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Abstract

The two most widely used neural models, multilayer perceptron~MLP! and radial basis function network~RBFN!,
are presented in the framework of system identification and control. The main steps for building such nonlinear black
box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural
network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are
described in steel industry and water treatment, respectively the control of alloying process in a hot dipped galvanizing
line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest
of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control
operators can be learned. © 2003 ISA—The Instrumentation, Systems, and Automation Society.
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1. INTRODUCITON

Artificial neural networks have been the focus of
a great deal of attention during the last two de-
cades, due to their capabilities to solve nonlinear
problems by learning from data. Although a broad
range of neural network architectures can be
found, multilayer perceptrons~MLP’s! and radial
basis function networks~RBFN’s! are the most
popular neural models, particularly for system
modeling and identification@1,2#, control @3,4#,
and time series forecasting.

In Section 2, these two neural models are pre-
sented and related to the general task of system

identification from experimental data. The differ-
ent methods for choosing the input variables~re-
gressors!, selecting the internal architecture, and
learning the weights~i.e., estimating the param-
eters! are reviewed. The advantages of these mod-
els are then summarized, as compared to other
nonlinear structures. The third part briefly intro-
duces the application of neural networks to pro-
cess control. Finally, two case studies are de-
scribed in the last section: the intelligent control of
a hot dipped galvanizing line, and the control of a
coagulation process in a water treatment plant.
These two applications show the interest of neural
learning in an industrial production context when
complex physical phenomena are involved, par-
ticularly at the upper level of set-point determina-
tion.
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2. NONLINEAR SYSTEM MODELING
WITH NEURAL NETWORKS

2.1 Two neural models

Only a reduced form of multilayer perceptron
~MLP! ~or feedforward sigmoid neural network!
will first be presented here: the one hidden layer
perceptron with linear output unit. Although par-
ticular, this model will be called MLP in the fol-
lowing. Its form is given, for single outputf , by
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where w j , j 51,...,p, are the inputs of the net-
work, wk j

1 and bk
1, k51,...,n, j 51,...,p, are the

weights and biases of the hidden layer, the activa-
tion functiong is a sigmoid function, often chosen
as the hyperbolic tangentg(x)5 2/(11e22x)21,
wk

2, k51,...,n, andb2 are the weights and bias of
the output neuron or node~see Figs. 1 and 2!.

The restriction to only one hidden layer and to a
linear activation function at the output brings the
general perceptron closer to other nonlinear mod-
els, neural or not. Indeed, the one hidden layer
perceptron corresponds to a unique particular

choice, the sigmoid function, for the basis function
gk , and to a ‘‘ridge’’ construction for the inputs
@2# in a function expansion:

f ~w,u!5 (
k51

n

akgk~w,bk!, ~2!

where w5@w1•••wp#T is the regression vector
and the parameter vectoru is the concatenation of
all the weightsw and biasesb.

Choosing a Gaussian functiong(x)5e2x2/s2
as

basis function and a radial construction for the in-
puts leads to the radial basis function network
~RBFN! @5#:
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where gk5@gk1•••gkp#
T is the ‘‘center’’ or

‘‘position’’ of the kth Gaussian and bk

5@bk1•••bkp#
T its ‘‘scale’’ or ‘‘width’’ ~see Figs.

3 and 4!.
The process of approximating nonlinear rela-

tionship from data can be decomposed in several
steps:

• determining the structure of the regression
vector w or selecting the inputs of the net-
work;

Fig. 1. One hidden layer perceptron, with linear output
node.

Fig. 2. Hyperbolic tangent function.

Fig. 3. Radial basis function network.
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• choosing the nonlinear mappingf or, in the
neural network terminology, selecting an in-
ternal network architecture;

• estimating the parameter vectoru, i.e.,
~weight! ‘‘learning’’ or ‘‘training.’’

As recalled in Fig. 5, this approach is similar to
the classical one for linear system identification
@6#, the selection of the model structure being,
nevertheless, more involved. Several general com-
ments concerning these three points will be done
in the following.

