑

k∈Ni

min(p+
i , p+

k ) +
∑

k∈P S
i

min(p+
i , p+

k ), 1−
∑

k∈S̄

p−k





= min





∑

k∈Ni

p+
k +

∑

k∈P S
i

p+
i , 1−

∑

k∈S̄

p−k





= min





∑

k∈Ni

p+
k + |PS

i |p+
i , 1−

∑

k∈S̄

p−k



 . (33)

We now prove that the evaluation of πS
i for every admissible S is not necessary, using

the following two propositions.

Proposition 3 (Monotonicity property)

Let S and S’ two admissible sets. If S ⊆ S′ then πS
i ≤ πS′

i .

Sketch of proof. The proposition is obvious: the left-hand part of the min in (33) is clearly

increasing with the cardinality of S, and, in the same time, if S ⊂ S′ then, when going

from πS
i to πS′

i one removes one or more terms from the sum in the right-hand part.

Proposition 3 is very important as it gives a first way to drastically limit the search of

the solution. We construct a search tree where the root is the set of indices with maximal

cardinality (Ni ∪Pi). The successors in the tree are constructed by successively removing

one element of Pi from the current set of “candidates” so that the sets associated to any

path in the tree consist in a family of nested subsets. By convention, level 0 (the root

of the tree) corresponds to PS
i = Pi; level 1 corresponds to the sets of indices where one

element of Pi has been removed; at level 2, two elements have been removed, and so on.

The monotonicity property helps to avoid an exhaustive search in the tree: whenever

LP (S) is found to be feasible at a given node of the tree (which can be checked by (30)),

it is not necessary to evaluate the solution for its children nodes, so that the whole subtree

of the current node may be cut off and many computations may be omitted. As we shall

see, the following proposition allows to further simplify the computations.
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Proposition 4

Let S1 and S2 two admissible sets with corresponding levels in the tree level1 and level2,

such that LP (S1) and LP (S2) are feasible. If level1 = level2 then πS1

i = πS2

i . Moreover if

level1 > level2 then πS1

i > πS2

i .

Proof.

1. First, as already explained before, it is obvious that the left-hand part of the min in

(33) only depends on the size of the set S considered, and thus on the level of the

nodes in tree.

2. Second, the solution, except for the root, is never given by the right-hand part of

the min, which can be shown as follows. Let S = Ni ∪ PS
i a set of indices such that

LP (S) is found to be unfeasible and S′ a child of S in the tree obtained by removing

index j from PS
i . Because LP (S) is unfeasible, we have:

∑

k∈S

min(p+
k , p+

i ) +
∑

k∈S̄

p+
k ≤ 1

⇔
∑

k∈Ni

p+
k + |PS

i |p+
i +

∑

k∈S̄

p+
k ≤ 1

⇔
∑

k∈Ni

p+
k + (|PS

i | − 1)p+
i ≤ 1−

∑

k∈S̄

p+
k − p+

i (34)

Remembering that j ∈ PS
i , so that p−j < p+

i , (34) is thus equivalent to:

∑

k∈Ni

p+
k + (|(PS

i | − 1)p+
i ≤ 1−

∑

k∈S̄

p+
k − p−j

⇔
∑

k∈Ni

p+
k + |PS′

i |p+
i ≤ 1−

∑

k∈S̄

p−k − p−j

⇔
∑

k∈Ni

p+
k + |PS′

i |p+
i ≤ 1−

∑

k∈S̄′

p−k

⇔ πS′

i =
∑

k∈Ni

p+
k + |PS′

i |p+
i . (35)

Propositions 3 and 4 now allow to propose an efficient computational algorithm: it

starts from the root (level 0 of the tree). If the corresponding linear program is feasible,
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it gives the solution. If not, the tree is explored using a breadth-first search strategy: as

soon as a linear program is found to be feasible in a given level, it gives the solution and

the search can be stopped. The proposed algorithm is detailed in Appendix B.

Example 7 A small example is given to illustrate the algorithm. The size of the sample

is N = 250. The observations are classified into K = 5 classes and the following distri-

bution is observed: n = [39, 32, 64, 56, 56, 39]. Setting α = 5%, we construct simultaneous

confidence intervals yielding the following probability bounds:

p− = [0.1059, 0.0830, 0.1919, 0.1637, 0.1742], (36)

p+ = [0.2239, 0.1922, 0.3328, 0.2986, 0.3114] (37)

Table 4 gives the details of the computations involved by the proposed procedure. For a

better understanding of the method, all possibilities at level 1 are detailed in Table 4 for

i = 2, although the procedure normally stops as soon as a solution is found.