2.2 The regressors

For dynamic systems in discrete timet, a natural
approach@7,3# is to reuse the input structure of
linear models, particularly the general input-output
model family @6#

A~q21!y~ t !5
B~q21!

F~q21!
u~ t !1

C~q21!

D~q21!
e~ t !,

~4!

whereu(t) andy(t) are, respectively, the system
input and output,e(t) is a white noise independent

from past inputs, and whereA, B, C, D andF are
polynomials in the backward shift operatorq21.

This approach has several attractive advantages,
pointed out by Nørgaard@8#, namely:

• It is a natural extension of the well-known
linear models. The internal architecture can
be increased gradually as a higher flexibility
is needed to model more complex nonlinear
relationships.

• The structural decisions required by the user
are reduced to a level that is reasonable to
handle.

• The approach is suitable for the design of
control systems.

The predictor associated with model~4! can be
expressed in ‘‘pseudolinear’’ form asŷ(tuu)
5w(t,u)Tu, wherew is the regression vector and
u is the parameter vector. It can be extended to
nonlinear models asŷ(tuu)5 f „w(t,u),u…. De-
pending on the choice of the regressors inw(t),
different models, withN ~for nonlinear! or NN ~for
neural network! added, can be derived@9#:

• NFIR, with delayed measured inputsu(t
2k) as regressors;

• NARX, with delayed measured inputsu(t
2k) and outputsy(t2k) as regressors;

• NOE, with u(t2k) and outputs simulated
from past inputsu only ŷu(t2kuu) as re-
gressors,

• NARMAX, with u(t-k), y(t2k), and pre-
diction errors «(t2k)5y(t2k)2 ŷ(t
2kuu) as regressors,

• NBJ, with u(t-k), «(t2k)5y(t2k)- ŷ(t
2kuu), «(t2k) , and «u(k2t)5y(k2t)
2 ŷu(k2tuu) as regressors.

As an example, Fig. 6 illustrates the parallel be-
tween~linear! ARX and NARX models.

Several methods have been proposed for the se-
lection of the regressors prior to parameter estima-

Fig. 4. Gaussian bell.

Fig. 5. Identification procedure.

Fig. 6. ARX ~left! and NARX ~right! models.
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tion. Battiti @10# used entropy measures for select-
ing ‘‘features.’’ For dynamic systems, He and
Assada@11# described a very computationally ex-
tensive method to determine the lag space, i.e., the
number of delayed signal used as regressors, for
deterministic systems. But most of the time, the
selection of the network inputs is done after or
during learning, see e.g., Ref.@12#, and is part of
the network architecture determination process.

2.3 Selection of the network architecture

Most of the methods for finding the optimal net-
work architecture in view of a particular estima-
tion problem are iterative techniques and are more
or less derived from linear regression algorithms,
where the architecture selection is embedded in
parameter estimation. They are applied to the se-
lection of inputs, hidden nodes, or individual
weights. They can be classified into three groups:

• Forward selection adds the ‘‘best’’ neuron
~and the corresponding parameters! to an ex-
isting model, see for instance Refs.@13#
and @14#.

• Backward selection removes the ‘‘least rel-
evant’’ parameters, including pruning meth-
ods, see Refs.@15# and @16#, for reviews.
The optimal brain damage~OBD! @17# and
the optimal brain surgeon~OBS! @18# algo-
rithms are the most widely used pruning
methods. In these methods, an initial net-
work, ‘‘large enough’’ to describe the sys-
tem, is determined and then reduced itera-
tively, by removing useless ‘‘spurious’’
parameters. As pruning leads to a simpler
model, it alleviates the overfitting problem,
i.e., the learning of noise and unknown un-
derlying model of the system at the same
time; as a result, it generally leads to an im-
provement of the model generalization abili-
ties.

• Finally, stepwise regression combines both
approaches; see Ref.@12# for regressor se-
lection, or Ref.@19#.

2.4 Parameter estimation

Learning ~i.e., parameter estimation! methods
for MLP’s are very numerous and can be pre-
sented in three classes. In the first one, methods
exploiting the particular architecture of these net-
works as a succession of layers can be found; see

Refs.@20# and@21#, for instance. The second class
comprises various first- or second-order local,
gradient-based procedures; see Ref.@22# for a re-
view. Global, or stochastic, optimization methods
constitute the third class, including particularly
evolutionary algorithms. As reviewed by Yao@23#,
such algorithms are used not only for parameter
estimation, but also for architecture determination
and learning rule adaptation. Hybrid methods,
combining gradient descent and evolutionary algo-
rithms, have also been proposed.

The performances of learning algorithms for
MLP’s are sensitive to a large range of factors,
including:

• the choice of the error function, which can
be simply quadratic, robust to outliers@24#
or regularized;

• the weight initialization scheme, which can
considerably influence the number of itera-
tions and may have an impact on generaliza-
tion @25,26#;

• the stopping criterion;
• parameters specific to the different methods,

as well as, i.e.,...the user’s skills in using a
particular one.

The best method is thus problem dependent. The
batch Levenberg-Marquardt algorithm, although
giving no guarantee to reach a global minimum, is
often recommended.

For RBF networks, there are different ap-
proaches to estimate the parametersak, k
50,...,n, which appear linearly in model~3!, the
centers gk5@gk1 ...gkp#

T and widths bk

5@bk1 ...bkp#
T, k51,...,n. A commonly used

method separates the estimation of the
akparameters, on one hand, from that of centers
and scales, on the other hand. The centers and the
scales are determined in an unsupervised manner,
i.e., without using the outputsy of the system, by
one of the various clustering methods, such as the
hard or fuzzyC-means, for example. Such meth-
ods aim at determining compact clusters in a set of
multidimensional points, in our case the different
system input observations. The centers of gravity
of the clusters are used as centers for the RBF’s.
The scalesbk can then be computed from the clus-
ters or fixed heuristically by the user~sometimes
the sameb is used for each RBF and each input
dimension!. The radial basis functionsgk(w) be-
ing fixed, the ak parameters are simply deter-

4 Gérard Bloch, Thierry Denoeux / ISA Transactions 42 (2003) 1–0

  PROOF COPY 001302ISA  



  PROOF COPY 001302ISA  

  PRO
O

F CO
PY 001302ISA  

mined by least-squares estimation. Simplicity is
often claimed as the main advantage for the RBF
networks. Nevertheless, the determination of the
centers by clustering is not always obvious, and its
suffers from the drawbacks as other methods: nu-
merous parameters to tune~type of algorithm,
number of clusters, initial centers, metric used,•••!,
and dependence of the results to initialization.
Moreover, learning the centers without supervi-
sion is obviously suboptimal with respect to the
approximation task.

Another approach starts from a small enough
number of centers and estimates simultaneously
the ‘‘linear’’ parameters and the centers and
widths, by an iterative method, such as one of the
previously described for MLP’s. See, for example,
Ref. @27#.

Finally, there are efficient but memory demand-
ing methods, more or less derived from the or-
thogonal least-squares~OLS! algorithm @28#,
which allow us to obtain simultaneously the ‘‘lin-
ear’’ parameters, the centers, and their number
@29#. All the input observations are considered as
candidate centers and, after orthogonalization, are
incorporated one by one in a forward manner until
a specified error threshold is reached.

2.5 The advantages of the one hidden layer
perceptron and RBFN

Among the numerous nonlinear models, neural
or not, which can be used to estimate a nonlinear
relationship, the one hidden layer perceptron
~OHLP!, as well as the radial basis function net-
work ~RBFN!, present interesting features, which
can be summarized in few words: they areflexible
and parsimonious nonlinear black box models,
with universal approximation capabilities.