Remark 5 During the revision of this paper, we became aware of reference [2], in which

a heuristic procedure is given for generalizing the Dubois-Prade probability-possibility

transformation to probability intervals. This procedure happens to be equivalent to

applying formula (29) to the root of the tree, regardless of the existence of a solu-

tion at this level. Consequently, it is not optimal. In the above example, this method

yields π = [1, 0.9609, 1, 1, 1], whereas the optimal solution found by our algorithm is

π = [1, 0.7688, 1, 1, 1].

Remark 6 Our algorithm essentially explores the tree using a breadth-first strategy, and

terminates once a solution has been found. Although the worst case time complexity is

the same as that of exhaustive search (|Pi|! leaves in the tree), a solution was always found

at level 0 or 1 in our simulations. This suggests that the actual complexity might actually

be close to O(|Pi|).
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Table 4: Example 7: Details of computation.

i level 0 (root) level 1

i = 1 Ni = {1, 2} PS
i = Pi = {3, 4, 5} not explored

feasibility=4*0.2239+0.1922=1.078 ≥ 1

πi = min(1.078, 1) = 1

i = 2 Ni = {2} PS
i = Pi = {1, 3, 4, 5} Ni = {2} PS

i = {3, 4, 5}
feasibility=5*0.1922=0.9609 ≤ 1 feasibility=4*0.1922+0.2239=0.9927 ≤ 1

unfeasible unfeasible

Ni = {2} PS
i = {1, 4, 5}

feasibility=4*0.1922+0.3328=1.1016 ≥ 1

πi = 4 ∗ 0.1922 = 0.7688 → Exit

Ni = {2} PS
i = {1, 3, 5}

feasibility=4*0.1922+0.2986=1.1016 ≥ 1

πi = 4 ∗ 0.1922 = 0.7688

Ni = {2} PS
i = {1, 3, 4}

feasibility=4*0.1922+0.3114=1.0802 ≥ 1

πi = 4 ∗ 0.1922 = 0.7688

i = 3 Ni = {1, 2, 3, 4, 5} PS
i = Pi = ∅ not explored

feasibility=0.2239+0.1922+0.3328

+ 0.2986+0.3114=1.3589 ≥ 1

πi = min(1.3589, 1) = 1

i = 1 Ni = {1, 2, 4} PS
i = Pi = {3, 5} not explored

feasibility=3*0.2986+0.1922

+0.2239=1.3118 ≥ 1

πi = min(1.3118, 1) = 1

i = 5 Ni = {1, 2, 4, 5} PS
i = Pi = {3} not explored

feasibility=2*0.3114+0.2239+0.1922

+0.2986=1.3375 ≥ 1

πi = min(1.3375, 1) = 1
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5 Experiments

5.1 First experiment

Let us consider a histogram of continuous data composed of K=11 classes uniformly spaced

from −2 to 2. The observed frequencies are assumed to be

f = [0.04, 0.02, 0.05, 0.09, 0.14, 0.27, 0.14, 0.14, 0.07, 0.02, 0.02],

leading to the possibility distribution computed from Dubois and Prade’s transformation

represented in Figure 3. One assumes that several samples of varying size (N=100,500,1000

and 10000) have led to the same frequency data. Goodman’s confidence intervals, com-

puted with α = 0.05, are shown in Figure 4. The results of the proposed transformation

in the four cases are shown in Figure 3. They confirm what was expected: our transfor-

mation always dominates Dubois and Prade’s one and asymptotically converges to it as

N goes to infinity.

5.2 Second experiment

In a second experiment, we studied the coverage probability of the proposed transforma-

tion (i.e., the probability that the possibility distribution dominates the true probability

distribution). To do that, the following procedure was used:

• step 1: we considered Ω to be composed of K = 5 classes. Five proportions pi were

uniformly chosen in the interval [0,1] with the constraint
∑K

i=1 pi = 1;

• step 2: the coverage probability was estimated using 100 samples of fixed size N ,

drawn from a multinomial distribution of parameters pi; this estimation was done

by computing, for each sample, a set of confidence intervals with a fixed α, trans-

forming them into a possibility distribution using algorithm Prob2poss and checking

whether:

Π(A) ≥ P (A) ∀A ⊆ Ω
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Figure 3: Experiment 1. Convergence of the proposed transformation to Dubois and

Prade’s one as N →∞.
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Figure 4: Experiment 1. Goodman’s confidence intervals; the points represent the class

frequencies.
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(for each subset A of Ω, one checked if the maximum of the possibility degrees of

the singletons in A was greater or equal to the sum of their probabilities).