Several researchers have proved that OHLP@30#
as well as RBFN@5# are universal approximators,
i.e., they can approximate any nonlinear function,
from a space of finite dimension to another, with
any degree of accuracy. Other models share this
property, such as polynomial models, trigonomet-
ric series, splines, and orthogonal function expan-
sions. However, roughly speaking, OHLP’s and
RBFN’s are expansions of parametrized functions
involving adjustable parameters; consequently, it
can be shown that they require fewer parameters
than expansions of fixed functions to reach a
specified error goal@31#. In that sense, they are

parsimonious. The price to pay for using param-
etrized functions in the expansion is the existence
of numerous local minima in the error surface.

Moreover, OHLP’s and RBFN’s are flexible: the
more complex~nonlinear! the relationship is to
model, the more numerous will be the nodes or the
parameters of the corresponding neural network.
That means that their internal complexity can be
easily increased, without changing the global form
of the model. They belong to the general class of
nonparametric models that do not make any as-
sumption about the parametric form of the func-
tion to be approximated. In that sense, they con-
stitute flexible regression tools.

For these various reasons, only these two neural
models, the one hidden layer perceptron and the
radial basis function network, are employed in the
applications described further. This choice avoids
having to determine the number of hidden layers.

3. NEURAL NETWORKS FOR CONTROL

Neural networks can be included in various con-
trol schemes@4,32,33#. Agarwal @34# proposed a
systematic classification, with two main classes. In
the first category, neural networks are only used as
aids for system modeling, control-law implemen-
tation, or supervisory action. In the second one,
they are used as controllers, with different training
approaches. Before presenting examples of sys-
tems in each category, we first discuss some gen-
eral issues regarding the design of neural network
based controllers.

3.1 Controller learning

One of the first control strategies which has
been proposed is to ‘‘train’’ a neural network to
behave like the inverse of the process, and then
use it as a controller~see Fig. 7!. For a nonlinear
SISO process to be controlled, with inputu and
output y, it is assumed that the model can be ex-
pressed by

Fig. 7. Direct inverse control~open loop!.
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y~ t11!5 f „y~ t !,...,y~ t2n11!,

u~ t !,...,u~ t2m!….

So the inverse model of the system can be built by
using a neural network:

û~ t !5 f̂ 21
„y~ t11!,y~ t !,...,y~ t2n11!,

u~ t21!,...,u~ t2m!….

This latter model can be used for control by re-
placing the actual system output at timet11,
y(t11), by the referenceyd(t11) @35#.

In the case where the direct model is one-to-one
and stable, learning of the inverse model can be
done directly from the system only@cf. Fig. 8~a!#.
The inverse model can also be taught to be con-
figured as a process controllerC by a recursive
gradient-based algorithm. This ‘‘specialized’’
learning requires the process Jacobian~gradient!,
which can be obtained from physical knowledge
of the process, if available, or approximated by

• applying small variations~Du! to the process
input;

• observing the output~Dy!, and
• calculating an approximate gradient~Dy/

Du!.

Alternatively, the process can be approximated by
a ~direct! linear modelM or by a nonlinear neural
one, from which the gradient can be derived@see
Fig. 8~b!# @27#. Note that the latter approach is
quite close to conventional adaptive control.

3.2 Several neural control schemes

Control schemes using neural networks can also
be divided according to the use of a direct model
of the process. If such a model is not required, the
methods are called direct control. They include the
copy of an existing controller, in case of compli-
cated or costly devices used as controller, or of
human, nonexplicit, control laws; direct control
with inverse model~Fig. 7!; adaptive direct con-
trol; feedforward direct control, etc. In feedfor-
ward direct control, the inverse neural model is
used in parallel with a conventional controller
~e.g., PID! ~see Fig. 9!. The role of the PID is to
ensure regulation and stabilization of the con-
trolled process, while the neural network compen-
sates for nonlinearities of the process. Supplemen-
tary variables can be applied at the input of the
inverse neural model, static or dynamic, to take
into account changes in operating points. This
scheme has been implemented in one of the appli-
cations described in the next section.

Indirect-type control methods require a direct
model of the process to be controlled. They in-
clude optimal control, indirect adaptive control,
internal model control, predictive control, control
by feedback linearization, etc. As an example, a
scheme of neural internal model control is given,
for stable processes, in Fig. 10.

Most of the classical control schemes can be
extended by using neural networks. The major dif-
ficulties in their application to control lie in the
associated computation costs, for fast systems, and

Fig. 9. Neural feedforward control.

Fig. 8. ~a! Direct learning.~b! Specialized learning through direct neural model.

Fig. 10. Neural internal model control.
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in the difficulties to establish the stability of the
resulting schemes. It must be said that developing
neural dynamic control often remains an exces-
sively heavy task when classical linear methods
can be applied with acceptable results, even if
computer aided tools are now available@36#. As
shown in the following, neural techniques appear,
nevertheless, as very useful alternatives when
physical knowledge of process is insufficient, par-
ticularly at control levels higher than classical dy-
namic control.

4. TWO APPLICATIONS

4.1 Intelligent control of alloying process in a
hot dipped galvanizing line

The first presented study was conducted as part
of a collaboration between CRAN and the Sollac
company, concerning the hot dip galvanizing line
of Florange~France! @37#. The line was designed
for the production of galvanized steel sheets of
outside car panels with optimum surface quality.
The line is 500 m long, and is equipped with about
5000 sensors. It produces 300 000 tons/year of
galvanized steel sheet, at a speed of 80–120
m/min. A layout of the galvannealing section of
this plant, including galvannealing furnace, soak-
ing furnace, and air cooling section, is shown in
Fig. 11. At the exit of the zinc bath, the coating
strip is annealed to allow the diffusion of strip iron
to the coating. The strip is reheated with an induc-

tive furnace up to a set point, named inductive
temperature(u inductive), and goes through a soak-
ing furnace, the inner temperature of which is
called the mean temperature~umean!. It then
passes through the cooling part to stop the gal-
vannealing reaction. The quality of the product is
related to the percentage of iron at the surface. An
underalloyed product~lack of iron in the coat! is
caused by an insufficient alloying temperature,
while an overalloyed product is obtained when the
thermal cycle is too high. The problem is to deter-
mine and control the optimal inductive tempera-
ture, knowing the operating conditions which are
the speed, width, and thickness of the strip and the
heating power applied to the furnace.

This brief description highlights some general
features of plants in the steel industry: numerous
and interconnected describing variables, complex
physical phenomena, only partially known in an
industrial production context, nonlinear relation-
ships, importance of the skill of the operators. As
pointed out by Harris@33#, many processes, being
too complex for direct modeling based on physical
laws, are manually regulated by human operators
before automatic controls are installed. The plant
operator is able to cope with plant nonlinearities
and slowly varying parameters, to respond to com-
plex sets of noisy observations and poorly speci-
fied constraints, and to satisfy multiple subjective
performance criteria. Thus one of the basic ideas
of the presented ‘‘intelligent’’ control application
is to incorporate the flexible and creative attributes
of human controllers, while avoiding their associ-
ated characteristics of unreliability.

The overall equipment effectiveness~OEE! of
the line can be increased by analyzing the sources
of losses: stopping~for failures, tools changes,
preparations, and setting!, slowing ~light running,
microfailures, production rate lowering!, and
product quality faults, and classifying them with
respect to their economical impact. The means for
eliminating or reducing these loss causes are then
related to the functional hierarchical decomposi-
tion of the plant~computer integrated production!:
sensors, control, optimization. The approach must
improve the performances over a wide range of
operating conditions and the fault tolerance and
reconfigurability degree of the plant. An important
aspect is to reduce the design cost of control pro-
cedures. The low level validation of measurements
~temperatures, pressures!, the supervision of sen-

Fig. 11. The galvannealing section.
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sors and operating conditions, will be not de-
scribed here. Only the optimization and control
aspects are presented.