• this estimated coverage probability was averaged over nrep = 100 replications of the

previous experiment (steps 1 and 2).

• The whole experiment was repeated using different values of α (0.01,0.05,0.1,0.2,0.3,0.4)

and N (100, 1000, 10000).

In Figure 5, is shown the coverage rate of the proposed transformation. It can be seen

that the solution actually dominates the true probability distribution with a rate always

much higher than 100(1−α)%. Our approach is thus very cautious and conservative from

this point of view. As a matter of comparison, the coverage rate of Goodman’s intervals

is shown in Figure 6. For the proposed transformation, the choice of α is not critical

and whatever its value, a very good coverage rate is insured, for any sample size. The

choice of α involves a trade-off between coverage probability and specificity of the resulting

possibility distribution.
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Figure 5: Experiment 2. Coverage rate of the proposed transformation.
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Figure 6: Experiment 2. Coverage rate of Goodman’s confidence intervals.

6 Conclusion

A procedure has been proposed for constructing a possibility distribution from a discrete

empirical frequency distribution. It is assumed that the data have been randomly gener-

ated from an unknown probability distribution. Based on this assumption, simultaneous

confidence intervals for multinomial proportions are constructed, defining a set of prob-

ability distributions. We then construct the most specific possibility distribution which

dominates all the probability distributions in that set. This procedure is guaranteed to

yield a possibility measure that dominates the true generating probability measure (cor-

responding to long-run frequencies) in at least 100(1− α)% of the cases (i.e., for at least

100(1 − α)% of the samples). We believe that this approach provides an interesting link

between classical inferential statistics and Possibility Theory.
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A Goodman’s simultaneous confidence intervals

Before discussing the derivation of the confidence intervals of Goodman, a useful tool,

referred to as the Bonferroni inequality, is explained. It may be stated as follows:

Bonferroni inequality Let A1, ..., AK be K events of a sample space which each have a

probability of 1−α of occurring. Then the probability that they all occur simultaneously

is 1−Kα.

Proof. We start from

P (A1 ∩ ... ∩AK) = 1− P (Ā1 ∪ ... ∪ ĀK). (38)

Using the fact that P (Āi) = α for all i and that

P (Ā1 ∪ ... ∪ ĀK) ≤ P (Ā1) + ... + P (ĀK), (39)

one easily obtains the following result:

P (A1 ∩ ... ∩Ak) ≥ 1−Kα. (40)

To derive confidence intervals, Goodman first considers that each parameter pi is the

parameter of a binomial random variable. A normal approximation of a binomial random

variable is then used: as N becomes large, fi = ni/N becomes approximately normally

distributed with mean pi and variance pi(1−pi)/N so that, the following random variable:

Zi =

√
N(fi − pi)

√

pi(1− pi)
(41)

is asymptotically normally distributed with 0 mean and variance 1. The square of each Zi

is thus a chi-square distribution with one degree of freedom. Confidence intervals for the

pi may be thus derived by finding the solutions of the following set of quadratic equations:

N(fi − pi)
2 = χ2(1− α, 1)pi(1− pi) ∀i = 1, K, (42)
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or, equivalently:

p2
i (N + χ2(1− α, 1))− (2ni + χ2(1− α, 1)pi +

n2
i

N
= 0 ∀i = 1, K (43)

where χ2(1 − α, 1) denotes the quantile of order 1 − α of the chi-square distribution

with one degree of freedom. Each equation has two solutions which define the lower and

upper bounds of the confidence interval. Then, using a Bonferroni adjustement, Goodman

replaces χ2(1−α, 1) by χ2(1−α/K, 1) in (43) , leading to the bounds expressed by equations

(11)-(15).
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B Procedure Prob2Poss

Algorithm 1 Probability-Possibility Transformation

1: procedure Prob2Poss(p−,p+)

2: for i=1,K do

Initialization

3: PS
i = Pi using (32)

4: S ← Ni ∪ PS
i using (31)

5: level ← 0

6: check for the feasibility of LP (S) using (30)

7: if LP (S) is feasible then

8: πi ← πS
i computed from (33)

9: Stop,

10: else

11: repeat

12: level ← level + 1

13: Loop: remove one by one any combination C of level elements from Pi,

PS
i = Pi\C, S ← Ni ∪ PS

i , until one LP (S) is found to be feasible

and solve it using eq. (33). πi is equal to this solution. Exit loop.

14: until a solution has been found

15: end if

16: end for

17: end procedure
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