4.1.1. Optimization of the alloying thermal cycle
The improvement of the product quality requires

the determination of the optimal set points of the
thermal cycle, particularlyu inductive , for different
line speeds and product types. The metallurgy
knowledge is not sufficient to explain and to know
the optimal temperature of the alloying reaction.
The complexity of the reaction and the numerous
nonlinear relationships between all variables lead
to the use of learning algorithms from the operat-
ing points fixed by the control operators during
several months.

Figure 12 summarizes the scheme to estimate
theu inductive temperature. The idea is to model the
energy supplied to the strip, with respect to the
features of the strip and the operating conditions,
and then use the constraints of the thermal cycle to
calculateu inductive . For the energy model building
~cf. Fig. 13!, the considered variables are the line
speed, the features of the strip, and the ‘‘mea-
sured’’ energy, calculated from all the tempera-
tures of the tower and the line speed, and used as
target for learning. From dynamic data, operating
points are extracted to generate static databases.

Each point is validated as good or bad using sev-
eral criteria fixed by the operators, with respect to
the quality of the product, and only good points
are kept. The remaining steady states are then
separated in two sets, a modeling one of 260
points and a test one of 130 points. The process
typically operates around a finite number of oper-
ating points corresponding to the different strip
formats and speeds: consequently, the most suit-
able neural model was found to be a radial basis
function network. The neural model building pro-
cess is described in Ref.@37#, whereK-means or
fuzzy C-means clustering methods are compared
with orthogonal least-squares~OLS! @28# squares
algorithm for the determination of the hidden node
number~see paragraph 2.4!. Final results are con-
sidered as very satisfactory: the prediction errors
of inductive temperature calculated from the vali-
dation database are never greater than the absolute
precision of the corresponding sensor. As shown in
Fig. 14, 98% of the points are estimated with an
error lower than 1.2%.

4.1.2. Control of the induction furnace
This part is focused on the alloying cycle con-

trol, and particularly the strip temperature at the
exit of the induction furnace. A power preset
~Pgal! to apply to the furnace is determined using
a steady-state inverse model to obtain a strip tem-
perature close to the optimal temperature esti-
mated previously~cf. Fig. 15!. The behavior of the

Fig. 12. Estimation of the inductive temperature.

Fig. 13. Model learning.

Fig. 14. Precision of predicted temperatures~% of points
with respect to error in %!.

Fig. 15. Open loop control of the inductive temperature.
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furnace being nonlinear, a perceptron, with one
hidden layer of sigmoidal units and linear output
node, is used to build the inverse model. Quadratic
or robust criteria are employed to estimate the
weights. The results are compared, for the differ-
ent criteria and for various hidden node numbers,
by considering the minimal values of the root
mean square error and the maximal absolute error
on learning and test data sets. The best model,
with only four hidden nodes, is obtained from ro-
bust learning. Because of the small modeling er-
rors, and to take into account the weak fluctuations
of the unknown strip temperature at the entrance
of the furnace, a control loop is implemented on
the process~see Fig. 16!. Note that the chosen
strategy includes the possibility to disconnect the
control loop in case of measurement unavailability
of u inductive . That allows for the use of only the
neural inverse model in open loop in order to
maintain a sufficient degree of fault tolerance.

The neural learning approach allows the system
to incorporate the skill of the control operators in
automatic control and optimization systems, with
a moderate design cost. While guaranteeing a re-
quired degree of fault tolerance, the implemented
control architecture leads to a decrease of the oc-
currence of the underalloyed products and permits
a progressive reduction of operator intervention in
furnace control.

4.2 Control of a coagulation process in water
treatment

4.2.1. Context of the application
Water treatment involves complex physical,

chemical, and biological processes that transform
raw water into drinking water. In spite of impor-
tant fluctuations in raw water characteristics, due
to natural perturbation or occasional pollution, the
quality of the drinking water produced has to be
maintained at a level compatible with official stan-
dards, while minimizing operating costs. The ob-
jective of this second study, which is the result of
a collaboration between Heudiasyc and Ondeo,
was to build a model of the coagulation process,
so as to determine the optimum quantity of chemi-
cal reagents, as a function of input water quality
@38#. As no model of this process is available, a
neural network based system was designed for that
purpose.

Figure 17 depicts the main processes in a typical
plant for surface water treatment. Raw water is
abstracted from the resource~a river in this case!
and pumped to the treatment works. A typical
plant consists in two main process units: clarifica-
tion and filtration. The coagulation process, which
takes place in the clarification unit, is brought
about by adding a highly ionic salt~aluminum sul-
fate! to the water. A bulky precipitate is formed
and removed as sludge. The coagulation process
accounts for the elimination of most of the unde-
sirable substances from the raw water and hence
tight monitoring and control of this process is es-
sential. The main difficulty is to determine the op-
timum quantity of chemical reagent related to raw
water characteristics. Poor control leads to waste
of expensive chemicals, failure to meet the water

Fig. 16. Control architecture for the inductive temperature.

Fig. 17. Simplified synopsis of a water treatment plant.
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quality targets, and reduced efficiency of sedimen-
tation and filtration processes.

4.2.2. Specific requirements
Given the high variability of the inputs and the

low reliability of available sensors, an important
requirement in this application isrobustness
against erroneous sensor measurements or unusual
water characteristics, due to accidental pollution.
In our system, such a robustness is achieved using
a modular architecture composed of two levels: a
preprocessing level responsible for outlier rejec-
tion and missing data reconstruction, and a predic-
tion level involving the determination of the opti-
mal coagulant amount from raw water
characteristics~Fig. 18!. Neural network models
are involved at both levels: data validation and
reconstruction is carried out by a self-organizing
feature map~SOM! which compares input vectors
to reference patterns learned in an unsupervised
manner, and prediction of coagulant amount is
performed by a MLP.

A second important requirement from the con-
sidered application is the possibility to install the
system at low cost in various sites, which necessi-
tates a methodology for designing and training the
neural networks automatically from new data, in-
cluding the phases of data validation and model
choice. Our system uses pruning and resampling
techniques for automatic determination of the net-
work architecture and computation of confidence
bounds for the predictions.

4.2.3. Data preprocessing
Applications in the environmental domain such

as the one considered in this section generally rely
on complex sensors located at remote sites. The
processing of the corresponding measurements for
generating higher level information~such as pre-
dictions of optimal coagulant dosage! must there-
fore account for possible sensor failures and inco-
herent input data. This can be achieved by
computing distances between input vectors and

reference patterns, orprototypes. The determina-
tion of prototypes from data in an unsupervised
way may be performed using the self-organizing
map ~SOM! algorithm introduced by Kohonen
@39#. The SOM model can be used at the same
time to visualize the clusters in a data set, and to
represent the data on a two-dimensional map in a
manner that preserves the nonlinear relations of
the data items, nearby items being mapped to
neighboring positions on the map. A previous ap-
plication of SOM’s to water quality monitoring
was described in Ref.@40#.

Self-organizing maps allow the system to detect
atypical data or outliers by monitoring the distance
between each input vectorx and its closest refer-
ence vector. If this distance is greater than a speci-
fied threshold, the current sample is considered in-
valid. The contributions of each of the components
of vector x to the distance are then examined to
determine more precisely which sensors should be
declared faulty. These sensor measurements are
then disconnected to compute a new winning pro-
totype with only valid parameters.

For reconstruction, each missing value of a
given input variable is estimated by the value of
the corresponding component of the winning pro-
totype. In order to improve the reconstruction ac-
curacy, a combination of thek nearest nodes is
used. Each missing or invalid value is estimated
by a combination of the corresponding component
in thek nearest prototypes. More details about this
procedure can be found in Ref.@38#.

4.2.4. Prediction of coagulant dosage
The prediction of optimal coagulant dosage

from water characteristics was addressed as a non-
linear regression problem. Six variables measured
continuously on the raw water~turbidity, conduc-
tivity, pH, temperature, dissolved oxygen, and UV
absorption! were used as input variables. Target
values for the coagulant dosing rate were provided
by results of laboratory analyses~‘‘jar tests’’! per-

Fig. 18. Structure of the system for automatic coagulation control.
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formed once a day by the plant operators. One
year of raw data was available, from which a set
of 1600 complete learning samples was con-
structed by removing erroneous and incomplete
measurements, and averaging the data over 1-h
time intervals. A total of 1120 samples~about
70%! was exploited to build the model, the rest
being used as an independent test set. Among the
training data, approximately 30% was left out as a
validation set for optimizing the architecture.

We used a conventional MLP architecture with
one hidden layer of sigmoidal units, and training
was performed by minimization of the mean-
squared error function. For the determination of
the architecture, the optimal brain damage~OBD!
pruning algorithm@17# was used. This method is
summarized in Fig. 19. A large initial network is
first trained using the back-propagation algorithm
applied to the sum of squares error function. The
‘‘saliency’’ of each weight is then computed as a
function of the second derivatives of the error
function, and the weights with the lowest saliency
values are deleted. The process is iterated until the
cross- validation error, as estimated using an inde-
pendent data set, starts to increase. In this ap-
proach, the initial number of hidden units is only
required to excess the optimal hidden layer size. It
was fixed arbitrarily to 20 in our application, cor-
responding to 161 initial connection weights. The
network complexity was then automatically re-
duced by the pruning procedure to a final number
of 16 hidden units and 66 weights.

To better assess the reliability of the system in
on-line operation, it was demanded by the opera-
tors that the system provide not only point esti-
mates of the coagulant dosing rate, but also confi-
dence intervals. Bootstrap sampling@41# was used
to generate confidence intervals for the system
outputs, following an approach first proposed in
Ref. @42#. This technique is illustrated in Fig. 20.
In this approach,b bootstrap subsets of the initial

training set are used to trainb MLP models using
the architecture and training procedure described
previously. When a vector is fed into these net-
works, theb outputs provide an estimate of the
distribution of the target variable for the current
input. Lower and upper confidence limits for the
prediction related to any given input vector are
then obtained by sorting these outputs and select-
ing, e.g., the 10% and 90% cumulative levels. The
prediction accuracy and confidence bounds com-
puted on a validation set are shown in Fig. 21.

Extensive field testing on a pilot site has dem-
onstrated the efficiency of the approach, and wide-
spread dissemination to other sites is currently
planned. Expected benefits are treated water of a
more consistently high quality, together with im-
proved security of service, as the system will re-
spond reliably and effectively over long periods.
Significant savings in coagulant usage have al-

Fig. 21. Actual~thick line! versus predicted~thin line! co-
agulant dosage with neural network model on test data and
confidence interval~shaded region!.

Fig. 19. Learning and pruning algorithm.

Fig. 20. Bootstrap sampling for the generation of prediction
intervals.
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ready been observed. The performance of the net-
work is obviously dependent on the quality and
completeness of the data available for training the
system. Consequently, continuous updating of
training data during operational use is expected to
further improve the performance of the system.

5. CONCLUSION

The use of artificial neural networks for control
is motivated by their universal approximation ca-
pabilities. The feedforward one hidden layer per-
ceptron, with linear activation at the output, and
the radial basis function network provide simple
and flexible structures for nonlinear modeling. As
illustrated through the two applications previously
described, neural learning is particularly useful
when complex nonlinear phenomena, only par-
tially known in an industrial production context,
are involved. In such a case, the empirical knowl-
edge of control operators can be learned, particu-
larly for determining optimal set points. So, if
most of the classical dynamic control schemes can
be extended by using neural networks, neural tech-
niques seem particularly adapted to control levels
higher than classical dynamic control, and yield
control applications with interesting properties:
operation over a wide range of conditions, im-
proved fault tolerance degree, and moderated de-
sign cost.
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